
Quantum Complexity Theory, UPB

Summer 2019, Assignment 1

To be completed by: Friday, April 26, start of lecture

1 Exercises

1. Turing Machines (TMs). One of the reasons the TM model is highly revered is due to its robustness,
i.e. the fact that its computational power does not change much under small changes to the model.

(a) In class, we defined a TM as moving its head either one cell to the left (L) or one cell to the right
(R) in one computation step. Prove that adding a third option, that the head can stay (S) put
in a computation step, does not increase the power of the model. In other words, show how our
“standard” TM model from class can simulate the option of keeping the head stationary.

(b) Our standard TM model assumes access to a single work tape. Another option is to allow two
work tapes, each with its own independent head. Show that our standard TM model can simulate
a 2-tape TM.

2. Languages and decision problems. In class, we associated each language L ⊆ {0, 1}∗ with a
decision problem ΠL of the form: Given x ∈ {0, 1}∗, is x ∈ L? Let us flesh out how this framework
can be used to encode real-life decision problems that a priori have nothing to do with languages.

We begin with an example. Recall the Halting Problem asks: Given as input a description of a TM
M and input x ∈ {0, 1}∗, does M halt on input x? The corresponding language for this is

HALT =
{
〈M,x〉 |M is a TM, x ∈ {0, 1}∗, and M halts on input x

}
.

The angle brackets 〈·〉 mean we are implicitly applying a fixed encoding scheme mapping (say) the
input Turing machine M to a binary string.

(a) Convince yourself that deciding membership in HALT is equivalent to solving the Halting Problem.

(b) Write down the language L corresponding to the problem FACTOR from lecture.

3. P and NP.

(a) Prove that P ⊆ NP.

(b) Prove that P is closed under complement. In other words, prove that a language L ⊆ {0, 1}∗ is
in P if and only if L := {0, 1}∗ \ L is in P.

(c) Is NP closed under complement? Why or potentially why not?

(d) Suppose we change the definition of NP so that the proof y has length only logarithmic in the
input size, n, instead of polynomial in n. (Everything else about the definition of NP does not
change.) Call this class ShortNP. What can you say about ShortNP versus P?

(e) Suppose we change the definition of NP so that the proof y has length exponentially long in the
input size, n, instead of polynomial in n. (Everything else about the definition of NP does not
change.) Call this class LongNP. What can you say about LongNP versus NP?

1



4. Reductions and NP-completeness. The language INDEPENDENT-SET is defined as follows:

IS = {〈G, k〉 | G = (V,E) has an independent set S of size at least k}.

Here, S ⊂ V is an independent set if for any v, w ∈ S, v and w are not connected by an edge (i.e.
(v, w) 6∈ E).

(a) Show that IS ∈ NP by demonstrating the existence of an efficiently checkable proof for YES-
instances of the problem.

(b) Below, we sketch a reduction from 3-SAT to IS. Given a 3-CNF formula φ consisting of k clauses,
we construct a graph G as follows:

• For each clause φi, we add a triangle gadget ∆i to G, whose vertices correspond to the literals
of φi.

• We connect vertices corresponding to conflicting literals with an edge.

For example, suppose

φ = (x1 ∨ x2 ∨ x3) ∧ (x5 ∨ x3 ∨ x4) ∧ (x5 ∨ x2 ∨ x6).

Then, G is given by:

x1

x2
x3

x5

x3

x5

x2
x4 x6

i. Prove that if φ is satisfiable, then G has an independent set S of size k.

ii. Prove that if G has an independent set S of size k, then φ is satisfiable.

2


	Exercises

