# Fundamental Algorithms Chapter 7: Linear Programming 

Sevag Gharibian<br>Universität Paderborn<br>WS 2019

## Outline

(1) Definitions
(2) Applications
(3) Duality theory

## 4 Solving LPs

## References

- CLRS Chapter 29
- Convex Optimization (Boyd and Vandenberghe): https://web.stanford.edu/~boyd/cvxbook/
- Luca Trevisan lecture notes:
http://theory.stanford.edu/~trevisan/cs261/lecture15.pdf


## Motivation

- Studied shortest paths, matchings, network flow, etc.
- What if I told you that many such problems can all be solved via a more general, unified framework?


## Motivation

- Studied shortest paths, matchings, network flow, etc.
- What if I told you that many such problems can all be solved via a more general, unified framework?

> That framework is Linear Programming (LP).

## Motivation

- Studied shortest paths, matchings, network flow, etc.
- What if I told you that many such problems can all be solved via a more general, unified framework?

> That framework is Linear Programming (LP).

## LPs:

- ... are useful in everything from industrial optimization problems to approximating NP-complete problems.


## Motivation

- Studied shortest paths, matchings, network flow, etc.
- What if I told you that many such problems can all be solved via a more general, unified framework?

> That framework is Linear Programming (LP).

LPs:

- ... are useful in everything from industrial optimization problems to approximating NP-complete problems.
- ... have long history of algorithms for them (Simplex Method, Ellipsoid Method, Interior Point Methods).


## Motivation

- Studied shortest paths, matchings, network flow, etc.
- What if I told you that many such problems can all be solved via a more general, unified framework?

> That framework is Linear Programming (LP).

LPs:

- ... are useful in everything from industrial optimization problems to approximating NP-complete problems.
- ... have long history of algorithms for them (Simplex Method, Ellipsoid Method, Interior Point Methods).
- ... can be generalized further to SDPs, cone programs, etc. Here, we focus on LPs.


## Example

- Konditorei X produces 3 types of cake: Kirschtorte, Mohnkuchen, Sachertorte.
- X sells a whole cake of each type for 30,20,40 EUR, respectively.
- Assume the production of each cake requires:

| Cake | Flour | Cocoa Powder | Butter |
| :---: | :---: | :---: | :---: |
| Kirschtorte | 2 | 3 | 1 |
| Mohnkuchen | 3 | 0 | 2 |
| Sachertorte | 2 | 4 | 2 |

- X's suppliers provide, per day, 90 units flour, 70 units cocoa, 80 units butter


## Example

- Konditorei X produces 3 types of cake: Kirschtorte, Mohnkuchen, Sachertorte.
- X sells a whole cake of each type for $30,20,40$ EUR, respectively.
- Assume the production of each cake requires:

| Cake | Flour | Cocoa Powder | Butter |
| :---: | :---: | :---: | :---: |
| Kirschtorte | 2 | 3 | 1 |
| Mohnkuchen | 3 | 0 | 2 |
| Sachertorte | 2 | 4 | 2 |

- X's suppliers provide, per day, 90 units flour, 70 units cocoa, 80 units butter
- Q: What is max profit $X$ can make in one day, given above constraints?


## Example

- Konditorei X produces 3 types of cake: Kirschtorte, Mohnkuchen, Sachertorte.
- X sells a whole cake of each type for $30,20,40$ EUR, respectively.
- Assume the production of each cake requires:

| Cake | Flour | Cocoa Powder | Butter |
| :---: | :---: | :---: | :---: |
| Kirschtorte | 2 | 3 | 1 |
| Mohnkuchen | 3 | 0 | 2 |
| Sachertorte | 2 | 4 | 2 |

- X's suppliers provide, per day, 90 units flour, 70 units cocoa, 80 units butter
- Q: What is max profit $X$ can make in one day, given above constraints?

$$
\text { maximize } \quad 30 K+20 M+25 S \quad \text { (profit) }
$$

## Example

- Konditorei X produces 3 types of cake: Kirschtorte, Mohnkuchen, Sachertorte.
- X sells a whole cake of each type for $30,20,40$ EUR, respectively.
- Assume the production of each cake requires:

| Cake | Flour | Cocoa Powder | Butter |
| :---: | :---: | :---: | :---: |
| Kirschtorte | 2 | 3 | 1 |
| Mohnkuchen | 3 | 0 | 2 |
| Sachertorte | 2 | 4 | 2 |

- X's suppliers provide, per day, 90 units flour, 70 units cocoa, 80 units butter
- Q : What is max profit X can make in one day, given above constraints?

$$
\begin{array}{lrl}
\text { maximize } & 30 K+20 M+25 S & \text { (profit) } \\
\text { subject to } & 2 K+3 M+2 S \leq 90 & \text { (flour constraint) }
\end{array}
$$

## Example

- Konditorei X produces 3 types of cake: Kirschtorte, Mohnkuchen, Sachertorte.
- X sells a whole cake of each type for $30,20,40$ EUR, respectively.
- Assume the production of each cake requires:

| Cake | Flour | Cocoa Powder | Butter |
| :---: | :---: | :---: | :---: |
| Kirschtorte | 2 | 3 | 1 |
| Mohnkuchen | 3 | 0 | 2 |
| Sachertorte | 2 | 4 | 2 |

- X's suppliers provide, per day, 90 units flour, 70 units cocoa, 80 units butter
- Q : What is max profit X can make in one day, given above constraints?

$$
\begin{array}{lrll}
\text { maximize } & 30 K+20 M+25 S & & \text { (profit) } \\
\text { subject to } & 2 K+3 M+2 S & \leq 90 & \text { (flour constraint) } \\
& 3 K+4 S & \leq 70 & \text { (cocoa constraint) }
\end{array}
$$

## Example

- Konditorei X produces 3 types of cake: Kirschtorte, Mohnkuchen, Sachertorte.
- X sells a whole cake of each type for 30,20,40 EUR, respectively.
- Assume the production of each cake requires:

| Cake | Flour | Cocoa Powder | Butter |
| :---: | :---: | :---: | :---: |
| Kirschtorte | 2 | 3 | 1 |
| Mohnkuchen | 3 | 0 | 2 |
| Sachertorte | 2 | 4 | 2 |

- X's suppliers provide, per day, 90 units flour, 70 units cocoa, 80 units butter
- Q : What is max profit X can make in one day, given above constraints?

$$
\begin{array}{lrll}
\operatorname{maximize} & 30 K+20 M+25 S & & \text { (profit) } \\
\text { subject to } & 2 K+3 M+2 S & \leq 90 & \text { (flour constraint) } \\
& 3 K+4 S & \leq 70 & \text { (cocoa constraint) } \\
& K+2 M+2 S & \leq 80 & \text { (butter constraint) }
\end{array}
$$

## Example

- Konditorei X produces 3 types of cake: Kirschtorte, Mohnkuchen, Sachertorte.
- X sells a whole cake of each type for 30,20,40 EUR, respectively.
- Assume the production of each cake requires:

| Cake | Flour | Cocoa Powder | Butter |
| :---: | :---: | :---: | :---: |
| Kirschtorte | 2 | 3 | 1 |
| Mohnkuchen | 3 | 0 | 2 |
| Sachertorte | 2 | 4 | 2 |

- X's suppliers provide, per day, 90 units flour, 70 units cocoa, 80 units butter
- Q : What is max profit X can make in one day, given above constraints?

$$
\begin{array}{lrll}
\begin{array}{ll}
\operatorname{maximize} & 30 K+20 M+25 S \\
\text { subject to } & 2 K+3 M+2 S
\end{array} & \leq 90 & \text { (profit) } \\
& 3 K+4 S & \leq 70 & \text { (four constraint) } \\
& K+2 M+2 S & \leq 80 & \text { (butter constraint) } \\
& K, M, S & \geq 0 & \text { (negative cakes = bad) }
\end{array}
$$

## Outline

## (1) Definitions

(2) Applications
(3) Duality theory
4) Solving LPs

## Standard form linear program (LP)

Input:

- (Cost function) $c_{1}, \ldots, c_{n} \in \mathbb{R}$.
- (Constraints) $a_{i j} \in \mathbb{R}$ for $i \in[m], j \in[n]$, and $b_{1}, \ldots, b_{m} \in \mathbb{R}$.

