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Matrices
Motivation - why matrices?

Applications in most technical fields

Physics: Classical mechanics, optics, electromagnetism, quantum
mechanics

Computer Science: Graphics, randomized algorithms, big data (e.g.
Google’s PageRank algorithm), quantum computing

Mathematics: Graph theory, geometry, linear systems of equations,
optimization

Economics, game theory

Note:

Throughout these notes, we assume all operations are done over the
field of real numbers, R.

We ignore issues of precision (which is an important topic).
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Basics

Recall a 2× 3 matrix M is given (e.g.) by:

M =

(
0 3 −1
2 2 1

)
.

The transpose of M is

MT =

 0 2
3 2
−1 1

 .

The set of all m × n matrices over R is denoted Rm×n.

The entry at position (i , j) of M is denoted M(i , j) or Mij .
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Basics

Recall: The set of all m × n matrices over R is denoted Rm×n.

Special cases of matrices:
(Vectors) For n = 1 (resp. m = 1), have column (resp. row) vector:

v =

(
3
5

)
, vT =

(
5 3

)
.

(Square matrix) Set m = n.
(Diagonal matrix) A square matrix M with Mij = 0 if i 6= j .
(Identity matrix) The n × n (diagonal) matrix (n = 2 below)

I2 =

(
1 0
0 1

)
.
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Matrix operations

(Matrix addition) For any M,N ∈ Rm×n, (M + N)ij = Mij + Nij .

Ex. What is
(

1 0
0 1

)
+

(
2 2
2 2

)
?

(Scalar multiplication) For any c ∈ R, (cM)ij = c ·Mij .
(Vector inner product) For any column vectors v,w ∈ Rn,

v ·w =
n∑

i=1

viwi ∈ R.

The inner product “measures” the overlap between v and w.
When v ·w = 0, we say v and w are orthogonal.

Ex. For v = (1 0)T , w = (0 1)T , what is v ·w? v · v? Draw v and
w on the 2D Euclidean plane to visualize the dot product.
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Matrix Multiplication
Since we are working over R, can be defined using inner product1.

For any M ∈ Rm×n, N ∈ Rn×p:

(MN)ij = MT
(i) · N

(j) =
n∑

k=1

Mi,k Nk,j ,

where M(i) (resp. M(i)) is the i th row of M (resp. i th column) of M.

Ex. What is dimension of MN, i.e. what values are allowed for i , j?

Examples: (
1 2
3 4

)(
0 1
1 0

)
=

(
2 1
4 3

)

(
0 1
1 0

)(
a
b

)
=

(
b
a

)
.

Q: In 2D plane, what operation does last equation encode?

1The analogous claim over C would not quite be correct.
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Matrix Multiplication
More properties:

For all M ∈ Rm×n, ImM = MIn = M.

For any triple A,B,C (with appropriate dimensions):

I (associativity) A(BC) = (AB)C
I (distributivity) A(B + C) = AB + AC and (B + C)D = BD + CD.
I (commutativity) Does AB = BA necessarily?

Ex. Let M =

(
0 1
1 0

)
, N =

(
1 2
3 4

)
. Does MN equal NM?

Life lesson
That matrix multiplication is non-commutative is not just an academic
question! The structure of the world around us depends on this property — it
gives rise to the uncertainty principle in quantum mechanics, which in turn is
used2 to explain why matter is stable (i.e. why doesn’t an electron just crash
into the nucleus of the atom?).

2https://www.math.ucla.edu/~gyueun.lee/writing/stability_GSO.pdf.
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Bit versus operation complexity

Q: Naive worst-case “runtime” for multiplying M,N ∈ Rn×n?

Need to compute O(n2) entries for MN.

Each entry MNij is the inner product of two n-dimensional vectors.

Therefore, total “cost” O(n3). But... what does “cost” mean?

More accurate: O(n3) field operations over R, i.e. additions and
multiplications over R. (We assume each field operation costs O(1).)

Can also do “low-level” analysis by factoring in cost of each field op:

E.g. How many steps to actually implement n-bit addition of integers on
a Turing machine? (Answer: O(n).)

This cost model is called bit complexity.

Here, we focus on operation complexity, i.e. we will not worry about the
low-level details of implementing addition, multiplication etc over R.
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Q: Can we beat the naive O(n3) matrix multiplication time?

A: (If the answer was no, would you be sitting here?)

Strassen’s Algorithm
Strassen, Volker. Gaussian Elimination is not Optimal, Numer.
Math. 13, p. 354–356, 1969.
Requires O(n2.808) operations.
Recursive, divide-and-conquer approach.
Quite a surprise to the research community!
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Goals of section

Practice working with matrices
Practice working with randomization
Study a mix of classic and modern algorithms
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Warmup
Note: For simplicity, we assume n is a power of 2, where M,N ∈ Rn×n.

Write M,N,MN in block form. For a,b, c,d ,e, f ,g,h, r , s, t ,u ∈ R n
2×

n
2 :

M =

(
a b
c d

)
, N =

(
e f
g h

)
, MN =

(
r s
t u

)
.

Naive algorithm:

Compute each block of MN independently as follows.

r = ae + bg s = af + bh t = ce + dg u = cf + dh.

Recursively compute each n/2× n/2 product ae, bg, etc. . . .

Cost: For M,N ∈ Rn×n, recurrence relation for multiplication costs T (n):

T (n) = 8T (n/2) + Θ(n2) ∈ Θ(nlog2 8) ∈ Θ(n3) . . . (why?)

. . . no improvement!
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Cost: For M,N ∈ Rn×n, have recurrence

T (n) = 8T (n/2) + Θ(n2) ∈ Θ(nlog2 8) ∈ Θ(n3) . . .

. . . no improvement!

This cost was too large because we needed 8 recursive calls per level...

Q: Can we do it with 7 recursive calls?

Remarkably, yes!

We hence get runtime Θ(nlog2 7) ∈ Θ(n2.808), as claimed.

Ok, so how do we do it?

Sevag Gharibian (Universität Paderborn) Ch. 8: Matrices and Scientific Computing Fundamental Algs WS 2019 17 / 115



Cost: For M,N ∈ Rn×n, have recurrence

T (n) = 8T (n/2) + Θ(n2) ∈ Θ(nlog2 8) ∈ Θ(n3) . . .

. . . no improvement!

This cost was too large because we needed 8 recursive calls per level...

Q: Can we do it with 7 recursive calls?

Remarkably, yes!

We hence get runtime Θ(nlog2 7) ∈ Θ(n2.808), as claimed.

Ok, so how do we do it?

Sevag Gharibian (Universität Paderborn) Ch. 8: Matrices and Scientific Computing Fundamental Algs WS 2019 17 / 115



Strassen’s algorithm - a bit of magic

1 Compute the following 7 products (recursively):

P1 = a(f − h) P2 = (a + b)h P3 = (c + d)e
P4 = d(g − e) P5 = (a + d)(e + h) P6 = (b − d)(g + h)
P7 = (a− c)(e + f )

2 Recall we wish to compute each block of MN, i.e.:

r = ae + bg s = af + bh t = ce + dg u = cf + dh.

Magically, we have:

r = P5 + P4 − P2 + P6 s = P1 + P2
t = P3 + P4 u = P5 + P1 − P3 − P7.

Cost: For M,N ∈ Rn×n, have recurrence

T (n) = 7T (n/2) + Θ(n2) ∈ Θ(nlog2 7) ∈ Θ(n2.808)!
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Two questions you should always ask yourself:

1 Is this asymptotic improvement useful in practice?

I Constant factor hidden by Big-Oh notation is large for Strassen’s
method. In practice, for small inputs cheaper to run naive method.

I If matrices have special structure (e.g. sparse, meaning have few
non-zero entries), faster methods exist.

I Strassen’s algorithm is less numerically stable3 than naive method
for some applications.

I As stated, Strassen’s algorithm uses space for recursions on
submatrices (there are ways around this).

2 Can we do better?

3The precise definition of “numerically stable” depends on context. Roughly, it
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Can we do better?

Lower bounds
Naive lower bound of Ω(n2). (Why?)

Embarrassingly, unknown whether optimal is ω(n2) (after 50
years!)
If we restrict the type of circuit computing the matrix product, then
a lower bound of Ω(n2 log n) can be shown [Raz, 2003]
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Can we do better?

