Introduction to Quantum Computation, UPB Summer 2021, Assignment 2

To be completed by: Friday, April 30

1 Exercises

- 1. Use the spectral decompositions of X and Z to prove that $HXH^{\dagger} = Z$. (Do not simply write out the matrices and multiply!) Why does this immediately also yield that $HZH^{\dagger} = X$?
- 2. (a) Write out the 4-dimensional vector for $(\alpha|0\rangle + \beta|1\rangle) \otimes (\gamma|0\rangle + \delta|1\rangle)$.
 - (b) Let $\mathcal{B}_1 = \{ |\psi_1\rangle, |\psi_2\rangle \}$ and $\mathcal{B}_2 = \{ |\phi_1\rangle, |\phi_2\rangle \}$ be two orthonormal bases for \mathbb{C}^2 . Prove that

 $\mathcal{B}_3 = \{ |\psi_1\rangle \otimes |\phi_1\rangle, |\psi_1\rangle \otimes |\phi_2\rangle, |\psi_2\rangle \otimes |\phi_1\rangle, |\psi_2\rangle \otimes |\phi_2\rangle \}$

is an orthonormal basis for \mathbb{C}^4 . In other words, show that for each $|v\rangle \in \mathcal{B}_3$, $||v\rangle||_2 = 1$, and for all pairs of distinct $|v\rangle, |w\rangle \in \mathcal{B}_3$, $\langle v|w\rangle = 0$.

- (a) Prove that (Z ⊗ Y)[†] = Z ⊗ Y. Do not write out any matrices explicitly; rather, you must use the properties of the tensor product, dagger, and Y.
 - (b) In class, we saw a quantum circuit which, given starting state $|0\rangle \otimes |0\rangle$, prepared the Bell state $|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$. In fact, that circuit is a change of basis matrix, mapping the standard basis $|00\rangle, |01\rangle, |10\rangle, |11\rangle$ to the Bell basis $|\Phi^+\rangle, |\Psi^+\rangle, |\Phi^-\rangle, |\Psi^-\rangle$.
 - i. Write down a quantum circuit which maps $|\Phi^+\rangle$ to $|0\rangle \otimes |0\rangle$. (Hint: Write out the circuit from class as a sequence of matrix operations. Then, recalling that the inverse of any unitary operation U is given by U^{\dagger} , take the inverse of this entire sequence by taking the dagger.)
 - ii. Your circuit from 3(b)(i) is actually a change of basis which maps the Bell basis *back* to the standard basis. To verify this, run your circuit from 3(b)(i) on input $|\Psi^{-}\rangle$ and check that the output is $|1\rangle \otimes |1\rangle$.