Primal standard form LP:

$$
\begin{array}{lcll}
\operatorname{maximize} & \sum_{j=1}^{n} c_{j} x_{j} & & \begin{array}{l}
\text { (objective function) } \\
\text { subject to }
\end{array} \\
& \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
& x_{j} \geq 0 & \text { for } j=1,2, \ldots, n .
\end{array}
$$

## Standard form linear program (LP)

Input:

- (Cost function) $c_{1}, \ldots, c_{n} \in \mathbb{R}$.
- (Constraints) $a_{i j} \in \mathbb{R}$ for $i \in[m], j \in[n]$, and $b_{1}, \ldots, b_{m} \in \mathbb{R}$.

Primal standard form LP:

$$
\begin{array}{lrll}
\operatorname{maximize} & \sum_{j=1}^{n} c_{j} x_{j} & & \begin{array}{l}
\text { (objective function) } \\
\text { subject to }
\end{array} \\
& \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \text { for } i=1,2, \ldots, m \\
& x_{j} \geq 0 & \text { for } j=1,2, \ldots, n .
\end{array}
$$

Equivalent Linear Algebraic formulation:

$$
\begin{aligned}
& \operatorname{maximize} \\
& c^{T} x \\
& \text { subject to } \\
& A x \leq b
\end{aligned} \quad \text { (objective function) }
$$

for matrix $A \in \mathbb{R}^{m \times n}$ and column vectors $c, b \in \mathbb{R}^{n}$.

## What does this geometrically mean?

Suppose LP has $n=2$ variables, i.e. optimize over 2D plane $\mathbb{R}^{2}$.
Constraints

- Restrict optimization over subset of $\mathbb{R} \times \mathbb{R}$, called feasible region.


## What does this geometrically mean?

Suppose LP has $n=2$ variables, i.e. optimize over 2D plane $\mathbb{R}^{2}$.
Constraints

- Restrict optimization over subset of $\mathbb{R} \times \mathbb{R}$, called feasible region.
- Example: Consider constraints $x_{1} \geq 0, x_{2} \geq 0, x_{1}+x_{2} \leq 1$.



## What does this geometrically mean?

Suppose LP has $n=2$ variables, i.e. optimize over 2D plane $\mathbb{R}^{2}$.
Constraints

- Restrict optimization over subset of $\mathbb{R} \times \mathbb{R}$, called feasible region.
- Example: Consider constraints $x_{1} \geq 0, x_{2} \geq 0, x_{1}+x_{2} \leq 1$.

- Each constraint partitions $R^{2}$ into pair of halfspaces, i.e. "left" and "right" of each "dividing line" (formally, each hyperplane).


## What does this geometrically mean?

Suppose LP has $n=2$ variables, i.e. optimize over 2D plane $\mathbb{R}^{2}$.
Constraints

- Restrict optimization over subset of $\mathbb{R} \times \mathbb{R}$, called feasible region.
- Example: Consider constraints $x_{1} \geq 0, x_{2} \geq 0, x_{1}+x_{2} \leq 1$.

- Each constraint partitions $R^{2}$ into pair of halfspaces, i.e. "left" and "right" of each "dividing line" (formally, each hyperplane).
- Feasible region is intersection of these halfspaces (formally, convex polyhedron).

What about objective function?

- Objective function $f\left(x_{1}, x_{2}\right)=c_{1} x_{1}+c_{2} x_{2}$ is linear by definition.

What about objective function?

- Objective function $f\left(x_{1}, x_{2}\right)=c_{1} x_{1}+c_{2} x_{2}$ is linear by definition.
- Example: $f\left(x_{1}, x_{2}\right)=x_{1}$.
- Know slope of line (representing objective function).
- Don't know its offset from origin.


What about objective function?

- Objective function $f\left(x_{1}, x_{2}\right)=c_{1} x_{1}+c_{2} x_{2}$ is linear by definition.
- Example: $f\left(x_{1}, x_{2}\right)=x_{1}$.
- Know slope of line (representing objective function).
- Don't know its offset from origin.

- Observe: As $f\left(x_{1}, x_{2}\right)=x_{1}$ grows, offset moves to right.

What about objective function?

- Objective function $f\left(x_{1}, x_{2}\right)=c_{1} x_{1}+c_{2} x_{2}$ is linear by definition.
- Example: $f\left(x_{1}, x_{2}\right)=x_{1}$.
- Know slope of line (representing objective function).
- Don't know its offset from origin.

- Observe: As $f\left(x_{1}, x_{2}\right)=x_{1}$ grows, offset moves to right.
- Formally, direction of movement given by gradient of $f$,

$$
\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}\right) .
$$

- In this example: $\nabla f=(1,0)$, hence the blue vector above.


## Putting it all together

Optimizing our LP corresponds to (in our example):

- Move vertical line representing $f$ as far right as possible, while ensuring it has non-empty intersection with feasible region.


## Putting it all together

Optimizing our LP corresponds to (in our example):

- Move vertical line representing $f$ as far right as possible, while ensuring it has non-empty intersection with feasible region.
- Last point of intersection is optimal solution:



## Putting it all together

Optimizing our LP corresponds to (in our example):

- Move vertical line representing $f$ as far right as possible, while ensuring it has non-empty intersection with feasible region.
- Last point of intersection is optimal solution:

- Sanity check: Convince yourself that $\left(x_{1}, x_{2}\right)=(1,0)$ is indeed optimal for:

$$
\begin{array}{lr}
\operatorname{maximize} & x_{1} \\
\text { subject to } & x_{1}+x_{2} \leq 1 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

## Boundary case

What if we drop a constraint?

$$
\begin{array}{lr}
\text { maximize } & x_{1} \\
\text { subject to } & x_{1}+x_{2} \leq 1 \\
& x_{1}, x_{2} \geq 0
\end{array}
$$

## Boundary case

What if we drop a constraint?



## Boundary case

What if we drop a constraint?


- Can move the vertical objective function line as far right as we like!
- Optimal value is $\infty$, i.e. the LP is unbounded.


## Outline

(2) Applications
(3) Duality theory
4) Solving LPs

## Application 1: Shortest paths

- Recall single-source shortest paths problem:
- Given graph $G=(V, E)$ with real edge costs, and a source vertex $s \in V$, find smallest weight path to all other $v \in V$.
- Solved by Bellman-Ford in $O(m n)$ time.
- Can also be phrased as LP! Let's consider scaled down problem:


## Application 1: Shortest paths

- Recall single-source shortest paths problem:
- Given graph $G=(V, E)$ with real edge costs, and a source vertex $s \in V$, find smallest weight path to all other $v \in V$.
- Solved by Bellman-Ford in $O(m n)$ time.
- Can also be phrased as LP! Let's consider scaled down problem:


## Single-pair shortest path problem (SPSP)

Given graph $G=(V, E)$ with real edge costs, source and sink vertices $s, t \in V$, respectively, find smallest weight path $P$ from $s$ to $t$ in $G$.

## Application 1: Shortest paths

## Single-pair shortest path problem (SPSP)

Given graph $G=(V, E)$ with real edge costs, source and sink vertices $s, t \in V$, respectively, find smallest weight path $P$ from $s$ to $t$ in $G$.

## Application 1: Shortest paths

## Single-pair shortest path problem (SPSP)

Given graph $G=(V, E)$ with real edge costs, source and sink vertices $s, t \in V$, respectively, find smallest weight path $P$ from $s$ to $t$ in $G$.

Claim: The following LP optimally solves SPSP.
For each $v \in V$, introduce variable $d_{v}$.

$$
\begin{array}{ll}
\operatorname{maximize} & d_{t} \\
\text { subject to } & d_{v} \leq d_{u}+w(u, v) \quad \forall(u, v) \in E \\
& d_{s}=0
\end{array}
$$

## Application 1: Shortest paths

## Single-pair shortest path problem (SPSP)

Given graph $G=(V, E)$ with real edge costs, source and sink vertices $s, t \in V$, respectively, find smallest weight path $P$ from $s$ to $t$ in $G$.

Claim: The following LP optimally solves SPSP.
For each $v \in V$, introduce variable $d_{v}$.

$$
\begin{array}{ll}
\operatorname{maximize} & d_{t} \\
\text { subject to } & d_{v} \leq d_{u}+w(u, v) \quad \forall(u, v) \in E \\
& d_{s}=0
\end{array}
$$

Observations:

## Application 1: Shortest paths

## Single-pair shortest path problem (SPSP)

Given graph $G=(V, E)$ with real edge costs, source and sink vertices $s, t \in V$, respectively, find smallest weight path $P$ from $s$ to $t$ in $G$.