Upper bounds
Strassen (1969): O(n2.808).
Pan (1978): o(n2.796)

Bini, Capovani, Romani, Lotti using border rank (1979): o(n2.78)

Schönhage via τ -theorem (1981): o(n2.548)

Romani (1982): o(n2.517)

Coppersmith, Winograd (1981): o(n2.496)

Strassen via laser method (1986): o(n2.479)

Coppersmith, Winograd (1989): o(n2.376)

V. V. Williams (2013): O(n2.3729)

Le Gall (2014): O(n2.3728639)
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The more advanced these algorithms get, the less useful they tend to
be in practice. . .

What if we want something more useful in practice? Say for machine
learning or big data?

Common tool: Randomization

Tradeoff: Time/space versus accuracy
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Outline

1 Introduction to matrices (review)

2 Matrix multiplication algorithms
Strassen’s algorithm (1967)
Drineas-Kannan-Mahoney randomized algorithm (2006)

3 Random walks
Gambler’s ruin
Google’s PageRank algorithm (1999)

4 Polynomial multiplication
Complex numbers
Polynomials
O(N log N)-time polynomial multiplication via Fourier Transform
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Basic probability theory

Let X be a discrete random variable taking values from S = {1, . . . ,n}.

The probability that X takes value x ∈ S is Pr(X = x), or Pr(x).

The expected value of X is

E [X ] =
∑
x∈S

Pr(x) · x .

Note: Expected value is a linear function, i.e. E [X + Y ] = E [X ] + E [Y ].

The variance of X is Var[X ] = E [(X − E [X ])2] = E [X 2]− E [X ]2.

Ex. Let X ∈ {1,−1} be a random variable corresponding to a sampling
experiment in which a fair coin is flipped, and if the coin lands HEADS (resp.
TAILS), you gain (resp. lose) 1 EUR. What is E [X ]? What is Var[X ]?
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Back to matrix multiplication

Recall: Over R, matrix multiplication can be viewed as inner products over
rows of M and columns of N.

For any M ∈ Rm×n, N ∈ Rn×p:

(MN)ij = MT
(i) · N

(j) =
n∑

k=1

Mi,k Nk,j ,

where M(i) (resp. M(i)) is the i th row of M (resp. i th column) of M.
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Outer products

Inner product of v ∈ Rn and w ∈ Rn multiplies row vector by column vector:

v ·w = vT w =
(

v1 v2 · · · vn
)


w1
w2
...

wn

 ∈ R.
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v1
v2
...

vn

( w1 w2 · · · wn
)

=


v1w1 v1w2 · · · v1wn
v2w1 v2w2 · · · v2wn
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...

. . .
...

vnw1 vnw2 · · · vnwn

 ∈ Rn×n.

Q: What dimensions does the outer product of v ∈ Rm and w ∈ Rn have?
Ex: Let v = (1 0)T , w = (0 1)T . What are inner/outer products of v and w?
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Back to matrix multiplication

Inner product view: For any M ∈ Rm×n, N ∈ Rn×p:

(MN)ij = MT
(i) · N

(j) =
(

Row i of M
) Column

j
of N

 ∈ R.

Outer product view: For any M ∈ Rm×n, N ∈ Rn×p:

MN =
n∑

k=1

M(k)N(k) =
n∑

k=1

 Column
k

of M

( Row k of M
)
∈ Rm×p.

Q: What differences can you spot between the inner and outer product views?

Ex: Prove that the outer product view is correct.
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So MN is sum over (rank 1) products M(k)N(k), i.e. MN =
∑n

k=1 M(k)N(k).

Let’s take inspiration from sums of real numbers
Suppose wish to approximate sum

∑n
k=1 ai over ai ∈ R without adding all ai .

Idea:

1 Uniformly & independently sample s terms (with replacement) from {ai}.
2 Add all the samples; call this sum q.

3 Output αq for appropriate rescaling factor α. (Why need α?)

Sampling Lemma (Arora, Karger, Karpinski, 1999)

Suppose ∀i , |ai | ≤ M for fixed M. If s = g log n samples are drawn, then

n∑
i=1

ai − nM

√
f
g
≤ αq ≤

n∑
i=1

ai + nM

√
f
g

with probability at least 1− n−f , for α = n
s and f ,g > 0.
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Digesting the Sampling Lemma

Sampling Lemma (Arora, Karger, Karpinski, 1999)

Suppose ∀i , |ai | ≤ M for fixed M. If s = g log n samples are drawn, then

n∑
i=1

ai − nM

√
f
g
≤ αq ≤

n∑
i=1

ai + nM

√
f
g

with probability at least 1− n−f , for α = n
s and f ,g > 0.

Note that the error:

is additive, i.e. of form ±ε,

scales with the number of terms in the sum, n,

scales with the magnitude bound, M,

scales inversely with coefficient in the number of samples, g.

Obvious question: Can we do something similar for matrix multiplication?
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Drineas-Kannan-Mahoney algorithm

Recall:

M ∈ Rm×n, N ∈ Rn×p.

MN is sum over (rank 1) products M(k)N(k), i.e. MN =
∑n

k=1 M(k)N(k).

Algorithm:

1 Set C to the m × p zero matrix. //C will store estimate for MN

2 For t = 1 . . . s do: //draw s samples

1 Pick kt ∈ {1, . . . ,n} uniformly at random.
2 Set C = C + n

s M(kt )N(kt ).

3 Output C.

Q: How “close” is C to MN? Specifically, how do we define an “absolute value
function” |C −MN| for matrices C,M,N?
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2 For t = 1 . . . s do: //draw s samples

1 Pick kt ∈ {1, . . . ,n} uniformly at random.
2 Set C = C + n

s M(kt )N(kt ).

3 Output C.

Q: How “close” is C to MN? Specifically, how do we define an “absolute value
function” |C −MN| for matrices C,M,N?
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Norms
What properties does absolute value function (on R) have? ∀a,b ∈ R:

1 (Non-negativity) |a| ≥ 0.

2 (Subadditivity) |a + b| ≤ |a|+ |b|.
3 (Multiplicativity) |ab| = |a| |b|.
4 (Positive definiteness) |a| = 0 iff a = 0.

A norm ‖·‖ : V 7→ R≥0 generalizes this to vector spaces V over a field F = R.

Any norm, by definition, satisfies that for all c ∈ F , v,w ∈ V :

1 (Non-negativity) ‖v‖ ≥ 0.

2 (Subadditivity) ‖v + w‖ ≤ ‖v‖+ ‖w‖.
3 (Absolute scalability) ‖cv‖ = |c| ‖v‖.
4 (Positive definiteness) ‖v‖ = 0 iff v = 0 (i.e. v is zero vector).

Recall: A vector space can refer to a space of vectors or matrices.
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Constructing norms
Like absolute value function, a norm should “measure the size” of its input.

Q: How to construct functions ‖·‖ satisfying properties 1-4 of a norm?

A: Infinite number of ways!

But you already know one way. . . let’s use that.

Euclidean norm for “vectors”

Let V = Rn. Then, Euclidean norm of v ∈ V is ‖v‖2 =
√∑n

i=1 v2
i .

Frobenius norm for “matrices”

Let V = Rm×n. Then, Frobenius norm of M ∈ V is ‖M‖F =
√∑m

i=1
∑n

j=1 M2
ij .

Note: These two are actually the same thing if you “reshape” M into a vector
v by concatenating its columns.
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Exercises on norms

1 Define v =

(
1
−1

)
. What is ‖v‖2?

2 Draw v in the 2D Euclidean plane. What does ‖v‖2 represent?
3 What does the subadditivity property represent in the 2D plane?
4 Prove that the Euclidean norm is indeed a norm.
5 Let’s consider a different norm, the Taxicab norm or 1-norm:

‖v‖1 =
n∑

i=1

|vi | .

What is ‖v‖1 for v from the first exercise above? What does the Taxicab norm
represent on the Euclidean plane?

6 Define M =

(
−1 1
2 −4

)
. What is ‖M‖F?

7 Prove that the Frobenius norm is indeed a norm. (Hint: This should require no
additional work.)

Note: There is more than one way to generalize the 1-norm to matrices.
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Returning to our question

Recall:

M ∈ Rm×n, N ∈ Rn×p.

MN is sum over (rank 1) products M(k)N(k), i.e. MN =
∑n

k=1 M(k)N(k).

Algorithm:

1 Set C to the m × p zero matrix. //C will store estimate for MN

2 For t = 1 . . . s do: //draw s samples

1 Pick kt ∈ {1, . . . ,n} uniformly at random.
2 Set C = C + n

c M(kt )N(kt ).

