
Introduction to Quantum Computation, UPB

Summer 2021, Assignment 6

Due: Friday, June 4, at start of tutorial

Exercises

1. Let Xp be a random variable denoting a coin flip with bias p ∈ [0, 1], i.e. a coin flip which lands
HEADS with probability p. In class, we claimed the maximum entropy H(Xp) = 1 is achieved when
p = 1/2, i.e. when we have a fair coin.

(a) Convince yourself of this fact visually by plotting H(Xp) as p ranges from 0 to 1. You may use a
mathematics package such as Mathematica (available for download free at UPB), Matlab, GNU
Octave (like Mathematica, but free for everyone), or anything that produces a plot. My hope is
you will use this exercise as an excuse to download Mathematica or Octave and start tinkering
with them, as they are very useful packages. (Matlab is excellent as well, but is not free at UPB.)

(b) Now prove rigorously that in the range p ∈ [0, 1], H(Xp) is maximized for p = 1/2. Hint: A
simple and elegant proof can be given by first computing 2H(Xp), and then applying the weighted
Arithmetic-Geometric Mean inequality, which states in our setting that for x1, x2, w1, w2 ≥ 0
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2 .

(c) Use Part (b) to argue that among two-qubit pure states |ψAB〉 ∈ C2 ⊗ C2, the only states which
are “maximally entangled” (i.e. maximizing the quantity E(|ψAB〉) from class) are those whose
reduced state is ρA = I/2.

(d) Finally, prove that it does not matter whether we take ρA or ρB in Part (c) — namely, prove that
for any |ψAB〉 ∈ C2 ⊗ C2,

S(ρA) = S(ρB).

Observe that this is true even if ρA 6= ρB .

2. This question asks you to practice working with operator functions, as they play a fundamental role in
quantum computation. In particular, you will show that an operator U is unitary if and only if there
exists a Hermitian operator H such that U = eiH for complex number i. This ties back to one of the
most important equations in quantum mechanics, the Schrödinger equation, which roughly says that
quantum systems evolve in time according to some “Hamiltonian” H, whose action on the system is
given by eiH ; this is how the notion of unitary evolution actually comes about.

(a) Let H ∈ Herm (Cn) and c ∈ C. Using the Taylor series definition of ecH , what does the spectral
decomposition of ecH look like?

(b) Prove that for any H ∈ Herm
(
Cd
)
, eiH is unitary.

(c) Next, characterize the set of possible eigenvalues for a unitary matrix.

(d) Now prove that for any unitary U ∈ U (Cn), there exists an H ∈ Herm (Cn) such that U = eiH .

3. In stark contrast to the complex numbers, for which ex+y = exey for all x, y ∈ C, the matrix analogue
of this identity does not hold in general.
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(a) Prove that for normal A,B, if [A,B] = AB − BA = 0, then eX+Y = eXeY . (Hint: Use the fact
that commuting normal operators simultaneously diagonalize in a common eigenbasis.)

(b) Although eX+Y = eXeY does not hold for all normal X and Y , the operator eX+Y can nevertheless
be approximated via the Lie Product Formula, which says that for any normal X and Y :

eX+Y = lim
m→∞

(
e

X
m e

Y
m

)m
.

In words, to approximate eX+Y , we can repeatedly switch back and forth between applying small
slices of eX/m and eY/m instead. (Think of m as a very large number.)

Prove the Lie Product formula. (Hints: Your goal is to argue that

e
X
m e

Y
m = e

X
m+ Y

m+O( 1
m2 ).

Once you have this, you can use the continuity of the exponential to take the limit as m→∞. To
get the equation above, start by using Taylor series expansions to write e

X
m e

Y
m up to first order

terms. Then use the fact that there is a constant c which, for all n×n matrices B with ‖B ‖∞ <

1/2, satisfies ‖ log(I +B)−B ‖∞ ≤ c ‖B ‖
2
∞. Here, ‖X ‖∞ denotes the spectral or operator norm

of matrix X, which can formally be defined equivalently as either the largest singular value of X,
or the largest eigenvalue of

√
X†X. In the special case where X is diagonalizable, ‖X ‖∞ equals

the largest absolute value of any eigenvalue of X, i.e. maxλ(X) |λ(X)|.)
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