Introduction to Quantum Computation, UPB Winter 2022, Assignment 9

Due: January 26, at start of tutorial

This homework gets you to practice using Grover's algorithm and amplitude amplification.

1 Exercises

1. Recall the unstructured search problem, for which we are given black-box access to the bits of a string $x=x_{1} \cdots x_{N} \in\{0,1\}^{N}$, for $N=2^{n}$. The goal is to find a solution, i.e. an index i such that $x_{i}=1$, if such an index exists. Denote by t the Hamming weight x, i.e. the number of bits of x which are set to 1 ; note that t is unknown to you.
In the lecture, we saw that running the Grover iterate $k=O(\sqrt{N / t})$ times suffices to find a solution. However, this depended on knowing t, which one does not know in general. Nevertheless, it is possible to find a solution even without knowing t using an expected number of $O(\sqrt{N / t})$ queries. In this question, we will see how.

Consider the following algorithm:
i. Set $m=1, \lambda=6 / 5$.
ii. Choose j uniformly at random from set $\{1, \ldots, m\}$.
iii. Apply the Grover iterate j times.
iv. Measure, and stop if a solution is found.
v. Else, set $m=\min (\lambda m, \sqrt{N})$. Return to Step ii.

We now analyze this algorithm. Assume throughout this question that $t \leq 3 N / 4$. (Why is the problem trivial to solve if $t>3 N / 4$?)
(a) Set θ such that $\sin ^{2} \theta=t / N$, and $m_{0}=1 / \sin (2 \theta)$. Show that $m_{0}<\sqrt{N / t}$.
(b) It can be shown that whenever $m \geq 1 / \sin (2 \theta)$, the probability of obtaining a correct solution in step iv is at least $1 / 4$. Thus, intuitively, we wish to increment m up to at least $1 / \sin (2 \theta)$ in step v as quickly as possible, but without using more than $O(\sqrt{N / t})$ queries. This explains the use of a geometric progression obtained by multiplying by $\lambda>1$ each time step v is run.

What is the number of times step ii has to be run before we are guaranteed $m \geq 1 / \sin (2 \theta)$?
(c) Once $m \geq 1 / \sin (2 \theta)$, we shall say the algorithm has reached the "critical stage". Show that the algorithm requires $O(\sqrt{N / t})$ queries to reach the critical stage.
(d) Suppose the algorithm reaches the critical stage. Show that the expected number of Grover iterations needed to find a solution is now $O(\sqrt{N / t})$. Conclude that the total number of queries required by the algorithm is $O(\sqrt{N / t})$.
2. Assume we have black-box query access to a sequence of $N=2^{n}$ distinct integers, $x=x_{0} x_{1} \cdots x_{N-1}$ for $x_{i} \in \mathbb{Z}$. Specifically, we assume the ability to apply both the query map $O_{x}:|i, 0\rangle \mapsto\left|i, x_{i}\right\rangle$ and its inverse. Note that each integer x_{i} can be arbitrarily large, i.e. do not assume each integer is at most (say) N in absolute value.
Devise a quantum query algorithm, which with probability at least $2 / 3$, finds the minimum x_{i} over all indices i. You should use $O(\sqrt{N})$ queries. You do not need to formally work out the full details of the algorithm and its analysis. Rather, describe the algorithm and argue why its runtime should be $O(\sqrt{N})$ at a high level.
Hint: Try to do something along the lines of running Quicksort while being able to run Grover's algorithm as a subroutine. For your runtime analysis, you may simplify the Quicksort analysis by assuming that picking an index i uniformly at random yields "roughly" the median of the sequence x, i.e. approximately half the indices j will have $x_{j}<x_{i}$.