3 Output C.

Q: How “close” is C to MN? Specifically, how do we define an “absolute value
function” |C −MN| for matrices C,M,N?
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Quality of approximation
Lemma (Drineas-Kannan-Mahoney, 2006)

For input matrices M and N, suppose the DKM algorithm makes s samples
and outputs matrix C. Then for all indices i , j :

E [Cij ] = (MN)ij and Var[Cij ] =
1
s

(
n

n∑
k=1

M2
ik N2

kj − (MN)2
ij

)
.

Proof. For iteration t , define Xt = ( n
s M(kt )N(kt ))ij //(i , j)th entry of sample t .

Observe that Xt = n
s Mikt Nkt j . So:

E [Xt ] =
n∑

k=1

1
n

(n
s

Mik Nkj

)
=

1
s

(MN)ij and E [X 2
t ] =

n∑
k=1

n
s2 M2

ik N2
kj .

E [Cij ] = E

[
s∑

t=1

Xt

]
=

s∑
t=1

E [Xt ] = (MN)ij

Var[Cij ] = Var

[
s∑

t=1

Xt

]
=

s∑
t=1

Var[Xt ] =
s∑

t=1

(
n∑

k=1

n
s2 M2

ik N2
kj −

1
s2 (MN)2

ij

)
.

Q: Why do red equalities hold?
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Lemma (Drineas-Kannan-Mahoney, 2006)

For input matrices M and N, suppose the DKM algorithm makes s
samples and outputs matrix C. Then for all indices i , j :

E [Cij ] = (MN)ij and Var[Cij ] =
1
s

(
n

n∑
k=1

M2
ikN2

kj − (MN)2
ij

)
.

We know how each individual entry of C deviates from its value in MN.

Q: How “far” then is the full matrix C from MN?

Sevag Gharibian (Universität Paderborn) Ch. 8: Matrices and Scientific Computing Fundamental Algs WS 2019 37 / 115



Quality of approximation
Theorem (Drineas-Kannan-Mahoney, 2006)

E
[
‖MN − C‖2

F

]
=

1
s

(
n

n∑
k=1

∥∥∥M(k)
∥∥∥2

2

∥∥N(k)
∥∥2

2 − ‖MN‖2
F

)
.

Proof. Observe that

E
[
‖MN − C‖2

F

]
=

m∑
i=1

p∑
j=1

E
[
(MN − C)2

ij
]

=
m∑

i=1

p∑
j=1

Var[Cij ].

Plugging in the bounds on Var[Cij ] from previous lemma:

E
[
‖MN − C‖2

F

]
=

m∑
i=1

p∑
j=1

(
1
s

(
n

n∑
k=1

M2
ik N2

kj − (MN)2
ij

))

=
1
s

n
n∑

k=1

(
m∑

i=1

M2
ik

) p∑
j=1

N2
kj

− ‖MN‖2
F


from which claim follows.
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Optimizing further
Theorem (Drineas-Kannan-Mahoney, 2006)

E
[
‖MN − C‖2

F

]
=

1
s

(
n

n∑
k=1

∥∥∥M(k)
∥∥∥2

2

∥∥N(k)
∥∥2

2 − ‖MN‖2
F

)
(∗∗).

Q: In iteration t , we uniformly sample column/row pair M(kt ) and N(kt ).

Obs: But if a column/row has large norm, it has more “impact” on MN.

Idea: Sample columns/rows with larger norm with larger probability. Set:

Pr(picking index kt in iteration t) =

∥∥M(k)
∥∥

2

∥∥N(k)
∥∥

2∑n
l=1

∥∥M(l)
∥∥

2

∥∥N(l)
∥∥

2

.

This distribution turns out to be optimal, i.e. minimizes E
[
‖MN − C‖2

F

]
:

E
[
‖MN − C‖2

F

]
=

1
s

(
n∑

k=1

∥∥∥M(k)
∥∥∥

2

∥∥N(k)
∥∥

2

)2

− 1
s
‖MN‖2

F (∗ ∗ ∗).

Ex. Prove (∗ ∗ ∗) ≤ (∗∗). (Hint: Use Cauchy-Schwarz inequality.)
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∥∥∥M(k)
∥∥∥2

2

∥∥N(k)
∥∥2

2 − ‖MN‖2
F

)
(∗∗).

Q: In iteration t , we uniformly sample column/row pair M(kt ) and N(kt ).

Obs: But if a column/row has large norm, it has more “impact” on MN.

Idea: Sample columns/rows with larger norm with larger probability. Set:
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2
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2∑n
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2

∥∥N(l)
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2

.
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Outline

1 Introduction to matrices (review)

2 Matrix multiplication algorithms
Strassen’s algorithm (1967)
Drineas-Kannan-Mahoney randomized algorithm (2006)

3 Random walks
Gambler’s ruin
Google’s PageRank algorithm (1999)

4 Polynomial multiplication
Complex numbers
Polynomials
O(N log N)-time polynomial multiplication via Fourier Transform
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Goals of section

More practice with randomization (life lesson: don’t gamble)
Practice solving recurrence relations
Real world applications of matrices (life lesson: get rich)
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Roulette

Can bet 1e per turn on a color, either red or black.

If ball lands on your color in that turn, win 1e; else, lose 1e.

Suppose we start with 100e.

Q: What is the probability we win 100e before going bankrupt?

Intuition: Since prob. winning in a turn is 18/38 ≈ 0.473 (why?), odds of
winning 100e shouldn’t be too far from 1/2? (Ha ha.)
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Let’s formalize this

Gambler’s ruin
Start with ne, and make sequence of bets.

For each bet, win 1e w.p. p, lose e1 w.p. 1− p.

We lose if run out of money, i.e. go bankrupt.

We win if we earn an additional me, i.e. we stop with T = n + m Euros.

0 1 2 3 4 5 6 7 8

n = 4 T = m+ n = 8bankrupt!

p1− p

Can be viewed as a 1-dimensional random walk.

Move right 1 step with probability p, left 1 step with probability 1− p.
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Let’s formalize this
Gambler’s ruin

Start with ne, and make sequence of bets.

For each bet, win 1e w.p. p, lose 1e w.p. 1− p.

We lose if run out of money, i.e. go bankrupt.

We win if we earn an additional me, i.e. have T = n + m Euros total.

Let W be event that we win before we lose.

Let Dt be random variable denoting # of Euros we have at time t .

Claim
Let Pn = Pr(W | D0 = n) be probability of W , given that start with ne. Then:

Pn =


0 if n = 0
1 if n = T
pPn+1 + (1− p)Pn−1 if 0 < n < T .
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More basic probability theory
A sample space Ω is an arbitrary set, the subsets of which are events.

Ex. If we flip coin 4 times, what is sample space of all possible outcomes?

Definition (Conditional probability (Pr(A | B)))
For events A and B from a sample space Ω,

Pr(A ∧ B) = Pr(A | B) Pr(B),

where ∧ denotes AND.

Law of total probability
Let B1, . . . ,Bn partition a sample space Ω. Then for any event A,

Pr(A) =
n∑

i=1

Pr(A | Bi ) Pr(Bi ).
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Let’s formalize this
Recall W is event we win before we lose, Dt is # of Euros we have at time t .

Claim
Let Pn = Pr(W | D0 = n) be probability of W , given that start with ne. Then:

Pn =


0 if n = 0
1 if n = T
pPn+1 + (1− p)Pn−1 if 0 < n < T .

Proof. Cases of n = 0, n = T trivial, so assume 0 < n < T . Let E1,E2 be event that
first bet is a win or lose, respectively.

Pn = Pr(W | D0 = n)

= Pr(W ∧ E1 | D0 = n) + Pr(W ∧ E2 | D0 = n) (why?)

= Pr(E1 | D0 = n) Pr(W | E1 ∧ D0 = n) + Pr(E2 | D0 = n) Pr(W | E2 ∧ D0 = n) (?)

= p Pr(W | E1 ∧ D0 = n) + (1− p) Pr(W | E2 ∧ D0 = n) (why?)

= p Pr(W | D1 = n + 1) + (1− p) Pr(W | D1 = n − 1) (why?)

= p Pr(W | D0 = n + 1) + (1− p) Pr(W | D0 = n − 1) (why?)

= pPn+1 + (1− p)Pn−1.
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So if we start with ne, we win with probability Pn = pPn+1 + (1− p)Pn−1, or

pPn+1 − Pn + (1− p)Pn−1 = 0.

This is a linear homogeneous recurrence with P0 = 0 and PT = 1.

Let’s solve to get closed form for Pn, and determine odds of winning Roulette.

Idea: Use characteristic root technique.
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Characteristic root technique

Consider recurrence relation an + αan−1 + βan−2 = 0.