Claim: The following LP optimally solves SPSP.
For each $v \in V$, introduce variable $d_{v}$.

$$
\begin{array}{ll}
\operatorname{maximize} & d_{t} \\
\text { subject to } & d_{v} \leq d_{u}+w(u, v) \quad \forall(u, v) \in E \\
& d_{s}=0
\end{array}
$$

Observations:

- No $d_{v} \geq 0$ constraints for all $v \in V$ ?


## Application 1: Shortest paths

## Single-pair shortest path problem (SPSP)

Given graph $G=(V, E)$ with real edge costs, source and sink vertices $s, t \in V$, respectively, find smallest weight path $P$ from $s$ to $t$ in $G$.

Claim: The following LP optimally solves SPSP.
For each $v \in V$, introduce variable $d_{v}$.

$$
\begin{array}{ll}
\operatorname{maximize} & d_{t} \\
\text { subject to } & d_{v} \leq d_{u}+w(u, v) \quad \forall(u, v) \in E \\
& d_{s}=0
\end{array}
$$

Observations:

- No $d_{v} \geq 0$ constraints for all $v \in V$ ?
- Equality constraint (i.e. $d_{s}=0$ )?


## Application 1: Shortest paths

## Single-pair shortest path problem (SPSP)

Given graph $G=(V, E)$ with real edge costs, source and sink vertices $s, t \in V$, respectively, find smallest weight path $P$ from $s$ to $t$ in $G$.

Claim: The following LP optimally solves SPSP.
For each $v \in V$, introduce variable $d_{v}$.

$$
\begin{array}{ll}
\operatorname{maximize} & d_{t} \\
\text { subject to } & d_{v} \leq d_{u}+w(u, v) \quad \forall(u, v) \in E \\
& d_{s}=0
\end{array}
$$

Observations:

- No $d_{v} \geq 0$ constraints for all $v \in V$ ?
- Equality constraint (i.e. $d_{s}=0$ )?
- Why are we maximizing $d_{t}$ ?


## Application 1: Shortest paths

$$
\begin{array}{cl}
\operatorname{maximize} & d_{t} \\
\text { subject to } & d_{v} \leq d_{u}+w(u, v) \quad \forall(u, v) \in E \\
& d_{s}=0
\end{array}
$$

Observation: No $d_{v} \geq 0$ constraints for all $v \in V$ ?

## Application 1: Shortest paths

$$
\begin{array}{cl}
\operatorname{maximize} & d_{t} \\
\text { subject to } & d_{v} \leq d_{u}+w(u, v) \quad \forall(u, v) \in E \\
& d_{s}=0
\end{array}
$$

Observation: No $d_{v} \geq 0$ constraints for all $v \in V$ ?

- Optimal solution might require $d_{t}<0$ ! Can you give an example?


## Application 1: Shortest paths

$$
\begin{array}{cl}
\operatorname{maximize} & d_{t} \\
\text { subject to } & d_{v} \leq d_{u}+w(u, v) \quad \forall(u, v) \in E \\
& d_{s}=0
\end{array}
$$

Observation: No $d_{v} \geq 0$ constraints for all $v \in V$ ?

- Optimal solution might require $d_{t}<0$ ! Can you give an example?
- Ex. $G$ has only one edge, $(s, t)$, of weight $w(s, t)=-1$.
- Recall: Standard form for LPs required variables to be non-negative...


## Application 1: Shortest paths

$$
\begin{array}{cl}
\operatorname{maximize} & d_{t} \\
\text { subject to } & d_{v} \leq d_{u}+w(u, v) \quad \forall(u, v) \in E \\
& d_{s}=0
\end{array}
$$

Observation: No $d_{v} \geq 0$ constraints for all $v \in V$ ?

- Optimal solution might require $d_{t}<0$ ! Can you give an example?
- Ex. G has only one edge, $(s, t)$, of weight $w(s, t)=-1$.
- Recall: Standard form for LPs required variables to be non-negative...
- Solution: For all $v \in V$, rewrite $d_{v}=d_{v_{1}}-d_{v_{2}}$ with $d_{v_{1}}, d_{v_{2}} \geq 0$.


## Application 1: Shortest paths

$$
\begin{array}{ll}
\operatorname{maximize} & d_{t} \\
\text { subject to } & d_{v} \leq d_{u}+w(u, v) \quad \forall(u, v) \in E \\
& d_{s}=0
\end{array}
$$

Observation: Equality constraint (i.e. $d_{s}=0$ )?

## Application 1: Shortest paths

$$
\begin{array}{ll}
\operatorname{maximize} & d_{t} \\
\text { subject to } & d_{v} \leq d_{u}+w(u, v) \quad \forall(u, v) \in E \\
& d_{s}=0
\end{array}
$$

Observation: Equality constraint (i.e. $d_{s}=0$ )?

- Recall: Standard form for LPs allowed only inequalities. . .


## Application 1: Shortest paths

$$
\begin{array}{ll}
\operatorname{maximize} & d_{t} \\
\text { subject to } & d_{v} \leq d_{u}+w(u, v) \quad \forall(u, v) \in E \\
& d_{s}=0
\end{array}
$$

Observation: Equality constraint (i.e. $d_{s}=0$ )?

- Recall: Standard form for LPs allowed only inequalities. . .
- Solution:
- Replace $d_{s}=0$ with two constraints:
(1) $d_{s} \geq 0$
(2) $-d_{s} \geq 0$


## Application 1: Shortest paths

$$
\begin{array}{ll}
\operatorname{maximize} & d_{t} \\
\text { subject to } & d_{v} \leq d_{u}+w(u, v) \quad \forall(u, v) \in E \quad(* *) \\
& d_{s}=0
\end{array}
$$

Observation: Why are we maximizing $d_{t}$ ?

## Application 1: Shortest paths

$$
\begin{array}{ll}
\operatorname{maximize} & d_{t} \\
\text { subject to } & d_{v} \leq d_{u}+w(u, v) \quad \forall(u, v) \in E \quad(* *) \\
& d_{s}=0
\end{array}
$$

Observation: Why are we maximizing $d_{t}$ ?

- LP essentially encodes recursive dynamic programming approach, i.e. cheapest path to $t$ has cost

$$
\min _{(u, t) \in E} d_{u}+w(u, t)
$$

## Application 1: Shortest paths

$$
\begin{array}{ll}
\operatorname{maximize} & d_{t} \\
\text { subject to } & d_{v} \leq d_{u}+w(u, v) \quad \forall(u, v) \in E \quad(* *) \\
& d_{s}=0
\end{array}
$$

Observation: Why are we maximizing $d_{t}$ ?

- LP essentially encodes recursive dynamic programming approach, i.e. cheapest path to $t$ has cost

$$
\min _{(u, t) \in E} d_{u}+w(u, t) .
$$

- Inequality ( $\left.{ }^{* *}\right)$ uses $\forall$ over neighbors of $t$ to "simulate" $\min _{(u, t) \in E}$.


## Application 1: Shortest paths

$$
\begin{array}{ll}
\operatorname{maximize} & d_{t} \\
\text { subject to } & d_{v} \leq d_{u}+w(u, v) \quad \forall(u, v) \in E \quad(* *) \\
& d_{s}=0
\end{array}
$$

Observation: Why are we maximizing $d_{t}$ ?

- LP essentially encodes recursive dynamic programming approach, i.e. cheapest path to $t$ has cost

$$
\min _{(u, t) \in E} d_{u}+w(u, t) .
$$

- Inequality ( $\left.{ }^{* *}\right)$ uses $\forall$ over neighbors of $t$ to "simulate" $\min _{(u, t) \in E}$.
- Hence, maximizing $d_{t}$ ensures optimal solution satisfies (with equality):

$$
d_{t}=\min _{(u, t) \in E} d_{u}+w(u, t) .
$$

## Application 1: Shortest paths

$$
\begin{array}{ll}
\operatorname{maximize} & d_{t} \\
\text { subject to } & d_{v} \leq d_{u}+w(u, v) \quad \forall(u, v) \in E \quad(* *) \\
& d_{s}=0
\end{array}
$$

Observation: Why are we maximizing $d_{t}$ ?

