
Introduction to Quantum Computation, UPB

Summer 2021, Assignment 8

Due: Friday, July 9, at start of tutorial

1 Exercises

1. Let U ∈ L(Cd) be a unitary operator with eigenvalues e2πiθk for θk ∈ [0, 1). Assume for simplicity that
all θk can be expressed perfectly using n bits.

(a) Let |ψk〉 be an eigenvector of U with eigenvalue e2πiθk . In class, we saw that the phase estimation
algorithm maps |0n〉|ψk〉 7→ |2nθk〉|ψk〉. In other words, we extract the phase of the eigenvalue.
What happens when the input state |ψk〉 is not an eigenvector of U? In other words, suppose
we instead input state |0n〉|φ〉 to the phase estimation algorithm. What state does the algorithm
produce? What happens when we measure the first register of the output in the standard basis?

(b) Suppose for all k ∈ {1, . . . , d}, θk ∈ {0, 1/2}, i.e. U has eigenvalues in {1,−1}. Given any state
|φ〉 as for part (a), give a quantum circuit for randomly projecting |φ〉 onto either the +1 or −1
eigenspace of U , with the help of a classical register which indicates which of the two spaces we’ve
projected onto. What is the expression determining the probability of projecting down to each of
the two eigenspaces (this should depend on |φ〉)?

(c) Consider the special case of part (b) in which U is a 2 × 2 unitary matrix, and is Hermitian.
Suppose we wish to measure state |φ〉 via observable U , i.e. to obtain outcome 1 or −1 (the
eigenvalues of U), and then project |φ〉 onto the corresponding eigenspace. Give a simple circuit
which accomplishes this.

2. Just as we defined norms of vectors, one can define norms on matrices. For A ∈ L(Cd), define the
induced Euclidean norm (a.k.a. operator or spectral norm)

‖A ‖ := max
v∈Cd s.t. ‖ v ‖2=1

‖Av ‖2 ,

where recall ‖ v ‖2 =
√
〈v, v〉 denotes the Euclidean norm of v. In other words, the spectral norm tells

the maximum amount by which A can “stretch” a vector v. Based on this, we can define distance
measure d(A,B) = ‖A−B ‖.

(a) Let us first understand why the spectral norm is useful in quantum information. Given two
unitaries U,U ′ ∈ L(Cd) such that ‖U − U ′ ‖ ≤ ε for some small ε ≈ 0, and an arbitrary state
|ψ〉 ∈ Cd, why is it intuitively difficult to distinguish via any measurement the output of U |ψ〉
versus U ′|ψ〉?

(b) Let us now apply the intuition behind (a) to simplify the circuit for the quantum Fourier transform.
Consider phase gate

V =

(
1 0
0 eiφ

)
.

Compute d(I, V ), for I the 2× 2 identity matrix.
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(c) Consider a circuit consisting of L unitary operations Ui ∈ L(Cd),

U = ULUL−1 · · ·U1.

Suppose we omit an arbitrary operation Ui, i.e. set U ′ = UL · · ·Ui+1Ui−1 · · ·U1. Show that
‖U − U ′ ‖ = ‖ I − Ui ‖. (Hint: Convince yourself first that the spectral norm is unitarily invariant,
i.e. ‖A ‖ = ‖UAV ‖ for any unitaries U and V .)

(d) More generally, it can be shown that if we drop a set of unitaries S = {Ui} from U , then

‖U − U ′ ‖ ≤
∑
Ui∈S

‖ I − Ui ‖ .

The proof proceeds by induction on |S|, and the proof idea essentially is the same as for a simpler
problem, which you will instead solve in this question. For any unitary matrices U, V, U ′, V ′, show
that

‖UV − U ′V ′ ‖ ≤ ‖U − U ′ ‖+ ‖V − V ′ ‖ .

Intuitively, this says that if we replace “ideal” unitaries U and V with “approximate” ones U ′ and
V ′, respectively, the effect of replacing UV with U ′V ′ can be bounded via the spectral norm.

(Hint: Add and subtract a carefully chosen term to UV − U ′V ′, and then apply the triangle
inequality and submultiplicativity properties for the spectral norm, which say that ‖A+B ‖ ≤
‖A ‖+ ‖B ‖ and ‖AB ‖ ≤ ‖A ‖ ‖B ‖, respectively.)

(e) Observe now that the quantum Fourier Transform QFTN for N = 2n from class requires O(n2)
gates. Given the exercises above, design a quantum circuit U ′ using just O(n log n) gates, such
that ‖U − U ′ ‖ ≤ 1/n. (Hints: (1) Recall from class that for large s, the entry e2πi/2

s ≈ 1 in the
phase gates Rs. Reflecting on this should give you an overall battle plan for how to approach this
question. (2) To formalize things, start by proving that

∣∣e2πi/2s − 1
∣∣ ≤ 2π/2s. The Wikipedia

page for trigonometric identities, as well as Taylor series truncations, will be your friends here.
The answer to this hint should tell you how roughly many phase gates you need on each wire to
ensure the overall error spectral norm stays below 1/n.)

3. (a) Prove that FACTOR ∈ NP∩ co-NP. In your containment proof for co-NP, you will need to argue
that the number of factors is at most polylogarithmic in the input N to FACTOR.

(b) Recall from Fact 16 of Lecture 10 that for any prime p ∈ Z+, there is a generator g ∈ Zp, such
that any e ∈ Zp can be written gk ≡ e mod p for some k ∈ {1, . . . , p− 1}. Using Fermat’s
Little Theorem, prove that picking non-zero e uniformly at random from Zp is equivalent to
picking k ∈ {1, . . . , p− 1} uniformly at random. In your answer, do not assume a priori that
k ∈ {1, . . . , p− 1} as stated in Fact 16; rather, start by assuming there is some k for each e, and
use FLT to prove that indeed WLOG k ∈ {1, . . . , p− 1}.
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