Its characteristic polynomial is x2 + αx + β.

Fact 1
Suppose the characteristic polynomial has roots r1, r2 (i.e. solutions to
characteristic equation x2 + αx + β = 0). Then:

If r1 6= r2, there exists constants a,b such that an = arn
1 + brn

2 .

If r1 = r2, there exists constants a,b such that an = arn
1 + bnrn

2 .

Ex. Let an = an−1 + an−2, with a0 = 0 and a1 = 1. Which famous recurrence
is this? Solve this recurrence.

In our setting, we have pPn+1 − Pn + (1− p)Pn−1 = 0.

Need to solve for roots of characteristic equation px2 − x + (1− p) = 0.
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Solving the recurrence
In our setting, we have pPn+1 − Pn + (1− p)Pn−1 = 0.

Need to solve for roots of characteristic equation px2 − x + (1− p) = 0.

By quadratic formula, x =
1±
√

1−4p(1−p)
2p , i.e. have roots x = 1−p

p and x = 1.

Case 1: p 6= 1/2, i.e. distinct roots. By Fact 1, ∃ constants a,b s.t.

Pn = a
(

1− p
p

)n

+ b ≤
(

p
1− p

)m

.

Ex. Use initial conditions P0 = 0,PT = 1 to figure out a and b. Then,
prove red inequality.

Conclusion: For Roulette, p = 18
38 6=

1
2 . Thus, Pn ≤

(
p

1−p

)m
≤ 9

10
m

.

I Probability of winning just 100e (i.e. m = 100) is less than 1
37648 !

I Note: Pn is independent of how much money, n, start with.

Ex. For what range of p is limm→∞ Pn = 0?
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By quadratic formula, x =
1±
√

1−4p(1−p)
2p , i.e. have roots x = 1−p

p and x = 1.

Case 1: p 6= 1/2, i.e. distinct roots. By Fact 1, ∃ constants a,b s.t.
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.

Ex. Use initial conditions P0 = 0,PT = 1 to figure out a and b. Then,
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(Google’s disappointed face emoji)
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Solving the recurrence

In our setting, we have pPn+1 − Pn + (1− p)Pn−1 = 0.

Need to solve for roots of characteristic equation px2 − x + (1− p) = 0.

By quadratic formula, x =
1±
√

1−4p(1−p)
2p , i.e. have roots x = 1−p

p and x = 1.

Case 2: p = 1/2, i.e. same root. By Fact 1,

Pn = an + b =
n
T

=
n

n + m
.

Ex. Use initial conditions P0 = 0,PT = 1 to figure out a and b. Then,
prove red equality.

Conclusion: When the game is fair (p = 1/2), odds of winning are what
you expect — the closer you start (n) to your goal (T = n + m), the more
likely you are to win an additional me!
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(Google’s thinking face emoji)
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Outline

1 Introduction to matrices (review)

2 Matrix multiplication algorithms
Strassen’s algorithm (1967)
Drineas-Kannan-Mahoney randomized algorithm (2006)

3 Random walks
Gambler’s ruin
Google’s PageRank algorithm (1999)

4 Polynomial multiplication
Complex numbers
Polynomials
O(N log N)-time polynomial multiplication via Fourier Transform
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Now let’s take random walks beyond 1D and throw in matrices.
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Google search
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Conclusion: Google has strong impact on which information is accessed.

Sevag Gharibian (Universität Paderborn) Ch. 8: Matrices and Scientific Computing Fundamental Algs WS 2019 57 / 115



Google search

Ma
rk
et
	s
ha

re

Worldwide	desktop	market	share	of	leading	search	engines	from	January	2010
to	October	2018

Additional	Information:
Worldwide;	StatCounter;	January	2010	to	October	2018;	desktop
only

Google bing Yahoo! Baidu
Jan

	'1
0

Jul
	'1
0

Jan
	'1
1

Jul
	'1
1

Jan
	'1
2

Jul
	'1
2

Jan
	'1
3

Jul
	'1
3

Jan
	'1
4

Jul
	'1
4

Jan
	'1
5

Jul
	'1
5

Jan
	'1
6

Jul
	'1
6

Jan
	'1
7

Jul
	'1
7

Jan
	'1
8

Jul
	'1
8

Source
StatCounter
©	Statista	2018

0%

20%

40%

60%

80%

100%

Conclusion: Google has strong impact on which information is accessed.

Sevag Gharibian (Universität Paderborn) Ch. 8: Matrices and Scientific Computing Fundamental Algs WS 2019 57 / 115



With great power comes great responsibility. . .

Q: How does Google decide which websites are more important than others?
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PageRank algorithm

Named after Larry Page (together with Sergey Brin, founded Google)

Ranks webpages by importance

Assumption: Pages with more links to them are “more important”

L. Page, S. Brin, R. Motwani, T. Winograd. “The PageRank citation
ranking: Bringing order to the Web”, 1999.
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Idea sketch (simplified)
Suppose internet consists of N webpages.

Imagine a random websurfer, who repeatedly does the following:

1 Pick a uniformly random link from current page.

2 Follow the link.

Intuition: Pages with “many” incoming links get visited “often” by websurfer.

Punchline: After “sufficiently long time”, the probability Pr(w) that surfer is on
any particular webpage w approaches a steady state, denoted q(w).

The probability q(w) is the PageRank for w .

Observation: Websurfer is doing a random walk on the world wide web!
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Encoding random walks into matrices

Visualize the world wide web as a directed graph G(V ,E):

Each vertex v ∈ V represents a webpage. Recall |V | = N.

(u, v) ∈ E if there is a link from page u to page v .

Ex. Consider directed graph G = (V ,E) with V = {A,B,C,D}:

P1 P2

P3 P4

The adjacency matrix A for G is

A =


0 1 1 0
1 0 0 0
1 0 0 1
1 1 1 0

 .
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Encoding random walks into matrices

P1 P2

P3 P4

The adjacency matrix W for G is

A =


0 1 1 0
1 0 0 0
1 0 0 1
1 1 1 0

 .

If websurfer starts at page P1, its state encoded by vector p0 =


1
0
0
0

.

After 1 step, moves to P2 or P3, with prob. 1/2 each. New state p1 =


0

0.5
0.5
0

.

Observation
View pi as a distribution encoding probability that surfer at particular page after step i .

Q: Can we encode change in probabilities in each step by matrix multiplication?
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Encoding random walks into matrices

Recall: A =


0 1 1 0
1 0 0 0
1 0 0 1
1 1 1 0

 p0 =


1
0
0
0

 p1 =


0

0.5
0.5
0


Could Ap0 = p1? Ex. Work this out.

Try taking transpose: AT p0 =
(

0 1 1 0
)T . Missing normalization. . .

Normalize each row of A by its out-degree (i.e. number of neighbors):

Â =


0 1/2 1/2 0
1 0 0 0

1/2 0 0 1/2
1/3 1/3 1/3 0

 , M := ÂT =


0 1 1/2 1/3

1/2 0 0 1/3
1/2 0 0 1/3
0 0 1/2 0


Now ÂT p0 = Mp0 = p1!

Multiplying by M updates surfer’s current distribution via 1 step of random walk!

Thus, after k steps, surfer’s distribution is pk = Mk p0.
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Now ÂT p0 = Mp0 = p1!

Multiplying by M updates surfer’s current distribution via 1 step of random walk!

Thus, after k steps, surfer’s distribution is pk = Mk p0.

Sevag Gharibian (Universität Paderborn) Ch. 8: Matrices and Scientific Computing Fundamental Algs WS 2019 63 / 115



Encoding random walks into matrices

Recall: A =


0 1 1 0
1 0 0 0
1 0 0 1
1 1 1 0

 p0 =


1
0
0
0

 p1 =


0

0.5
0.5
0


Could Ap0 = p1? Ex. Work this out.

Try taking transpose: AT p0 =
(

0 1 1 0
)T . Missing normalization. . .

Normalize each row of A by its out-degree (i.e. number of neighbors):
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Idea sketch (simplified)
Suppose internet consists of N webpages.

Imagine a random websurfer, who repeatedly does the following:

1 Pick a uniformly random link from current page.

2 Follow the link.

Intuition: Pages with “many” incoming links get visited “often” by websurfer.

Punchline: After “sufficiently long time”, the probability Pr(w) that surfer is on
any particular webpage w approaches a steady state, denoted q(w).

The probability q(w) is the PageRank for w .

Observation: Websurfer is doing a random walk on the world wide web!
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Defining PageRank more formally

Punchline: After “sufficiently long time”, the probability Pr(w) that surfer is on
any particular webpage w approaches a steady state, denoted q(w).