- LP essentially encodes recursive dynamic programming approach, i.e. cheapest path to $t$ has cost

$$
\min _{(u, t) \in E} d_{u}+w(u, t) .
$$

- Inequality ( $\left.{ }^{* *}\right)$ uses $\forall$ over neighbors of $t$ to "simulate" $\min _{(u, t) \in E}$.
- Hence, maximizing $d_{t}$ ensures optimal solution satisfies (with equality):

$$
d_{t}=\min _{(u, t) \in E} d_{u}+w(u, t) .
$$

## Application 2: Network Flow

- The Max Flow problem is, by definition, an LP!
- Given a flow network ( $G, s, t, c$ ) for capacity function $c: E \mapsto \mathbb{R}^{+}$, the following LP yields max flow value:

$$
\operatorname{maximize} \quad \sum_{v \in V} f(s, v)
$$

## Application 2: Network Flow

- The Max Flow problem is, by definition, an LP!
- Given a flow network ( $G, s, t, c$ ) for capacity function $c: E \mapsto \mathbb{R}^{+}$, the following LP yields max flow value:

$$
\begin{array}{lr}
\operatorname{maximize} & \sum_{v \in v} f(s, v) \\
\text { subject to } & f(u, v) \leq c(u, v) \quad \forall u, v \in V \quad \text { (capacity constraint) }
\end{array}
$$

## Application 2: Network Flow

- The Max Flow problem is, by definition, an LP!
- Given a flow network ( $G, s, t, c$ ) for capacity function $c: E \mapsto \mathbb{R}^{+}$, the following LP yields max flow value:

$$
\begin{array}{lrlll}
\operatorname{maximize} & \sum_{v \in V} f(s, v) & & & \\
\text { subject to } & f(u, v) & \leq c(u, v) \quad \forall u, v \in V & \text { (capacity constraint) } \\
& f(u, v) & =-f(v, u) \quad \forall u, v \in V & \text { (skew symmetry) }
\end{array}
$$

## Application 2: Network Flow

- The Max Flow problem is, by definition, an LP!
- Given a flow network ( $G, s, t, c$ ) for capacity function $c: E \mapsto \mathbb{R}^{+}$, the following LP yields max flow value:

$$
\begin{array}{lclll}
\operatorname{maximize} & \sum_{v \in V} f(s, v) & & & \\
\text { subject to } & f(u, v) & \leq c(u, v) & \forall u, v \in V & \\
f(u, v) & =-f(v, u) & \forall u, v \in V & \text { (capacity constraint) } \\
& \sum_{v \in V} f(u, v) & =0 & \forall u \in V \backslash\{s, t\} & \text { (flow symmenservation) }
\end{array}
$$

## Application 2: Network Flow

- The Max Flow problem is, by definition, an LP!
- Given a flow network ( $G, s, t, c$ ) for capacity function $c: E \mapsto \mathbb{R}^{+}$, the following LP yields max flow value:

| $\operatorname{maximize}$ | $\sum_{v \in V} f(s, v)$ |  |  |  |
| :--- | ---: | :--- | :--- | :--- |
| subject to | $f(u, v)$ | $\leq c(u, v)$ | $\forall u, v \in V$ |  |
|  | $f(u, v)$ | $=-f(v, u)$ | $\forall u, v \in V$ | (capacity constraint) |
|  | $\sum_{v \in V} f(u, v)$ | $=0$ | $\forall u \in V \backslash\{s, t\}$ | (flow symmentry) |
|  |  |  |  |  |

## Application 3: Multi-commodity flow (MCF)

- Like Max Flow, except instead of 1 commodity to route through network (e.g. water), have $k$ commodities which share the network.
- Like Max Flow, given $G=(V, E)$ and capacities $c(u, v) \geq 0$.


## Application 3: Multi-commodity flow (MCF)

- Like Max Flow, except instead of 1 commodity to route through network (e.g. water), have $k$ commodities which share the network.
- Like Max Flow, given $G=(V, E)$ and capacities $c(u, v) \geq 0$.
- Unlike Max Flow, each commodity $K_{i}$ specified via $K_{i}=\left(s_{i}, t_{i}, d_{i}\right)$ :
- $s_{i}$ and $t_{i}$ are source/sink for $K_{i}$, respectively.
- $d_{i}$ is the total demand for $K_{i}$ which must be met, i.e.

$$
\sum_{v \in V} f_{i}\left(s_{i}, v\right)=d_{i} \text { for all } i \in[k] .
$$

## Application 3: Multi-commodity flow (MCF)

- Like Max Flow, except instead of 1 commodity to route through network (e.g. water), have $k$ commodities which share the network.
- Like Max Flow, given $G=(V, E)$ and capacities $c(u, v) \geq 0$.
- Unlike Max Flow, each commodity $K_{i}$ specified via $K_{i}=\left(s_{i}, t_{i}, d_{i}\right)$ :
- $s_{i}$ and $t_{i}$ are source/sink for $K_{i}$, respectively.
- $d_{i}$ is the total demand for $K_{i}$ which must be met, i.e.

$$
\sum_{v \in V} f_{i}\left(s_{i}, v\right)=d_{i} \text { for all } i \in[k] .
$$

- Above, $f_{i}$ is flow for commodity $i$, so that aggregate flow $f$ satisfies

$$
f(u, v)=\sum_{i=1}^{k} f_{i}(u, v) .
$$

## Application 3: Multi-commodity flow (MCF)

- Like Max Flow, except instead of 1 commodity to route through network (e.g. water), have $k$ commodities which share the network.
- Like Max Flow, given $G=(V, E)$ and capacities $c(u, v) \geq 0$.
- Unlike Max Flow, each commodity $K_{i}$ specified via $K_{i}=\left(s_{i}, t_{i}, d_{i}\right)$ :
- $s_{i}$ and $t_{i}$ are source/sink for $K_{i}$, respectively.
- $d_{i}$ is the total demand for $K_{i}$ which must be met, i.e.

$$
\sum_{v \in V} f_{i}\left(s_{i}, v\right)=d_{i} \text { for all } i \in[k] .
$$

- Above, $f_{i}$ is flow for commodity $i$, so that aggregate flow $f$ satisfies

$$
f(u, v)=\sum_{i=1}^{k} f_{i}(u, v)
$$

- Q: Possible to route all $k$ commodities through network, while meeting demand constraints but (2) not violating capacity constraints?


## Application 3: Multi-commodity flow (MCF)

Q: Can you guess the LP for MCF?

## Application 3: Multi-commodity flow (MCF)

Q: Can you guess the LP for MCF? maximize ?

## Application 3: Multi-commodity flow (MCF)

Q: Can you guess the LP for MCF?

```
maximize ?
subject to }\quad\mp@subsup{\sum}{i=1}{k}\mp@subsup{f}{i}{}(u,v)\quad\leq\quadc(u,v)\quad\forallu,v\inV\quad\mathrm{ (capacity)
```


## Application 3: Multi-commodity flow (MCF)

Q: Can you guess the LP for MCF?

```
maximize
subject to }\mp@subsup{\sum}{i=1}{k}\mp@subsup{f}{i}{}(u,v) \leq\quadc(u,v)\quad\forallu,v\inV\quad\mathrm{ (capacity)
    fi}(u,v)=-\mp@subsup{f}{i}{}(v,u)\quad\foralli\in[k],u,v\inV\quad\mathrm{ (skew symmetry)
```


## Application 3: Multi-commodity flow (MCF)

Q: Can you guess the LP for MCF?

```
maximize ?
subject to }\mp@subsup{\sum}{i=1}{k}\mp@subsup{f}{i}{}(u,v) \leq\quadc(u,v)\quad\forallu,v\inV\quad\mathrm{ (capacity)
    fi}(u,v)=-\mp@subsup{f}{i}{}(v,u)\quad\foralli\in[k],u,v\inV\quad\mathrm{ (skew symmetry)
    \sum 价和(u,v) = 0 \foralli\in[k],u\inV\{s,t} (flow conservation)
```


## Application 3: Multi-commodity flow (MCF)

Q: Can you guess the LP for MCF?

| maximize |  |  |  |  |  |
| :--- | ---: | :--- | :--- | :--- | :--- |
| subject to | $\sum_{i=1}^{k} f_{i}(u, v)$ | $\leq c(u, v)$ | $\forall u, v \in V$ |  | (capacity) |
| $f_{i}(u, v)$ | $=$ | $-f_{i}(v, u)$ | $\forall i \in[k], u, v \in V$ |  | (skew symmetry) |
|  | $\sum_{v \in V} f_{i}(u, v)$ | $=$ | 0 | $\forall i \in[k], u \in V \backslash\{s, t\}$ | (flow conservation) |
|  | $\sum_{v \in V} f_{i}\left(s_{i}, v\right)$ | $=$ | $d_{i}$ | $\forall i \in[k]$ | (demand) |

## Application 3: Multi-commodity flow (MCF)

Q: Can you guess the LP for MCF?

$$
\begin{array}{lrlll}
\operatorname{maximize} & & & & \\
\text { subject to } & \sum_{i=1}^{k} f_{i}(u, v) & \leq c(u, v) & \forall u, v \in V & \text { (capacity) } \\
f_{i}(u, v) & = & -f_{i}(v, u) & \forall i \in[k], u, v \in V & \\
& \sum_{v \in V} f_{i}(u, v) & = & 0 & \forall i \in[k], u \in V \backslash\{s, t\}
\end{array} \text { (flow sommenservation) }
$$

Q: What about objective function?

