Introduction to Quantum Computation, UPB Summer 2021, Assignment 5

Due: Friday, May 21, at start of tutorial

1 Exercises

1. Define $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle \in \mathbb{C}^{2}$, and consider projective measurement $M=\{|\psi\rangle\langle\psi|, I-|\psi\rangle\langle\psi|\}$ with labels corresponding to outcomes $S=\{1,-1\}$, respectively. Suppose state $|0\rangle \in \mathbb{C}^{2}$ is measured via C. What is the expected value for the measurement?
2. In this question, we consider how well the CHSH game strategy from class fares if we use a less entangled state as a shared resource between Alice and Bob. Specifically, imagine we use the same observables as before, but now we replace $\left|\Phi^{+}\right\rangle$as a shared state with $|\psi\rangle=\alpha|00\rangle+\beta|11\rangle$. Intuitively, as α gets closer to 1 , this state becomes less entangled, and for $\alpha=1$, it becomes a product state (i.e. non-entangled).
(a) What is the probability of winning the CHSH game with shared state $|\psi\rangle$? (Hint: Recall from Lecture 5 that for any $|\psi\rangle$, the quantity $\operatorname{Tr}(A \otimes B|\psi\rangle\langle\psi|)$ equals Pr (output same bits) Pr (output different bits), i.e. the interpretation of this quantity does not depend on our choice of $|\psi\rangle$.)
(b) Based on your answer above, what is the probability of Alice and Bob winning with this strategy if $\alpha=1$, i.e. $|\psi\rangle$ is unentangled?
3. This question studies a 3-player non-local game called the $G H Z$ game. There are now three players, Alice, Bob and Charlie, each of which receives a question q_{a}, q_{b}, or q_{c}, respectively, such that $q_{a} q_{b} q_{c} \in$ $\{000,011,101,110\}$. The players each return a bit $r_{a}, r_{b}, r_{c} \in\{0,1\}$, respectively, and win if

$$
q_{a} \vee q_{b} \vee q_{c}=r_{a} \oplus r_{b} \oplus r_{c}
$$

where \vee denotes the binary OR operation.
An analysis similar to the CHSH game shows that the optimal winning classical strategy yields success probability $3 / 4$. Your task in this question is to analyze an optimal quantum strategy.
The 3 -qubit state the players share is

$$
|\psi\rangle=\frac{1}{2}(|000\rangle-|011\rangle-|101\rangle-|110\rangle) \in \mathbb{C}^{8} .
$$

Each player will use the same measuring strategy: Given input bit 0 , they will apply local unitary $U_{0}=I$, and if they get input 1 , they apply local unitary $U_{1}=H$. They then measure their qubit in the standard basis, and return the answer (0 or 1). As for CHSH, we assume the labels for the measurement outcomes are $+1,-1$ for measurement outcomes $|0\rangle\langle 0|$ and $|1\rangle\langle 1|$, respectively.
(a) Suppose Alice gets input 0. What is her observable? What if she gets input 1?
(b) Suppose the questions are $q_{A} q_{B} q_{C}=000$. What is the probability the players win?
(c) Suppose the questions are $q_{A} q_{B} q_{C}=011$. What is the probability the players win?