The probability q(w) is the PageRank for w .

PageRank:

Recall if starting distribution is p0, after k steps have distribution
pk = Mk p0.

A steady state would be a pi such that pi+1 = Mpi = pi , i.e. probability
to be in any particular webpage no longer changes.

The w th entry of pi , corresponding to webpage w , is PageRank of w .

Observation: Note that Mpi = pi is just an eigenvalue equation!
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Aside: Eigenvalues and eigenvectors
The PageRank vector is a distribution pi satisfying Mk pi = pi .

Thus, want to find eigenvector pi of M with eigenvalue 1.

Eigenvalues and eigenvectors

For A ∈ Rn×n and v ∈ Rn, say v is an eigenvector of A with eigenvalue λ ∈ R if

Av = λv. (1)

How to find eigenvectors and eigenvalues?

“Traditional” method:
I Solve for roots of characteristic equation det(A− λI) = 0 to obtain

eigenvalues λ.
I Substitute λ into Equation (1) to obtain a linear system of equations.
I Solve the linear system to obtain v.

Power method (Von Mises, 1929):
I Start with some vector v0.
I In iteration k , set vk+1 = Avk

‖Avk‖
.

PageRank implements Power method (with ‖·‖ the 1-norm/Taxicab norm (why?)).
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I Substitute λ into Equation (1) to obtain a linear system of equations.
I Solve the linear system to obtain v.

Power method (Von Mises, 1929):
I Start with some vector v0.
I In iteration k , set vk+1 = Avk

‖Avk‖
.

PageRank implements Power method (with ‖·‖ the 1-norm/Taxicab norm (why?)).
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Test case 1

Recall: M =


0 1 1/2 1/3

1/2 0 0 1/3
1/2 0 0 1/3
0 0 1/2 0

 p0 =


1
0
0
0

 pk = Mk p0.

Results (via Mathematica):

p0 (1., 0., 0., 0.)
p1 (0., 0.5, 0.5, 0.)
p2 (0.75, 0., 0., 0.25)
p3 (0.0833333, 0.458333, 0.458333, 0.)
p4 (0.6875, 0.0416667, 0.0416667, 0.229167)
p5 (0.138889, 0.420139, 0.420139, 0.0208333)
p6 (0.637153, 0.0763889, 0.0763889, 0.210069)
p7 (0.184606, 0.3886, 0.3886, 0.0381944)
p8 (0.595631, 0.105035, 0.105035, 0.1943)
p9 (0.222319, 0.362582, 0.362582, 0.0525174)
p10 (0.561379, 0.128665, 0.128665, 0.181291)
p11 (0.253428, 0.34112, 0.34112, 0.0643326)
p12 (0.533124, 0.148158, 0.148158, 0.17056)

Seems to be converging, but slowly. . . No unique most important page yet. . .
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Test case 2

Recall: M =


0 1 1/2 1/3

1/2 0 0 1/3
1/2 0 0 1/3
0 0 1/2 0

 p0 =


1/4
1/4
1/4
1/4

 pk = Mk p0.

Results (via Mathematica):

p0 (0.25, 0.25, 0.25, 0.25)
p1 (0.458333, 0.208333, 0.208333, 0.125)
p2 (0.354167, 0.270833, 0.270833, 0.104167)
p3 (0.440972, 0.211806, 0.211806, 0.135417)
p4 (0.362847, 0.265625, 0.265625, 0.105903)
p5 (0.433738, 0.216725, 0.216725, 0.132813)
p6 (0.369358, 0.26114, 0.26114, 0.108362)
p7 (0.427831, 0.2208, 0.2208, 0.13057)
p8 (0.374723, 0.257439, 0.257439, 0.1104)
p9 (0.422958, 0.224161, 0.224161, 0.128719)
p10 (0.379148, 0.254385, 0.254385, 0.112081)
p11 (0.418938, 0.226934, 0.226934, 0.127193)
p12 (0.382799, 0.251867, 0.251867, 0.113467)

Much better! Singled out P1 as having largest PageRank.
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p12 = (0.382799, 0.251867, 0.251867, 0.113467)

Much better! Singled out A as having largest PageRank.

Indeed, P1 had the largest in-degree:

P1 P2

P3 P4

Rate of convergence:

Seems to depend on starting vector, which is not really surprising.

Can we hope to prove rigorous upper bound on number of required iterations to
get “close” to PageRank vector?

Yes, but I’ve sort of been lying to you so far. . .
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Q: Does a “real” websurfer just follow links all day?

A: No! Can enter address in browser’s address bar and jump straight
there.

Let’s try and include this “more realistic” behavior in our model. It will
help us prove a convergence bound.

Steps:

1 Define more “realistic” model.

2 Define what we mean by being “close” to the target distribution.

3 “Show” that random walk algorithm converges exponentially quickly to
PageRank vector.
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More “realistic” model

Suppose internet consists of N webpages.

Fix 0 ≤ s ≤ 1. Imagine random websurfer, who repeatedly does following:

1 Flip a biased coin which has probability s of landing HEADS.

2 If get HEADS, follow uniformly random link on current page, i.e. apply M.

3 If get TAILS, go to uniformly random page on internet, i.e. apply 1
N J for J

the all-ones matrix.

Q: Why is the right transition matrix for TAILS 1
N J?

So our new transition matrix is M(s) = sM + 1−s
N J (why?).
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Quantifying “closeness” of distributions

Given p,q ∈ Rn whose entries form probability distributions, how to quantify
how “close” these distributions are?

Total variation distance
The total variation distance between distributions p,q ∈ Rn is

‖p− q‖1 =
N∑

i=1

|pi − qi | .

Note this is just the Taxicab norm or 1-norm from earlier in slides.

Ex. What is the total variation distance between p = (1,0,0,0)T and
q = (1/4,1/4,1/4,1/4)?
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What does variational distance mean?

Suppose we play the following game on some sample space Ω.

1 I flip a fair coin.

2 If I get HEADS, I sample an element t ∈ Ω according to p.

3 Else, if I get TAILS, I sample an element t ∈ Ω according to q.

4 I send you t .

5 You try to guess whether I sampled from p or q.

It turns out that your optimal probability of guessing correctly is

1
2

+
1
4
‖p− q‖1 .

Ex. What is optimal probability of you winning the game for p = (1,0,0,0)T

and q = (1/4,1/4,1/4,1/4)? Can you think of an optimal guessing strategy
for achieving this?
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Convergence bounds

Can now bound how quickly we converge to PageRank vector.

Suppose start with arbitrary distribution p ∈ RN over webpages.

Fact 1. M(s) = sM + 1−s
N J has unique PageRank vector, denoted q.

Claim 2. For all j ≥ 1,
∥∥M(s)jp− q

∥∥
1 ≤ s

∥∥M(s)j−1p− q
∥∥

1.

Corollary. After k ≥ 1 iterations,
∥∥M(s)k p− q

∥∥
1 ≤ sk ‖p− q‖1 .(why?)

Notes:

In original PageRank paper, s = 0.85 was used.

Since ‖p− q‖1 ≤ 2 for any unit vectors p,q (why?), conclude that we
converge exponentially quickly (in k ) to PageRank vector q.

Magically, this bound is independent of size of internet, N.

Ok, so remains to prove Claim 2.
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A helpful lemma
Observation. By construction, each column of M(s) is probability vector.
Thus, M(s) is a (left) stochastic matrix.

Lemma (Contractivity of l1 norm)

For stochastic A ∈ Rn×n and v ∈ Rn, ‖Av‖1 ≤ ‖v‖1.

Proof.

‖Av‖1 =
n∑

j=1

∣∣∣∣∣
n∑

k=1

Ajk vk

∣∣∣∣∣ (def. of l1 norm)

≤
n∑

k=1

n∑
j=1

Ajk |vk | (triangle inequality, multiplicativity, |Ajk | = Ajk )

=
n∑

k=1

|vk | (sum of column entries of A is 1)

= ‖v‖1 .
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Proof of Claim 2
Claim 2. For all j ≥ 1,

∥∥M(s)jp− q
∥∥

1 ≤ s
∥∥M(s)j−1p− q

∥∥
1.

Proof.∥∥∥M(s)jp− q
∥∥∥

1
=

∥∥∥M(s)(M(s)j−1p− q)
∥∥∥

1
(M(s)q = q)

=

∥∥∥∥sM(M(s)j−1p− q) +
1− s

N
J(M(s)j−1p− q)

∥∥∥∥
1(

M(s) = sM +
1− s

N
J
)

=
∥∥∥sM(M(s)j−1p− q)

∥∥∥
1

(
J(M(s)j−1p) = Jq

)
(why?)