- Recall defined MCF as decision problem (answer is YES or NO).
- (Recall: Possible to route all $k$ commodities through network, while meeting demand constraints but (2) not violating capacity constraints?)


## Application 3: Multi-commodity flow (MCF)

Q: Can you guess the LP for MCF?

$$
\begin{array}{lrllll}
\operatorname{maximize} & & & & \\
\text { subject to } & \sum_{i=1}^{k} f_{i}(u, v) & \leq c(u, v) & \forall u, v \in V & & \text { (capacity) } \\
f_{i}(u, v) & = & -f_{i}(v, u) & \forall i \in[k], u, v \in V & & \text { (skew symmetry) } \\
& \sum_{v \in V} f_{i}(u, v) & = & 0 & \forall i \in[k], u \in V \backslash\{s, t\} & \text { (flow conservation) } \\
& \sum_{v \in V} f_{i}\left(s_{i}, v\right) & = & d_{i} & \forall i \in[k] & \text { (demand) }
\end{array}
$$

Q: What about objective function?

- Recall defined MCF as decision problem (answer is YES or NO).
- (Recall: Possible to route all $k$ commodities through network, while meeting demand constraints but (2) not violating capacity constraints?)
- Once we have flows $f_{i}$ satisfying all constraints, we know the answer is YES. Hence, we don't "need" objective function.
- Geometrically, MCF only asks if LP feasible region is non-empty.


## Application 3: Multi-commodity flow (MCF)

Q: Can you guess the LP for MCF?

$$
\begin{array}{lrllll}
\operatorname{maximize} & & & & \\
\text { subject to } & \sum_{i=1}^{k} f_{i}(u, v) & \leq c(u, v) & \forall u, v \in V & & \text { (capacity) } \\
f_{i}(u, v) & = & -f_{i}(v, u) & \forall i \in[k], u, v \in V & & \text { (skew symmetry) } \\
& \sum_{v \in V} f_{i}(u, v) & = & 0 & \forall i \in[k], u \in V \backslash\{s, t\} & \text { (flow conservation) } \\
& \sum_{v \in V} f_{i}\left(s_{i}, v\right) & = & d_{i} & \forall i \in[k] & \text { (demand) }
\end{array}
$$

Q: What about objective function?

- Recall defined MCF as decision problem (answer is YES or NO).
- (Recall: Possible to route all $k$ commodities through network, while meeting demand constraints but (2) not violating capacity constraints?)
- Once we have flows $f_{i}$ satisfying all constraints, we know the answer is YES. Hence, we don't "need" objective function.
- Geometrically, MCF only asks if LP feasible region is non-empty.
- Hence, can set objective function to 0 .


## Application 3: Multi-commodity flow

Final LP:

| maximize |  |  |  |  |  |
| :--- | ---: | :--- | :--- | :--- | :--- |
| subject to | $\sum_{i=1}^{k} f_{i}(u, v)$ | $\leq c(u, v)$ | $\forall u, v \in V$ |  | (capacity) |
| $f_{i}(u, v)$ | $=$ | $-f_{i}(v, u)$ | $\forall i \in[k], u, v \in V$ |  | (skew symmetry) |
|  | $\sum_{v \in V} f_{i}(u, v)$ | $=$ | 0 | $\forall i \in[k], u \in V \backslash\{s, t\}$ | (flow conservation) |
|  | $\sum_{v \in V} f_{i}\left(s_{i}, v\right)$ | $=$ | $d_{i}$ | $\forall i \in[k]$ |  |
|  |  |  | (demand) |  |  |

## Application 3: Multi-commodity flow

## Final LP:

$$
\begin{array}{lcllll}
\operatorname{maximize} & & & & \\
\text { subject to } & \sum_{i=1}^{k} f_{i}(u, v) & \leq c(u, v) & \forall u, v \in V & & \text { (capacity) } \\
& f_{i}(u, v) & =-f_{i}(v, u) & \forall i \in[k], u, v \in V & & \text { (skew symmetry) } \\
& \sum_{v \in V} f_{i}(u, v) & = & 0 & \forall i \in[k], u \in V \backslash\{s, t\} & \text { (flow conservation) } \\
& \sum_{v \in V} f_{i}\left(s_{i}, v\right) & = & d_{i} & \forall i \in[k] & \\
\text { (demand) }
\end{array}
$$

- The only polynomial-time algorithm know for MCF is via LPs.
- In this sense, LPs "seem" strictly more powerful than network flow algorithms.


## Application 3: Multi-commodity flow

## Final LP:

$$
\begin{array}{lclll}
\operatorname{maximize} & & & & \\
\text { subject to } & \sum_{i=1}^{k} f_{i}(u, v) & \leq c(u, v) & \forall u, v \in V & \\
f_{i}(u, v) & =-f_{i}(v, u) & \forall i \in[k], u, v \in V & & \text { (capacity) } \\
& \sum_{v \in V} f_{i}(u, v) & = & 0 & \forall i \in[k], u \in V \backslash\{s, t\} \\
& \sum_{v \in V} f_{i}(s i, v) & = & d_{i} & \\
& \forall i \in[k] & & \text { (dow symmenserry) } \\
& \text { (demand) }
\end{array}
$$

- The only polynomial-time algorithm know for MCF is via LPs.
- In this sense, LPs "seem" strictly more powerful than network flow algorithms.
- Indeed, linear programming is P -complete! (Roughly, any algorithm in P can be reduced to solving an LP.)



## Application 3: Multi-commodity flow

## Final LP:

$$
\begin{array}{lclll}
\begin{array}{llll}
0 & & & \\
\text { subjimizect to } & \sum_{i=1}^{k} f_{i}(u, v) & \leq c(u, v) & \forall u, v \in V \\
f_{i}(u, v) & = & & \text { (capacity) } \\
& f_{i}(v, u) & \forall i \in[k], u, v \in V & \\
\text { (skew symmetry) } \\
& \sum_{v \in V} f_{i}(u, v) & = & 0
\end{array} & \forall i \in[k], u \in V \backslash\{s, t\} & \text { (flow conservation) } \\
& \sum_{v \in V} f_{i}\left(s_{i}, v\right) & = & d_{i} & \forall i \in[k]
\end{array}
$$

- The only polynomial-time algorithm know for MCF is via LPs.
- In this sense, LPs "seem" strictly more powerful than network flow algorithms.
- Indeed, linear programming is P -complete! (Roughly, any algorithm in P can be reduced to solving an LP.)

- If we demand integer flow, i.e. $f_{i}(u, v) \in \mathbb{Z}$, then MCF becomes NP-complete.


But there is more black magic to come...

## Outline

(2) Applications
(3) Duality theory

4 Solving LPs

I haven't told you yet how to actually solve an LP.


- But do we need to actually solve the LP to provably get the optimal solution?

I haven't told you yet how to actually solve an LP.


- But do we need to actually solve the LP to provably get the optimal solution?
- Remarkably, no... Can:
- Guess a solution $x=\left\{x_{i}\right\}$.
- If $x$ is optimal, can use duality theory to prove this.

I haven't told you yet how to actually solve an LP.


- But do we need to actually solve the LP to provably get the optimal solution?
- Remarkably, no... Can:
- Guess a solution $x=\left\{x_{i}\right\}$.
- If $x$ is optimal, can use duality theory to prove this.
- Yields powerful method for proving analytic bounds on optimization problems in math proofs. (Where in this course have we used this idea, at least indirectly?)


