
Introduction to Quantum Computation, UPB

Summer 2021, Assignment 7

Due: Friday, June 18 at start of tutorial

Exercises

1. As seen in class, Deutsch’s algorithm is able to determine with certainty (i.e. probability 1) whether a
1-bit function is constant or balanced. Suppose you wish to run Deutsch’s algorithm in your lab, but
your equipment doesn’t quite function as you expect. In particular, instead of preparing your desired
initial state of |0〉|1〉 to the algorithm, your machine prepares state |ψ〉|1〉 for |ψ〉 = α|0〉+ β|1〉.

(a) Assuming the function f is balanced, what is the probability that Deutsch’s algorithm on your
faulty initial state |ψ〉|1〉 will correctly output “balanced”, i.e. that the final measurement result
in the algorithm has label 1?

(b) There is only so much “error” that the algorithm can tolerate before it becomes useless — for
which range of the parameter 0 ≤ |α| ≤ 1 is the probability of success in part 3a less than or
equal to 1/2? In other words, for which values of |α| is it better to forget about running Deutsch’s
algorithm and instead just flip a classical (unbiased) coin to “decide” if f is balanced?

2. This question will practice working through Simon’s algorithm.

(a) Consider function f : {0, 1}2 7→ {0, 1}2 such that f(00) = 10, f(01) = 11, f(10) = 10 and
f(11) = 11. This function satisfies the promise required for Simon’s problem, i.e. f(x) = f(y) iff
x = y ⊕ s. What is the value of s for f?

(b) Suppose f : {0, 1}n 7→ {0, 1}n is an n-bit function which slightly violates the promise required of
Simon’s algorithm in that f is “almost” one-to-one in the following sense: For each distinct input
x ∈ {0, 1}n, the output f(x) is unique, except for inputs 0n and 1n, which are the only pair of
inputs satisfying f(0n) = f(1n). Thus, we are very “close” to the s = 0n case, and we expect the
analysis to go “similarly”.

Recall that right before the measurement in Simon’s algorithm, our quantum state looks like

∑
y∈{0,1}n

|y〉

 1

2n

∑
x∈{0,1}n

(−1)x·y|f(x)〉

 .

Pick an arbitrary ŷ ∈ {0, 1}n. Show that when the first register is now measured in the standard
basis, the probability of outcome ŷ is given by

1

2n
± 1

22n−1
,

where the + occurs if the parity of y is even, and the − occurs if the parity of y is odd. Here,
the parity of y is defined as

⊕n
i=1 yi. (Hint: One way to do the analysis is to recall that for any

normalized state |ψ〉 =
∑

z∈{0,1}n |z〉|φz〉, the probability of observing outcome |z〉 in the first

register is 〈φz|φz〉. Do make sure you understand this claim first.)
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3. In our analysis of Simon’s problem, we assumed that one could make intermediate measurements when
running a circuit. This process, of course, is non-unitary, and ideally we would instead like to keep the
computation unitary until the very end, at which point we measure everything in the standard basis.
In this question, you will show that indeed, measurements can be deferred to the end of a circuit,
without loss of generality.

Recall the circuit C for preparing the Bell state |Φ+〉:

|0〉 H •

|0〉

(a) Suppose we insert a measurement in the standard basis on qubit 1 between the Hadamard gate
and the CNOT gate. What is the output state of the new circuit C ′? (Hint: You will need to use
the density matrix formalism ρ to describe the immediate postmeasurement state, assuming the
measurement outcome is not read, and subsequently apply any unitary gates U in the circuit as
UρU†.)

(b) Show that by adding a single ancilla qubit (and appropriate additional quantum gates) to C ′, we
can simulate the output of C ′ by instead measuring only at the end of the circuit. Specifically,
add a new qubit to the circuit, which is measured only at the end of the circuit (in the standard
basis).
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