= s
∥∥∥M(M(s)j−1p− q)

∥∥∥
1

(absolute homogeneity, |s| = s)

≤ s
∥∥∥M(s)j−1p− q

∥∥∥
1

(contractivity of l1 norm, M stochastic).

Done! We conclude PageRank converges exponentially quickly (in number of
iterations, k ), to its stationary distribution (q), irrespective of size of the internet (N).
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(Google’s happy face emoji)
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Outline

1 Introduction to matrices (review)

2 Matrix multiplication algorithms
Strassen’s algorithm (1967)
Drineas-Kannan-Mahoney randomized algorithm (2006)

3 Random walks
Gambler’s ruin
Google’s PageRank algorithm (1999)

4 Polynomial multiplication
Complex numbers
Polynomials
O(N log N)-time polynomial multiplication via Fourier Transform
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Goals of section

Practice working with complex numbers
Practice working with polynomials
Introduce Fourier transform and its applications
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Complex numbers

Question: What are the roots of x2 + 1 = 0?

i :=
√
−1 and −i

Selected history

(Cardano 1545) Considers square roots of negative numbers in solving for roots
of cubic polynomials. Calls them “as subtle as [they] are useless”.

(Bombelli 1572) Derives rules for basic arithmetic operations with roots of
negative numbers

(Euler 1707-1783) Introduces symbol i , proves eit = cos(t) + i sin(t)

(Wessel 1745-1818, also Gauss 1777-1855) Introduces 2D complex plane

(Hamilton 1805-1865) Representation of complex numbers as 2-tuples from
R×R.

“The shortest path between two truths in the real domain passes
through the complex domain.” – Hadamard
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Why complex numbers?

Many, many applications, ranging from control theory to geometry to
quantum mechanics.

Fundamental theorem of algebra (Argand 1806):

Every non-constant, univariate polynomial with complex coefficients has
at least one root in C.

or, equivalently,

Every non-zero, degree n univariate polynomial with complex
coefficients has precisely n complex roots.

e.g. x2 + 1 is degree 2, and has two complex roots: i , and −i .

Moral: You should care about complex numbers!
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Two views
Any complex number z ∈ C can be viewed in two equivalent ways:

z = x + yi , for x , y ∈ R, i =
√
−1.

I Q: Why does this mean C can be viewed equivalently as R×R?

I z = x − iy is complex conjugate of z. (Sometimes denoted z∗.)

(Polar form) z = reiφ for r , φ ∈ R. Here,
I r is the “magnitude” of z, i.e. r = |z| =

√
x2 + y2.

Q: What norm does the formula for magnitude remind you of?

I φ ∈ [π,−π) is the angle of z (in radians):
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Exercises with complex numbers

1 Is R ⊆ C?

2 Compute sum (a + bi) + (c + di).

3 Compute product (a + bi)(c + di).

4 Recall for z = x + iy that |z| =
√

x2 + y2. Observe that this reduces to
the usual absolute value when z ∈ R.

5 Show that for any z ∈ C, z + z∗ ∈ R.

6 Rewrite the formula |z| =
√

x2 + y2 in terms of the product of zz∗.

7 What are ±1,±i in polar form?

8 Using the 2D complex plane, derive the formula |z| =
√

x2 + y2.

9 If we allow angles φ ∈ R, is the representation of a given z ∈ C unique?

10 Use the 2D complex plane to derive the two square roots of 1. (Q: Why
are we guaranteed that 1 has precisely 2 square roots?)
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With C in hand, can now define polynomials with coefficients from C.

Later, we will use C for the Fourier transform as well.
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Outline

1 Introduction to matrices (review)

2 Matrix multiplication algorithms
Strassen’s algorithm (1967)
Drineas-Kannan-Mahoney randomized algorithm (2006)

3 Random walks
Gambler’s ruin
Google’s PageRank algorithm (1999)

4 Polynomial multiplication
Complex numbers
Polynomials
O(N log N)-time polynomial multiplication via Fourier Transform

Sevag Gharibian (Universität Paderborn) Ch. 8: Matrices and Scientific Computing Fundamental Algs WS 2019 86 / 115



Polynomials (brief review)
Univariate polynomial

A univariate polynomial is a function f : C 7→ C of form

f (x) = anxn + an−1xn−1 + · · ·+ a1x + a0 =
n∑

j=0

ajx j ,

for all aj ∈ C. Degree of f is deg(f ) = n (i.e. index of largest non-zero
coefficient an). The set of univariate polynomials over C is denoted C[x ].

Sum and product of polynomials

For f ,g ∈ C[x ] with f (x) =
∑n

j=0 ajx j and g(x) =
∑n

j=0 bjx j ,

f (x) + g(x) =
n∑

j=0

(aj + bj )x j , and f (x)g(x) =
2n∑

j=0

( j∑
k=0

ak bj−k

)
x j .

Ex. Prove the multiplication formula for f (x)g(x) holds.
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Exercises with polynomials

1 What is the degree of f (x) = −7x3 + 4x +
√

2? f (x) = 4?

2 Are non-positive-integer exponents on x allowed in our definition of
polynomials?

3 Compute the sum of f (x) = 3x2 − 4x − 9 and g(x) = x3 + 4.

4 For f ,g ∈ C[x ] of degree nf and ng , resp., what is deg(f (x) + g(x))?

5 Compute the product of f (x) = 3x2 − 4x − 9 and g(x) = x3 + 4.

6 For f ,g ∈ C[x ] of degree nf and ng , resp., what is deg(f (x)g(x))?

7 Recall the Fundamental Theorem of Algebra says that any f ∈ C[x ] with
deg(f ) = n has precisely n roots over C. What are the roots of 3x2 − 1?
x3 − 1? x4 − 1? More generally, xn − 1?

8 Is there a real-numbered analogue of the Fundamental Theorem of
Algebra? i.e. true that any f ∈ R[x ] with deg(f ) = n has n roots over R?

Sevag Gharibian (Universität Paderborn) Ch. 8: Matrices and Scientific Computing Fundamental Algs WS 2019 88 / 115



Cost of polynomial multiplication

How many field operations over C does the naive algorithm take to multiply
two degree-n polynomials f ,g ∈ C[x ]?

A: Θ(n2) time.

Q: Can we do it in subquadratic time?

A: Surprisingly, yes! Can do it in Θ(n log n) time.

Battle plan:

1 Convert f ,g ∈ C[x ] from coefficient representation to point-value
representation by evaluating f ,g at cleverly chosen points.

2 Multiplication in point-value representation takes only Θ(n) time.

3 Convert back from point-value representation to coefficient
representation (i.e. interpolate) to recover final answer.
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Two representations of polynomials

Coefficient representation

Polynomial f ∈ C[x ] of degree n written as f (x) =
∑n

j=0 ajxn, or in vector form:

a =
(

a0 a1 · · · an−1 an
)T ∈ Cn.

Observation: Given f ∈ C[x ] in coefficient form, can evaluate f at any point
x ∈ C in Θ(n) time using Horner’s rule:

f (x) = a0 + x(a1 + x(a2 + · · ·+ x(an−1 + x(an)) · · · )).

Ex. Use Horner’s rule to evaluate f (x) = 5x3 − 2x2 − x + 1 at x = eiπ.

(Aside: What is eiπ?)
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Two representations of polynomials
Point-value representation

Point-value rep. of f ∈ C[x ] of degree n is a set of n + 1 point-value pairs
(x0, y0), (x1, y1), . . . , (xn, yn), such that:

f (xi ) = yi for all xi , and

all xi are distinct.

Ex. Give two distinct point-value representations for f (x) = 3x2 + 1.

Obs: Not clear a priori that point-value representation captures f . . .

Interpolation Theorem

Any set of n + 1 point-value pairs {(x0, y0), (x1, y1), . . . , (xn, yn)} with distinct
xi defines a unique polynomial f such that:

deg(f ) ≤ n,

f (xj ) = yj for j ∈ {0, . . . ,n}.
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Interpolation Theorem

Any set of n + 1 point-value pairs {(x0, y0), (x1, y1), . . . , (xn, yn)} with distinct
xi defines a unique polynomial f such that:

deg(f ) ≤ n,

f (xj ) = yj for j ∈ {0, . . . ,n}.

