Introduction to Quantum Computation, UPB Summer 2021, Assignment 2

To be completed by: Friday, April 30

1 Exercises

1. Use the spectral decompositions of X and Z to prove that $H X H^{\dagger}=Z$. (Do not simply write out the matrices and multiply!) Why does this immediately also yield that $H Z H^{\dagger}=X$?
2. (a) Write out the 4-dimensional vector for $(\alpha|0\rangle+\beta|1\rangle) \otimes(\gamma|0\rangle+\delta|1\rangle)$.
(b) Let $\mathcal{B}_{1}=\left\{\left|\psi_{1}\right\rangle,\left|\psi_{2}\right\rangle\right\}$ and $\mathcal{B}_{2}=\left\{\left|\phi_{1}\right\rangle,\left|\phi_{2}\right\rangle\right\}$ be two orthonormal bases for \mathbb{C}^{2}. Prove that

$$
\mathcal{B}_{3}=\left\{\left|\psi_{1}\right\rangle \otimes\left|\phi_{1}\right\rangle,\left|\psi_{1}\right\rangle \otimes\left|\phi_{2}\right\rangle,\left|\psi_{2}\right\rangle \otimes\left|\phi_{1}\right\rangle,\left|\psi_{2}\right\rangle \otimes\left|\phi_{2}\right\rangle\right\}
$$

is an orthonormal basis for \mathbb{C}^{4}. In other words, show that for each $|v\rangle \in \mathcal{B}_{3}, \||v\rangle \|_{2}=1$, and for all pairs of distinct $|v\rangle,|w\rangle \in \mathcal{B}_{3},\langle v \mid w\rangle=0$.
3. (a) Prove that $(Z \otimes Y)^{\dagger}=Z \otimes Y$. Do not write out any matrices explicitly; rather, you must use the properties of the tensor product, dagger, and Y.
(b) In class, we saw a quantum circuit which, given starting state $|0\rangle \otimes|0\rangle$, prepared the Bell state $\left|\Phi^{+}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$. In fact, that circuit is a change of basis matrix, mapping the standard basis $|00\rangle,|01\rangle,|10\rangle,|11\rangle$ to the Bell basis $\left|\Phi^{+}\right\rangle,\left|\Psi^{+}\right\rangle,\left|\Phi^{-}\right\rangle,\left|\Psi^{-}\right\rangle$.
i. Write down a quantum circuit which maps $\left|\Phi^{+}\right\rangle$to $|0\rangle \otimes|0\rangle$. (Hint: Write out the circuit from class as a sequence of matrix operations. Then, recalling that the inverse of any unitary operation U is given by U^{\dagger}, take the inverse of this entire sequence by taking the dagger.)
ii. Your circuit from $3(\mathrm{~b})(\mathrm{i})$ is actually a change of basis which maps the Bell basis back to the standard basis. To verify this, run your circuit from $3(\mathrm{~b})(\mathrm{i})$ on input $\left|\Psi^{-}\right\rangle$and check that the output is $|1\rangle \otimes|1\rangle$.

