Quantum Complexity Theory, UPB Summer 2019, Assignment 2

To be completed by: Friday, May 3, start of lecture

Notes: A (**) indicates a particularly important exercise.

1 Exercises

1. Prove that for any normalized vectors $|\psi\rangle, |\phi\rangle \in \mathbb{C}^d$,

$$\| |\psi\rangle - |\phi\rangle \|_2 = \sqrt{2 - 2 \cdot \operatorname{Re}(\langle \psi | \phi \rangle)}.$$

Why does it not matter if we replace $\langle \psi | \phi \rangle$ with $\langle \phi | \psi \rangle$ in this equation?

- 2. Use the spectral decompositions of X and Z to prove that $HXH^{\dagger} = Z$. (Do not simply write out the matrices and multiply!) Why does this immediately also yield that $HZH^{\dagger} = X$?
- 3. Write down a quantum circuit which maps the Bell basis $\mathcal{B} = \{|\Phi^+\rangle, |\Phi^-\rangle, |\Psi^+\rangle, |\Psi^-\rangle\}$ to the standard basis $\mathcal{B}' = \{|00\rangle, |01\rangle, |10\rangle, |11\rangle\}$ for \mathbb{C}^2 .
- 4. Prove that a Hermitian matrix $A \in \mathcal{L}(\mathbb{C}^d)$ is positive semi-definite if and only if for all $|\psi\rangle \in \mathbb{C}^d$, $\langle \psi | A | \psi \rangle \geq 0$. (Hint: Use spectral decompositions.)
- 5. Define bipartite state $|\psi\rangle = \alpha |01\rangle \beta |10\rangle$. Let $\rho = \frac{1}{2} |\Phi^+\rangle \langle \Phi^+| + \frac{1}{2} |\psi\rangle \langle \psi|$. Compute $\text{Tr}_B(\rho)$.
- 6. Let $|\psi\rangle = |-\rangle \in \mathbb{C}^2$. Define the Z basis $B = \{|0\rangle\langle 0|, |1\rangle\langle 1|\}$ and X basis $B' = \{|+\rangle\langle+|, |-\rangle\langle-|\}$. If we keep alternating measurements in the Z and X bases, what measurement statistics will we get for each of the respective outcomes (i.e. what will be the probabilities of each possible outcome each time a measurement is made)?
- 7. In this exercise, you will show that an operator U is unitary if and only if there exists a Hermitian operator H such that $U = e^{iH}$ for complex number i. This ties back to one of the most important equations in quantum mechanics, the *Schrödinger* equation, which roughly says that quantum systems evolve in time according to some "Hamiltonian" H, whose action on the system is given by e^{iH} ; this is how the notion of unitary evolution actually comes about.
 - (a) Let $H \in \text{Herm}(\mathbb{C}^n)$ and $c \in \mathbb{C}$. Using the Taylor series definition of e^{cH} , what does the spectral decomposition of e^{cH} look like?
 - (b) Prove that for any $H \in \text{Herm}(\mathbb{C}^d)$, e^{iH} is unitary.
 - (c) Next, characterize the set of possible eigenvalues for a unitary matrix.
 - (d) Now prove that for any unitary $U \in U(\mathbb{C}^n)$, there exists an $H \in \text{Herm}(\mathbb{C}^n)$ such that $U = e^{iH}$.