Proof. Looking for f (x) =
∑n

j=0 ajxn s.t. f (xi ) = yi . Encode as matrix mult.:
1 x0 x2

0 · · · xn
0

1 x1 x2
1 · · · xn

1
...

...
...

. . .
...

1 xn x2
n · · · xn

n




a0
a1
...

an

 =


y0
y1
...

yn


Write as V (x0, . . . , xn)a = y, for V ∈ Cn+1×n+1 a Vandermonde matrix.

Fact: Any Vandermonde matrix has an inverse if all xj are distinct.

Conclusion: Unique solution for a given by a = V (x0, . . . , xn)−1y.
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The big fuss about the point-value representation

Q: Given degree-n polynomials in point-value form,

f (x) “ = ” {(x0, y0), (x1, y1), . . . , (xn, yn)},
g(x) “ = ”

{
(x0, y ′0), (x1, y ′1), . . . , (xn, y ′n)

}
,

what is cost of multiplying f (x) and g(x)? (Note: Shared xj values above!)

A: Θ(n) time! The point-value representation for f (x)g(x) is{
(x0, y0y ′0), (x1, y1y ′1), . . . , (xn, yny ′n)

}
, (2)

i.e. suffices to point-wise multiply. (Ex. Convince yourself of this claim.)

Q: Do you see a problem with the statement above?

A: Eq. (2) has n + 1 datapoints, but f (x)g(x) is degree ≤ 2n (i.e. not enough data to
uniquely identify f (x)g(x) via Interpolation Theorem).

Solution: Start with point-value representations for f and g which have 2n + 1 points
(i.e. before multiplying).
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Recap so far

Multiplying f , g ∈ C[x ] of degree n naively takes O(n2) time in coefficient form.

Hope: If could convert to and from point-value form “quickly”, could instead do
point-wise multiplication, which takes O(n) time.

Cost of going from coefficient to point-value form with 2n + 1 point-value pairs?
I Via Horner’s rule, O(n)-time per evaluation of f at a point (x , y).
I Repeating for 2n + 1 points xj yields O(n2) time total.

Fact: Can also convert back from point-value to coefficient form in O(n2) time
using Lagrange’s formula.

But this is stupid. . . Just converting between representations takes as much time
as naive multiplication algorithm. . .

(Facebook worried emoji)
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Recap so far

Hope: If could convert to and from point-value form “quickly”, could instead do
point-wise multiplication, which takes O(n) time.

Key observation: Evaluating f at arbitrary points x0, . . . , x2n takes O(n2), but if we
choose the xj "carefully", can do it in O(n log n) time!

Then, our total cost for multiplying polynomials would be (why?)

O(n log n) + O(n) + O(n log n) ∈ O(n log n),

improving on O(n2) of naive algorithm.

Trick: Use Fourier transform.

(Facebook relieved emoji)
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Outline

1 Introduction to matrices (review)

2 Matrix multiplication algorithms
Strassen’s algorithm (1967)
Drineas-Kannan-Mahoney randomized algorithm (2006)

3 Random walks
Gambler’s ruin
Google’s PageRank algorithm (1999)

4 Polynomial multiplication
Complex numbers
Polynomials
O(N log N)-time polynomial multiplication via Fourier Transform
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Roots of unity

The Discrete Fourier Transform (DFT) is a matrix, whose definition requires
special complex numbers known as roots of unity.

Recall: What are the roots of f (x) = xn − 1?

Nth roots of unity

The nth roots of unity are the roots of f (x) = xn − 1, namely

1,e2πi/n,e2·2πi/n,e3·2πi/n, . . . ,e(n−1)·2πi/n. (Why?)

More concisely, define principal nth root of unity as ωn = e2πi/n.

Then, nth roots of unity are: ω0
n , ω1

n , ω2
n ,. . . , ωn−1

n .

Ex. What is the magnitude of any root of unity, i.e.
∣∣e2jπi/n

∣∣ for j ∈ Z?
Ex. What are the 4th roots of unity?
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Properties
Recall: ωn = e2πi/n. Below are the 8th roots of unity:

i

−i

1−1

ω1
8

ω2
8ω3

8

ω4
8

ω5
8 ω6

8
ω7
8

ω0
8 = ω8

8

Cancellation Lemma: For any integers n, k ≥ 0, and d > 0, ωdk
dn = ωk

n .

Summation Lemma: For any integer n ≥ 1 and integer k 6= 0 not divisible by n,

n−1∑
j=0

(ωk
n )j = 0. Q: What if k = 0?

Ex. Prove both lemmas above (Hint: Use closed form for geometric series). Can you
visualize proofs on 2D plane?
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Let f =
∑n

j=0 ajx j ∈ C[x ], and recall ωn = e2πi/n.

Recall:

Hope: If could convert f to and from point-value form “quickly”, could instead do
point-wise multiplication, which takes O(n) time.

Key observation: Evaluating f at arbitrary points x0, . . . , x2n takes O(n2), but if we
choose the xj "carefully", can do it in O(n log n) time!

Moving forward:

The Discrete Fourier Transform (DFT) evaluates f at n "carefully" chosen points
xj . Can you guess which ones?

A: The nth roots of unity, ωk
n !

For succinctness, let N := n + 1. Then, DFT maps coefficient vector a to:

a =


a0

a1
...

an

 7→ y =


f (ω0

N)

f (ω1
N)

...
f (ωN−1

N )

 ,

i.e. yk = f (ωk
N) =

∑
j=0 aj

(
ωk

N
)j

.
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Discrete Fourier Transform (DFT)

Recall: The Discrete Fourier Transform (DFT) is a matrix, whose definition
requires special complex numbers known as roots of unity.

Q: Can you guess the matrix now? (Hint: Vandermonde matrix.)
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Interpolation Theorem

Any set of n + 1 point-value pairs {(x0, y0), (x1, y1), . . . , (xn, yn)} with distinct
xi defines a unique polynomial f such that:

deg(f ) ≤ n,

f (xj ) = yj for j ∈ {0, . . . ,n}.

Proof. Looking for f (x) =
∑n

j=0 ajxn s.t. f (xi ) = yi . Encode as matrix mult.:
1 x0 x2

0 · · · xn
0

1 x1 x2
1 · · · xn

1
...

...
...

. . .
...

1 xn x2
n · · · xn

n




a0
a1
...

an

 =


y0
y1
...

yn


Write as V (x0, . . . , xn)a = y, for V ∈ Cn+1×n+1 a Vandermonde matrix.

Fact: Any Vandermonde matrix has an inverse if all xj are distinct.
Conclusion: Unique solution for a given by a = V (x0, . . . , xn)−1y.
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The DFT matrix
Moral: Evaluating a polynomial at a set of points is matrix multiplication.

Want to evaluate f (x) =
∑n

j=0 ajxn at inputs ω0
N , ω1

N , . . . , ωN−1
N :

1 ? ? · · · ?
1 ? ? · · · ?
...

...
...

. . .
...

1 ? ? · · · ?




a0
a1
...

an

 =


f (ω0

N)
f (ω1

N)
...

f (ωN−1
N )

 .


1
(
ω0

N

)1 (
ω0

N

)2 · · ·
(
ω0

N

)(N−1)

1 ? ? · · · ?
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The DFT matrix
The N × N complex matrix encoding the DFT of order N is thus:

DFTN =


1

(
ω0

N

)1 (
ω0

N

)2 · · ·
(
ω0

N

)(N−1)

1
(
ω1

N

)1 (
ω1

N

)2 · · ·
(
ω1

N

)(N−1)

...
...

...
. . .

...

1
(
ωN−1

N

)1 (
ωN−1

N

)2
· · ·

(
ωN−1

N

)(N−1)

 .

Recap:

Wanted to beat O(n2) time polynomial multiplication.

To do so, wanted to map f from coefficient to point-value representation,
and then do linear-time point-wise multiplication.

To do this conversion, decided to evaluate f at Nth roots of unity, ωk
N .

This evaluation can be encoded as multiplication by the matrix DFTN .

Q: How long to naively compute DFTN v for arbitrary v ∈ CN?

A: O(N2) ∈ O(n2). . . (Recall N = n + 1.) #$&%&$%!
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Breathe in, breathe out

We can’t stop now. . . Let’s remind ourselves why it really is important
to find a clever implementation of the DFT.

http://nautil.us/blog/
the-math-trick-behind-mp3s-jpegs-and-homer-simpsons-faceThe
Math Trick Behind MP3s, JPEGs, and Homer Simpson’s Face

(Click on link in pdf to follow link)

Warning: Must read. I will test you on this on exam.
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Fast Fourier Transform (FFT)
Can implement DFTN in time O(N log N):

Via divide-and-conquer

Note: Only allows us to evaluate f at Nth roots of unity

Q: Why can we evaluate f at Nth roots of unity quickly, whereas
evaluating f at N arbitrary points would take O(N2)?

