Introduction to Quantum Computation, UPB
 Winter 2022, Assignment 1

To be completed by: Friday, October 21

1 Exercises

1. For complex number $c=a+b i$, recall that the real and imaginary parts of c are denoted $\operatorname{Re}(c)=a$ and $\operatorname{Imag}(c)=b$.
(a) Prove that $c+c^{*}=2 \cdot \operatorname{Re}(c)$.
(b) Prove that $c c^{*}=a^{2}+b^{2}$. How can we therefore rewrite $|c|$ in terms of a and b ?
(c) What is the polar form of $c=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i$? Use the fact that $e^{i \theta}=\cos \theta+i \sin \theta$.
(d) Draw $c=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i$ as a vector in the complex plane, ensuring to denote both the length of the vector and its angle with the x axis.
2. Prove that for any normalized vectors $|\psi\rangle,|\phi\rangle \in \mathbb{C}^{d}$,

$$
\||\psi\rangle-|\phi\rangle \|_{2}=\sqrt{2-2 \cdot \operatorname{Re}(\langle\psi \mid \phi\rangle)} .
$$

Why does it not matter if we replace $\langle\psi \mid \phi\rangle$ with $\langle\phi \mid \psi\rangle$ in this equation?
3. Define

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

(a) What is $\operatorname{Tr}(A \cdot|1\rangle\langle 0|)$? (Hint: This can be computed quickly by using the cyclic property of the trace and the outer product representation of A. Do master this trick; it will be used repeatedly in the course and save you much time.)
(b) Let $|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$. Use the same tricks as in part A, along with the fact that the trace is linear, to quickly evaluate

$$
\operatorname{Tr}(A \cdot|+\rangle\langle+|)
$$

4. (a) A general property of the outer product is that $(|\psi\rangle\langle\phi|)^{\dagger}=|\phi\rangle\langle\psi|$. Verify that this holds for the case where $|\psi\rangle=|0\rangle$ and $|\phi\rangle=|1\rangle$. (Hint: Write out the full matrix corresponding to $|0\rangle\langle 1|$.)
(b) Use Part (a) to prove that a normal matrix A satisfies $A=A^{\dagger}$ if and only if all of A 's eigenvalues are real. (Hint: Since A is normal, you can start by writing A in terms of its spectral decomposition. What does the condition $A=A^{\dagger}$ enforce in terms of A 's spectral decomposition?)