## Intuition

Let's return to our LP example, slightly rewritten below:

$$
\begin{array}{crl}
\operatorname{maximize} & x_{1} \\
\text { subject to } & x_{1}+x_{2} & \leq 1 \\
& -x_{1} \leq 0  \tag{3}\\
& -x_{2} \leq 0
\end{array}
$$

(4)

- Recall: Optimal solution was $\left(x_{1}, x_{2}\right)=(1,0)$, with value 1 .
- Claim: Can prove no solution can do better.


## Intuition

Let's return to our LP example, slightly rewritten below:

| maximize | $x_{1}$ |
| :--- | ---: |
| subject to |  |
|  | $x_{1}+x_{2} \leq 1$ |
|  | $-x_{1} \leq 0$ |
|  | $-x_{2} \leq 0$ |

- Recall: Optimal solution was $\left(x_{1}, x_{2}\right)=(1,0)$, with value 1 .
- Claim: Can prove no solution can do better.
- Adding inequalities (2) and (4) yields bound $x_{1} \leq 1$.
- Thus, objective function upper bounded by 1 , and $(1,0)$ is indeed optimal.


## Intuition

Let's return to our LP example, slightly rewritten below:

| maximize | $x_{1}$ |
| :--- | ---: |
| subject to |  |
|  | $x_{1}+x_{2}$ |
|  | $-x_{1} \leq 1$ |
|  | $-x_{2} \leq 0$ |
|  | $\leq 0$ |

- Recall: Optimal solution was $\left(x_{1}, x_{2}\right)=(1,0)$, with value 1 .
- Claim: Can prove no solution can do better.
- Adding inequalities (2) and (4) yields bound $x_{1} \leq 1$.
- Thus, objective function upper bounded by 1 , and $(1,0)$ is indeed optimal.
- Even better: Can generalize this idea to get tight upper bound on optimal value.


## Intuition

Let's return to our LP example, slightly rewritten below:

| maximize | $x_{1}$ |
| :--- | ---: |
| subject to |  |
|  | $x_{1}+x_{2}$ |
|  | $-x_{1} \leq 1$ |
|  | $-x_{2} \leq 0$ |
|  |  |

(4)

- Recall: Optimal solution was $\left(x_{1}, x_{2}\right)=(1,0)$, with value 1 .
- Claim: Can prove no solution can do better.
- Adding inequalities (2) and (4) yields bound $x_{1} \leq 1$.
- Thus, objective function upper bounded by 1 , and $(1,0)$ is indeed optimal.
- Even better: Can generalize this idea to get tight upper bound on optimal value.
- Idea:
- To each constraint, assign a "dual" variable $y_{i}$.
- "Do a minimization" over linear combinations of $y_{i}$ to get upper bound on objective function.
- This minimization itself an LP, called dual LP.


I did say there was more black magic to come, no?

## Primal-dual pair

LPs come in pairs, known as the primal (left) and dual (right) LP:

$$
\begin{array}{crllllll}
\max & \sum_{j=1}^{n} c_{j} x_{j} & & \text { min } & \sum_{i=1}^{m} b_{i} y_{i} & & \\
\mathrm{s.t.} & \sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} & \forall i \in[m] & \text { s.t. } & \sum_{i=1}^{m} a_{i j} y_{i} & \geq c_{j} \quad \forall j \in[n] \\
& x_{j} & \geq 0 & \forall j \in[n] & & y_{i} & \geq 0 & \forall j \in[m]
\end{array}
$$

## Primal-dual pair

LPs come in pairs, known as the primal (left) and dual (right) LP:

$$
\begin{array}{crllllll}
\max & \sum_{j=1}^{n} c_{j} x_{j} & & \text { min } & \sum_{i=1}^{m} b_{i} y_{i} & & \\
\mathrm{s.t.} & \sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} & \forall i \in[m] & \text { s.t. } & \sum_{i=1}^{m} a_{i j} y_{i} & \geq c_{j} \quad \forall j \in[n] \\
& x_{j} & \geq 0 & \forall j \in[n] & & y_{i} & \geq 0 & \forall j \in[m]
\end{array}
$$

Our example:

$$
\begin{array}{cr}
\max & x_{1} \\
\mathrm{s.t.} & x_{1}+x_{2} \leq 1 \\
& -x_{1} \leq 0 \\
& -x_{2} \leq 0
\end{array}
$$

## Primal-dual pair

LPs come in pairs, known as the primal (left) and dual (right) LP:

$$
\begin{array}{crll}
\max & \sum_{j=1}^{n} c_{j} x_{j} & \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} \quad \forall i \in[m] \\
& x_{j} & \geq 0 \quad \forall j \in[n]
\end{array}
$$

$$
\begin{array}{crl}
\min & \sum_{i=1}^{m} b_{i} y_{i} & \\
\mathrm{s.t.} & \sum_{i=1}^{m} a_{i j} y_{i} \geq c_{j} \quad \forall j \in[n] \\
& y_{i} \geq 0 \quad \forall j \in[m]
\end{array}
$$

Our example:

$$
\begin{array}{crl}
\max & x_{1} & \\
\text { s.t. } & x_{1}+x_{2} & \leq 1 \\
& -x_{1} & \leq 0 \\
& -x_{2} & \leq 0
\end{array}
$$

$$
\begin{array}{cc}
\text { min } & y_{1} \\
\text { s.t. } & y_{1}-y_{2} \geq 1 \\
& y_{1}-y_{3} \geq 0 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{array}
$$

## Primal-dual pair

LPs come in pairs, known as the primal (left) and dual (right) LP:

$$
\begin{array}{clll}
\max & \sum_{j=1}^{n} c_{j} x_{j} & \\
\mathrm{s.t.} & \sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} \quad \forall i \in[m] \\
& x_{j} \geq 0 \quad \forall j \in[n]
\end{array}
$$

$$
\begin{array}{crl}
\min & \sum_{i=1}^{m} b_{i} y_{i} \\
\mathrm{s.t.} & \sum_{i=1}^{m} a_{i j} y_{i} \geq c_{j} \quad \forall j \in[n] \\
& y_{i} \geq 0 \quad \forall j \in[m]
\end{array}
$$

Our example:

$$
\begin{array}{crl}
\max & x_{1} & \\
\text { s.t. } & x_{1}+x_{2} & \leq 1 \\
& -x_{1} \leq 0 \\
& -x_{2} & \leq 0
\end{array}
$$

$$
\begin{array}{cr}
\text { min } & y_{1} \\
\mathrm{s.t.} & y_{1}-y_{2} \geq 1 \\
& y_{1}-y_{3} \geq 0 \\
& y_{1}, y_{2}, y_{3} \geq 0
\end{array}
$$

Q: Can you give dual solution with dual objective function value 1 ?

## Formalization primal vs dual

$$
\begin{array}{crlrl}
\max & \sum_{j=1}^{n} c_{j} x_{j} & & \min & \sum_{i=1}^{m} b_{i} y_{i} \\
\\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i} \quad \forall i \in[m] & \text { s.t. } & \sum_{i=1}^{m} a_{i j} y_{i} & \geq c_{j} \quad \forall j \in[n] \\
& x_{j} \geq 0 & \forall j \in[n] & y_{i} \geq 0 & \geq j \in[m]
\end{array}
$$

## Formalization primal vs dual

$$
\begin{array}{crlllll}
\max & \sum_{j=1}^{n} c_{j} x_{j} & & \min & \sum_{i=1}^{m} b_{i} y_{i} & & \\
\mathrm{s.t.} & \sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} & \forall i \in[m] & \text { s.t. } & \sum_{i=1}^{m} a_{i j} y_{i} & \geq c_{j} \quad \forall j \in[n] \\
& x_{j} & \geq 0 & \forall j \in[n] & & y_{i} & \geq 0
\end{array} \forall j \in[m]
$$

Let $P$ and $D$ denote primal and dual LP, respectively.
Let $p^{*}$ and $d^{*}$ denote optimal solutions for $P$ and $D$, respectively.
Intuitively: Designed $D$ so that $d^{*}$ yields upper bound on $p^{*}$. Let's prove this!

