L.079.05802 Quantum Complexity Theory (in English) Syllabus

Course code:	L.079.05802	
Course Level:	Masters	
Instructor:	Jun. Prof. Dr. Sevag Gharibian	
Office:	F2.313	
Office hours:	10:30 – 11:30 Tuesdays	
Email:	sevag.gharibian@upb.de	
Classroom:	F1.110 (Friday), F0.530 (Monday)	
Class website:		
http://groups.uni-paderborn.de/fg-		

qi/courses/UPB_QCOMPLEXITY/2019/UPB_QCOMPLEXITY.html

1.0 - Major Topics Covered (tentative):

- Review of quantum circuit model and density operator formalism
- BQP and solving linear systems
- Quantum-Classical Merlin Arthur
 - Perfect completeness
 - QCMA-completeness of Ground State Connectivity
- Quantum Merlin Arthur (QMA)
 - Error reduction
 - QMA-completeness of Local Hamiltonian Problem
- One-sided error QMA
 - Efficient Quantum 2-SAT algorithms
 - o Quantum Lovász Local Lemma
- QMA(2)
 - NP protocol with short proofs
 - Product state test and QMA(2) = QMA(k)
- Quantum Interactive Proofs
 - Semidefinite programming
 - Matrix Multiplicative Update Weights Method
 - QIP = PSPACE
- Quantum supremacy
 - Boson sampling

- Random circuit sampling
- As time permits:
 - Approximate simulation and PQMA[log]
 - BQP versus the Polynomial-Time Hierarchy
 - Quantum cloud computing (i.e. delegated quantum computation)

2.0 – Class Schedule:

- Lecture: 8:00 11:00 Friday in F1.110. Beginning 12.04..2019.
- Tutorial: 14:00-16:00 Monday in F0.530. Beginning 29.04.2019.
- Final Exam (first sitting): TBA
- Final Exam (second sitting): TBA

3.0 – Grading Scheme:

• The full grade for the course is based on the final exam, which will be oral. The grading scheme for the final exam is as follows:

95% - 100%	: 1,0
90% - 94%	: 1,3
85% - 89%	: 1,7
80% - 84%	: 2,0
75% - 79%	: 2,3
70% - 74%	: 2,7
65% - 69%	: 3,0
60% - 64%	: 3,3
55% - 59%	: 3,7
50% - 54%	: 4,0
0 - 49%	: 5,0

- Update 06.06.2019: There is now a research project option for your final grade, instead of the oral exam. This is completely voluntary; you may choose either option. Please see the research project guidelines on PAUL for details.
- *Homework:* Are graded only for completeness. The bonus points for completing homeworks are as follows. Note the bonus applies only if you pass the final exam.

>= 60% of homeworks completed: 1 step bonus (eg 1,3 to 1,0)

>= 90% of homeworks completed: 2 steps bonus (eg 1,7 to 1,0)

 Research seminar attendance: The PhoQS research group at Uni Paderborn organizes a multi-disciplinary quantum seminar series each semester, with details here (note the list of talks may grow as the semester progresses): <u>https://math.uni-paderborn.de/ag/arbeitsgruppe-</u> <u>spektralanalysis/forschung/interdisziplinaeres-oberseminar-quantennetzwerke/</u>

1 step bonus will be obtained for attending at least 4 seminars in the semester and writing a short summary for each. Each summary should give a few sentences explaining each of the following four points:

- 1. The problem studied.
- 2. The motivation for studying the problem.
- 3. The results obtained.
- 4. An intuitive sense of how the the results are obtained.

While many of these talks are CS-oriented, some are physics-oriented. In such cases, I naturally do not expect you to seriously understand the content, but rather do your best to ask questions and understand as much as you can. Again, I will not grade your summaries for correctness, but rather for completeness.