Introduction to Quantum Computation, UPB
 Winter 2022, Assignment 4

To be completed by: Thursday, November 10, start of tutorial

1 Exercises

1. (a) Let $A, B \in \mathcal{L}\left(\mathbb{C}^{d}\right)$ be positive semi-definite matrices. Prove that $A+B$ is positive semi-definite.
(b) Prove that if ρ and σ density matrices, then so is $p_{1} \rho+p_{2} \sigma$ for any $p_{1}, p_{2} \geq 0$ and $p_{1}+p_{2}=1$.
2. Suppose that with probability $1 / 3$, I give you state $|0\rangle \in \mathbb{C}^{2}$, and with probability $2 / 3$, I give you state

3. Define bipartite state $|\psi\rangle=\alpha|01\rangle-\beta|10\rangle$. Let $\rho=\frac{1}{2}\left|\Phi^{+}\right\rangle\left\langle\Phi^{+}\right|+\frac{1}{2}|\psi\rangle\langle\psi|$. Compute $\operatorname{Tr}_{B}(\rho)$.
4. Let $|\psi\rangle=\alpha_{0}\left|a_{0}\right\rangle\left|b_{0}\right\rangle+\alpha_{1}\left|a_{1}\right\rangle\left|b_{1}\right\rangle$ be the Schmidt decomposition of a two-qubit state $|\psi\rangle$. Prove that for any single qubit unitaries U and $V,|\psi\rangle$ is entangled if and only if $\left|\psi^{\prime}\right\rangle=(U \otimes V)|\psi\rangle$ is entangled. (Hint: Prove that the Schmidt rank of $|\psi\rangle$ equals that of $\left|\psi^{\prime}\right\rangle$. Also, you might find Lemma 1 of the Lecture 3 notes useful.)