## Formalization primal vs dual

$$
\begin{array}{crll}
\max & \sum_{j=1}^{n} c_{j} x_{j} & \\
\text { s.t. } & \sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} \quad \forall i \in[m] \\
& x_{j} \geq 0 & \forall j \in[n]
\end{array}
$$

$$
\begin{array}{crl}
\min & \sum_{i=1}^{m} b_{i} y_{i} \\
\mathrm{s.t.} & \sum_{i=1}^{m} a_{i j} y_{i} \geq c_{j} \quad \forall j \in[n] \\
& y_{i} \geq 0 \quad \forall j \in[m]
\end{array}
$$

Let $P$ and $D$ denote primal and dual LP, respectively.
Let $p^{*}$ and $d^{*}$ denote optimal solutions for $P$ and $D$, respectively.
Intuitively: Designed $D$ so that $d^{*}$ yields upper bound on $p^{*}$. Let's prove this!

## Theorem (Weak duality)

For any primal feasible $x=\left\{x_{j}\right\}$ and dual feasible $y=\left\{y_{i}\right\}$,

$$
\sum_{j=1}^{n} c_{j} x_{j} \leq \sum_{i=1}^{m} b_{i} y_{i}
$$

Formalization primal vs dual

| $\max$ | $\sum_{j=1}^{n} c_{j} x_{j}$ |  |  |
| :---: | ---: | :--- | :--- | :--- |
| $\mathrm{s.t}$. | $\sum_{j=1}^{n} a_{i j} x_{j}$ | $\leq b_{i} \quad \forall i \in[m]$ |  |
|  | $x_{j}$ | $\geq 0 \quad \forall j \in[n]$ |  |

$\min \sum_{i=1}^{m} b_{i} y_{i}$
s.t. $\quad \sum_{i=1}^{m} a_{i j} y_{i} \geq c_{j} \quad \forall j \in[n]$ $y_{i} \geq 0 \quad \forall j \in[m]$

## Theorem (Weak duality)

For any primal feasible $x=\left\{x_{j}\right\}$ and dual feasible $y=\left\{y_{i}\right\}$,

$$
\sum_{j=1}^{n} c_{j} x_{j} \leq \sum_{i=1}^{m} b_{i} y_{i}
$$

Formalization primal vs dual

$$
\begin{array}{crll}
\max & \sum_{j=1}^{n} c_{j} x_{j} & \\
\mathrm{s.t.} & \sum_{j=1}^{n} a_{i j} x_{j} & \leq b_{i} \quad \forall i \in[m] \\
& x_{j} & \geq 0 \quad \forall j \in[n]
\end{array}
$$

$\min \sum_{i=1}^{m} b_{i} y_{i}$
s.t. $\sum_{i=1}^{m} a_{i j} y_{i} \geq c_{j} \quad \forall j \in[n]$ $y_{i} \geq 0 \quad \forall j \in[m]$

## Theorem (Weak duality)

For any primal feasible $x=\left\{x_{j}\right\}$ and dual feasible $y=\left\{y_{i}\right\}$,

## Proof.

$$
\sum_{j=1}^{n} c_{j} x_{j} \leq \sum_{j=1}^{n}\left(\sum_{i=1}^{m} a_{i j} y_{i}\right) x_{j}=\sum_{i=1}^{m} y_{i}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right) \leq \sum_{i=1}^{m} b_{i} y_{i} .
$$

## Formalization primal vs dual

## Theorem (Weak duality)

For any primal feasible $x=\left\{x_{j}\right\}$ and dual feasible $y=\left\{y_{i}\right\}$,

$$
\sum_{j=1}^{n} c_{j} x_{j} \leq \sum_{i=1}^{m} b_{i} y_{i}
$$

## Corollary

For any primal and dual LPs P and D, respectively, $p^{*} \leq d^{*}$.

## Formalization primal vs dual

## Theorem (Weak duality)

For any primal feasible $x=\left\{x_{j}\right\}$ and dual feasible $y=\left\{y_{i}\right\}$,

$$
\sum_{j=1}^{n} c_{j} x_{j} \leq \sum_{i=1}^{m} b_{i} y_{i}
$$

## Corollary

For any primal and dual LPs P and D, respectively, $p^{*} \leq d^{*}$.

## Corollary

If you can guess primal solution $x$ and dual solution $y$ with matching objective function values $p=d$, then guaranteed $x$ is optimal! (No need to explicitly solve either LP.)

- Q: Is it always true that $p^{*}=d^{*}$ ?


## Formalization primal vs dual

## Theorem (Weak duality)

For any primal feasible $x=\left\{x_{j}\right\}$ and dual feasible $y=\left\{y_{i}\right\}$,

$$
\sum_{j=1}^{n} c_{j} x_{j} \leq \sum_{i=1}^{m} b_{i} y_{i}
$$

## Corollary

For any primal and dual LPs P and D, respectively, $p^{*} \leq d^{*}$.

## Corollary

If you can guess primal solution $x$ and dual solution $y$ with matching objective function values $p=d$, then guaranteed $x$ is optimal! (No need to explicitly solve either LP.)

- Q: Is it always true that $p^{*}=d^{*}$ ? Yes! Called strong duality.


## Returning to Max Flow

## Primal LP:

$$
\begin{array}{lclll}
\operatorname{maximize} & \sum_{v \in V} f(s, v) & & & \\
\text { subject to } & f(u, v) & \leq c(u, v) & \forall u, v \in V & \\
& \text { (capacity constraint) } \\
f(u, v) & = & -f(v, u) & \forall u, v \in V & \text { (skew symmetry) } \\
& \sum_{v \in V} f(u, v) & =0 & \forall u \in V \backslash\{s, t\} & \text { (flow conservation) }
\end{array}
$$

Recall: Max flow is bounded by min capacity across any $s-t$ cut in $G$.

- Claim: This is precisely what the dual LP for Max Flow says.


## Returning to Max Flow

## Primal LP:

$$
\begin{array}{lclll}
\operatorname{maximize} & \sum_{v \in V} f(s, v) & & & \\
\text { subject to } & f(u, v) & \leq c(u, v) & \forall u, v \in V & \\
& f(u, v) & =-f(v, u) & \forall u, v \in V & \text { (capacity constraint) } \\
& \sum_{v \in V} f(u, v) & =0 & \forall u \in V \backslash\{s, t\} & \text { (flow conservation) }
\end{array}
$$

Recall: Max flow is bounded by min capacity across any $s-t$ cut in $G$.

- Claim: This is precisely what the dual LP for Max Flow says.
- Unfortunately, dual of our current primal LP is messy.
- Idea: First rewrite LP in an equivalent, but "simpler" way, bringing us into standard form.


## Rewriting the primal LP

Primal LP:

$$
\begin{array}{lrlll}
\operatorname{maximize} & \sum_{v \in V} f(s, v) & & & \\
\text { subject to } & f(u, v) & \leq c(u, v) & \forall u, v \in V & \text { (capacity constraint) } \\
f(u, v) & =-f(v, u) & \forall u, v \in V & \text { (skew symmetry) } \\
& \sum_{v \in V} f(u, v) & = & 0 & \forall u \in V \backslash\{s, t\}
\end{array} \text { (flow conservation) }
$$

## Rewriting the primal LP

## Primal LP:

$$
\left.\begin{array}{lrlll}
\operatorname{maximize} & \sum_{v \in V} f(s, v) & & & \\
\text { subject to } & f(u, v) & \leq c(u, v) & \forall u, v \in V & \text { (capacity constraint) } \\
& f(u, v) & = & -f(v, u) & \forall u, v \in V
\end{array}\right) \text { (skew symmetry) }
$$

Equivalent LP: Let $\Omega$ denote the set of all simple paths from $s$ to $t$ in $G$.

$$
\begin{array}{lrl}
\operatorname{maximize} & \sum_{p \in \Omega} x_{p} & \\
\\
\text { subject to } & & \\
& \sum_{p \in \Omega \text { containing }(u, v)} x_{p} & \leq c(u, v) \\
& x_{p} \geq & \forall(u, v) \in E \\
& \geq p \in \Omega
\end{array}
$$

## Rewriting the primal LP

## Primal LP:

$$
\begin{array}{lrlll}
\operatorname{maximize} & \sum_{v \in V} f(s, v) & & & \\
\text { subject to } & f(u, v) & \leq c(u, v) & \forall u, v \in V & \\
& f(u, v) & = & -f(v, u) & \forall u, v \in V \\
& \sum_{v \in V} f(u, v) & = & 0 & \forall u \in V \backslash\{s, t\}
\end{array}
$$

Equivalent LP: Let $\Omega$ denote the set of all simple paths from $s$ to $t$ in $G$.

$$
\begin{array}{lc}
\begin{array}{l}
\operatorname{maximize} \\
\text { subject to } \\
\\
\\
\\
\end{array} \sum_{p \in \Omega \text { containing }(u, v)} x_{p} & \\
x_{p} & \leq c(u, v) \\
x_{p} & \geq 0
\end{array} \quad \forall(u, v) \in E
$$

- In this new view, each $x_{p}$ denotes flow along path $p$.
- Clearly, such flow along any $p$ is limited by the bottleneck edge $(u, v)$ of $p$.
- Taking dual of this new LP will yield much nicer dual.


