Quantum Complexity Theory, UPB Summer 2019, Assignment 2

To be completed by: Friday, May 3, start of lecture

Notes: A ${ }^{(* *)}$ indicates a particularly important exercise.

1 Exercises

1. Prove that for any normalized vectors $|\psi\rangle,|\phi\rangle \in \mathbb{C}^{d}$,

$$
\||\psi\rangle-|\phi\rangle \|_{2}=\sqrt{2-2 \cdot \operatorname{Re}(\langle\psi \mid \phi\rangle)}
$$

Why does it not matter if we replace $\langle\psi \mid \phi\rangle$ with $\langle\phi \mid \psi\rangle$ in this equation?
2. Use the spectral decompositions of X and Z to prove that $H X H^{\dagger}=Z$. (Do not simply write out the matrices and multiply!) Why does this immediately also yield that $H Z H^{\dagger}=X$?
3. Write down a quantum circuit which maps the Bell basis $\mathcal{B}=\left\{\left|\Phi^{+}\right\rangle,\left|\Phi^{-}\right\rangle,\left|\Psi^{+}\right\rangle,\left|\Psi^{-}\right\rangle\right\}$to the standard basis $\mathcal{B}^{\prime}=\{|00\rangle,|01\rangle,|10\rangle,|11\rangle\}$ for \mathbb{C}^{2}.
4. Prove that a Hermitian matrix $A \in \mathcal{L}\left(\mathbb{C}^{d}\right)$ is positive semi-definite if and only if for all $|\psi\rangle \in \mathbb{C}^{d}$, $\langle\psi| A|\psi\rangle \geq 0$. (Hint: Use spectral decompositions.)
5. Define bipartite state $|\psi\rangle=\alpha|01\rangle-\beta|10\rangle$. Let $\rho=\frac{1}{2}\left|\Phi^{+}\right\rangle\left\langle\Phi^{+}\right|+\frac{1}{2}|\psi\rangle\langle\psi|$. Compute $\operatorname{Tr}_{B}(\rho)$.
6. Let $|\psi\rangle=|-\rangle \in \mathbb{C}^{2}$. Define the Z basis $B=\{|0\rangle\langle 0|,|1\rangle\langle 1|\}$ and X basis $B^{\prime}=\{|+\rangle\langle+|,|-\rangle\langle-|\}$. If we keep alternating measurements in the Z and X bases, what measurement statistics will we get for each of the respective outcomes (i.e. what will be the probabilities of each possible outcome each time a measurement is made)?
7. In this exercise, you will show that an operator U is unitary if and only if there exists a Hermitian operator H such that $U=e^{i H}$ for complex number i. This ties back to one of the most important equations in quantum mechanics, the Schrödinger equation, which roughly says that quantum systems evolve in time according to some "Hamiltonian" H, whose action on the system is given by $e^{i H}$; this is how the notion of unitary evolution actually comes about.
(a) Let $H \in \operatorname{Herm}\left(\mathbb{C}^{n}\right)$ and $c \in \mathbb{C}$. Using the Taylor series definition of $e^{c H}$, what does the spectral decomposition of $e^{c H}$ look like?
(b) Prove that for any $H \in \operatorname{Herm}\left(\mathbb{C}^{d}\right), e^{i H}$ is unitary.
(c) Next, characterize the set of possible eigenvalues for a unitary matrix.
(d) Now prove that for any unitary $U \in \mathrm{U}\left(\mathbb{C}^{n}\right)$, there exists an $H \in \operatorname{Herm}\left(\mathbb{C}^{n}\right)$ such that $U=e^{i H}$.