Halving Lemma

Suppose N is even. Then, for any k ∈ Z+, (ωk
N)2 = ωk

N/2.

Proof. Use Cancellation Lemma, which said:

For any integers n, k ≥ 0, and d > 0, ωdk
dn = ωk

n .

Q: What value of d to choose to prove Halving Lemma?

Idea: Halving Lemma allows us to recurse by simulating order-N DFT by a
pair of order-(N/2) DFTs.
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Recursive breakdown of polynomials
Assume (WLOG) that N = n + 1 is a power of 2.

f (x) = a0 + a1x + a2x2 + a3x3 + · · ·+ an−1xn−1 + anxn

=
(

a0 + a2x2 + a4x4 + · · ·+ an−1xn−1
)

+ (even)(
a1x + a3x3 + a5x5 + · · ·+ anxn

)
(odd)

=
(

a0 + a2x2 + a4x4 + · · ·+ an−1xn−1
)

+ (even)

x
(

a1 + a3x2 + a5x4 + · · ·+ anxn−1
)

(odd)

=
(

a0 + a2(x2)1 + a4(x2)2 + · · ·+ an−1(x2)
n−1

2

)
+ (even)

x
(

a1 + a3(x2)1 + a5(x2)2 + · · ·+ an(x2)
n−1

2

)
(odd)

=: f0(x2) + xf1(x2),

for f0(x) := a0 + a2x + · · · an−1x (n−1)/2 and f1(x) := a1 + a3x + · · · anx (n−1)/2.

Observe:

f0 and f1 have degree (n − 1)/2!

“Feels like” we’ve cut our problem into a pair of smaller problems of half the size.
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f (x) = a0 + a1x + a2x2 + a3x3 + · · ·+ an−1xn−1 + anxn

=
(

a0 + a2x2 + a4x4 + · · ·+ an−1xn−1
)

+ (even)(
a1x + a3x3 + a5x5 + · · ·+ anxn

)
(odd)

=
(

a0 + a2x2 + a4x4 + · · ·+ an−1xn−1
)

+ (even)

x
(

a1 + a3x2 + a5x4 + · · ·+ anxn−1
)

(odd)

=
(

a0 + a2(x2)1 + a4(x2)2 + · · ·+ an−1(x2)
n−1

2

)
+ (even)

x
(

a1 + a3(x2)1 + a5(x2)2 + · · ·+ an(x2)
n−1

2

)
(odd)

=: f0(x2) + xf1(x2),

for f0(x) := a0 + a2x + · · · an−1x (n−1)/2 and f1(x) := a1 + a3x + · · · anx (n−1)/2.

Observe:

f0 and f1 have degree (n − 1)/2!

“Feels like” we’ve cut our problem into a pair of smaller problems of half the size.
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The key step

Assume (WLOG) that N = n + 1 is a power of 2.

f (x) = a0 + a1x + a2x2 + a3x3 + · · ·+ an−1xn−1 + anxn

= f0(x2) + xf1(x2), (3)

for f0(x) := a0 + a2x + · · · an−1x (n−1)/2 and f1(x) := a1 + a3x + · · · anx (n−1)/2.

DFTN evaluates degree-(N − 1) polynomial at Nth roots of unity.

By Halving Lemma: Letting x = ωk
N in Eqn. (3),

f0(x2) = f0((ωk
N)2) = f0(ωk

N/2).

Thus, roots of unity are very special — allow us to recursively simulate
order-N DFT via order-(N/2) DFTs.
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FFT Algorithm

Preconditions: N = n + 1 is a power of 2.

Input: Coefficient vector a = (a0, a1, . . . , an)T representing polynomial f ∈ C[x ].
Output: DFTN a = (f (ω0

N), f (ω1
N), . . . , f (ωN−1

N ))T .

FFT(a,N):
1 (Base case) if N = 1, return a (why?)
2 Set ω = 1
3 Set y[0] = FFT((a0, a2, . . . , an−1),N/2)

4 Set y[1] = FFT((a1, a3, . . . , an),N/2)

5 for k from 0 to N/2− 1 do

1 Set yk = y [0]
k + ωy [1]

k

2 Set yk+(N/2) = y [0]
k − ωy [1]

k
3 Set ω = ωωN

6 Return y
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Analysis
Let f [j] denote polynomial with coefficients y[j] below.
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y [0]
k = f [0](ωk

N/2) = f [0](ω2k
N ) and y [1]

k = f [1](ωk
N/2) = f [1](ω2k

N ) (why?)

5 for k from 0 to N/2− 1 do

1 Set yk = y [0]
k + ωy [1]

k

yk = f [0](ω2k
N ) + ωk

N f [1](ω2k
N ) = f (ωk

N) by recursive decomposition

2 Set yk+(N/2) = y [0]
k − ωy [1]

k
3 Set ω = ωωN

6 Return y
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2 Set yk+(N/2) = y [0]
k − ωy [1]

k

Q: Why treat indices in range N/2, . . . ,N − 1 differently?

yk+(N/2) = y [0]
k − ω

k
Ny [1]

k = y [0]
k + ω

k+(N/2)
N y [1]

k (ωN/2
N = −1 for even N)

= f [0](ω2k
N ) + ω

k+(N/2)
N f [1](ω2k

N )

= f [0](ω2k+N
N ) + ω

k+(N/2)
N f [1](ω2k+N

N ) (ωN
N = 1 by definition)

= f (ω
k+(N/2)
N ) (by recursive decomposition)

3 Set ω = ωωN
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Input: Coefficient vector a = (a0, a1, . . . , an)T representing polynomial f ∈ C[x ].
Output: DFTN a = (f (ω0

N), f (ω1
N), . . . , f (ωN−1

N ))T .

FFT(a,N):
1 (Base case) if N = 1, return a
2 Set ω = 1
3 Set y[0] = FFT((a0, a2, . . . , an−1),N/2)

4 Set y[1] = FFT((a1, a3, . . . , an),N/2)

5 for k from 0 to N/2− 1 do

1 Set yk = y [0]
k + ωy [1]

k

2 Set yk+(N/2) = y [0]
k − ωy [1]

k
3 Set ω = ωωN

6 Return y

Runtime

Each call to FFT takes O(N) time, and makes two recursive calls of size N/2.

Thus, runtime T (N) = 2T (N/2) + Θ(N) ∈ Θ(N log N).

Conclusion: Evaluate degree-(N − 1) polynomial at Nth roots of unity in
subquadratic time.
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The big picture
Recall our battle plan for polynomial multiplication:

1 Convert f , g ∈ C[x ] from coefficient representation to point-value representation
by evaluating f , g at cleverly chosen points.

2 Multiplication in point-value representation takes only Θ(n) time.
3 Convert back from point-value representation to coefficient representation (i.e.

interpolate) to recover final answer.

Can now fill in details:

1 Convert f , g ∈ C[x ] from coefficient representation to point-value representation
by evaluating f , g at Nth roots of unity.

I Takes O(N log N) time via FFT.
2 Multiplication in point-value representation takes only Θ(n) time.

3 Convert back from point-value representation to coefficient representation (i.e.
interpolate) to recover final answer.

I Claim. Interpolation corresponds to inverse DFT. Takes O(N log N) time.

Conclusion: Polynomial multiplication takes O(N log N) time.
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Final exercises

1 Why does interpolation correspond to inverse DFT? (Hint: Recall proof
of Interpolation Theorem.)

2 What is the matrix representation of the inverse of DFTN?

3 We cheated slightly in our algorithm — where did we bend the rules?
(Hint: How many data points did we need to evaluate a polynomial at in
order to recover a unique inverse via interpolation?)
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Looking to the future

You didn’t think applications of Fourier transform end with today’s
technology?

Using a quantum implementation of DFTN , one can exponentially
outperform4 classical computers at a crucial problem: The Integer
Factorization Problem:

I Given an integer M, what are the prime factors of M?
I The assumption that this problem is classically hard underlies

security of common cryptosystems like RSA.
I Thus, a large-scale quantum computer would break today’s

cryptosystems completely. . .

Shameless advertisements:

I See upcoming Masters lecture on Introduction to Quantum
Computation (SS2020)

I Interested in undergraduate research in quantum computation?
Come talk to me! Required background is Linear Algebra.

4The best known classical factoring algorithms take superpolynomial time.
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