## Sanity check

Primal LP:

$$
\begin{array}{lclll}
\operatorname{maximize} & \sum_{v \in V} f(s, v) & & & \\
\text { subject to } & f(u, v) & \leq c(u, v) & \forall u, v \in V & \\
& f(u, v) & =-f(v, u) & \forall u, v \in V & \text { (capacity constraint) } \\
& \sum_{v \in V} f(u, v) & =0 & \forall u \in V \backslash\{s, t\} & \text { (flow conservation) }
\end{array}
$$

Q: How many constraints are in the LP above?

Equivalent LP: Let $\Omega$ denote the set of all simple paths from $s$ to $t$ in $G$.

$$
\begin{array}{lccc}
\operatorname{maximize} & \sum_{p \in \Omega} x_{p} & & \\
\text { subject to } & & & \\
& \sum_{p \in \Omega \text { containing }(u, v)} x_{p} & \leq c(u, v) & \forall(u, v) \in E \\
x_{p} & \geq & 0 & \forall p \in \Omega
\end{array}
$$

Q: How many constraints are in the LP above?

## Sanity check

Primal LP:

$$
\begin{array}{lrlll}
\operatorname{maximize} & \sum_{v \in V} f(s, v) & & & \\
\text { subject to } & f(u, v) & \leq c(u, v) & \forall u, v \in V & \text { (capacity constraint) } \\
f(u, v) & =-f(v, u) & \forall u, v \in V & \text { (skew symmetry) } \\
& \sum_{v \in V} f(u, v) & = & 0 & \forall u \in V \backslash\{s, t\}
\end{array} \text { (flow conservation) }
$$

Q: How many constraints are in the LP above?

Equivalent LP: Let $\Omega$ denote the set of all simple paths from $s$ to $t$ in $G$.

$$
\left.\begin{array}{lccc}
\begin{array}{l}
\operatorname{maximize} \\
\text { subject to }
\end{array} & \sum_{p \in \Omega} x_{p} & & \\
& \sum_{p \in \Omega \text { containing }(u, v)} x_{p} & \leq c(u, v) & \forall(u, v) \in E \\
& x_{p} & \geq & 0
\end{array} \quad \forall p \in \Omega\right)
$$

Q: How many constraints are in the LP above?

- A: In the worst case, exponential in $n$. (Hint: Consider two binary trees glued together at leaves.)
- Does it matter that our new formulation is too big to write down?


## Sanity check

Primal LP:

$$
\begin{array}{lclll}
\operatorname{maximize} & \sum_{v \in V} f(s, v) & & & \\
\text { subject to } & f(u, v) & \leq c(u, v) & \forall u, v \in V & \text { (capacity constraint) } \\
f(u, v) & =-f(v, u) & \forall u, v \in V & \text { (skew symmetry) } \\
& \sum_{v \in V} f(u, v) & =0 & \forall u \in V \backslash\{s, t\} & \text { (flow conservation) }
\end{array}
$$

Q: How many constraints are in the LP above?

Equivalent LP: Let $\Omega$ denote the set of all simple paths from $s$ to $t$ in $G$.

$$
\left.\begin{array}{lccc}
\begin{array}{l}
\operatorname{maximize} \\
\text { subject to }
\end{array} & \sum_{p \in \Omega} x_{p} & & \\
& \sum_{p \in \Omega \text { containing }(u, v)} x_{p} & \leq c(u, v) & \forall(u, v) \in E \\
& x_{p} & \geq & 0
\end{array} \quad \forall p \in \Omega\right)
$$

Q: How many constraints are in the LP above?

- A: In the worst case, exponential in $n$. (Hint: Consider two binary trees glued together at leaves.)
- Does it matter that our new formulation is too big to write down?
- Yes, if you plan to solve the LP in practice via a solver.


## Sanity check

Primal LP:

$$
\begin{array}{lclll}
\operatorname{maximize} & \sum_{v \in V} f(s, v) & & & \\
\text { subject to } & f(u, v) & \leq c(u, v) & \forall u, v \in V & \text { (capacity constraint) } \\
f(u, v) & =-f(v, u) & \forall u, v \in V & \text { (skew symmetry) } \\
& \sum_{v \in V} f(u, v) & =0 & \forall u \in V \backslash\{s, t\} & \text { (flow conservation) }
\end{array}
$$

Q: How many constraints are in the LP above?

Equivalent LP: Let $\Omega$ denote the set of all simple paths from $s$ to $t$ in $G$.

$$
\begin{array}{lrll}
\operatorname{maximize} & \sum_{p \in \Omega} x_{p} & & \\
\text { subject to } & & & \\
& \sum_{p \in \Omega \text { containing }(u, v)} x_{p} & \leq & c(u, v) \\
x_{p} & \geq & \forall(u, v) \in E \\
& & \forall p \in \Omega
\end{array}
$$

Q: How many constraints are in the LP above?

- A: In the worst case, exponential in $n$. (Hint: Consider two binary trees glued together at leaves.)
- Does it matter that our new formulation is too big to write down?
- Yes, if you plan to solve the LP in practice via a solver.
- No, if all you want to do is look at the dual to extract theoretical bounds on primal value. (Our goal.)


## Dual LP for Network Flow

Equivalent LP: Let $\Omega$ denote the set of all simple paths from $s$ to $t$ in $G$.
maximize

$$
\sum_{p \in \Omega} x_{p}
$$

subject to

$$
\begin{aligned}
& \sum_{p \in \Omega \text { containing }(u, v)} x_{p} \\
& x_{p} \leq c(u, v) \\
& x_{p} \forall(u, v) \in E \\
& \forall p \in \Omega
\end{aligned}
$$

## Dual LP for Network Flow

Equivalent LP: Let $\Omega$ denote the set of all simple paths from $s$ to $t$ in $G$.
maximize $\quad \sum_{p \in \Omega} x_{p}$
subject to

$$
\begin{aligned}
& \sum_{p \in \Omega \text { containing }(u, v)} x_{p} \\
& x_{p} \geq c(u, v) \\
& x_{0} \forall(u, v) \in E \\
& \forall p \in \Omega
\end{aligned}
$$

Dual LP: For each $(u, v) \in E$, add dual variable $y_{u v}$. minimize $\quad \sum_{(u, v) \in E} c(u, v) y_{u v}$ subject to

$$
\begin{aligned}
\sum_{(u, v) \in p} y_{u v} & \geq 1 \quad \forall p \in \Omega \quad(*) \\
y_{u v} & \geq 0 \quad \forall(u, v) \in E
\end{aligned}
$$

## Dual LP for Network Flow

Equivalent LP: Let $\Omega$ denote the set of all simple paths from $s$ to $t$ in $G$.

| $\operatorname{maximize}$ | $\sum_{p \in \Omega} x_{p}$ |  |
| :--- | ---: | :--- |
| subject to |  |  |
|  | $\sum_{p \in \Omega \text { containing }(u, v)} x_{p}$ | $\leq c(u, v)$ |
| $x_{p}$ | $\geq 0$ | $\forall(u, v) \in E$ |
|  |  | $\forall p \in \Omega$ |

Dual LP: For each $(u, v) \in E$, add dual variable $y_{u v}$. minimize $\quad \sum_{(u, v) \in E} c(u, v) y_{u v}$ subject to

$$
\begin{aligned}
\sum_{(u, v) \in p} y_{u v} & \geq 1 \quad \forall p \in \Omega \quad(*) \\
y_{u v} & \geq 0 \quad \forall(u, v) \in E
\end{aligned}
$$

- Claim: There exists dual feasible solution for each $s-t$ cut in $G$.


## Dual LP for Network Flow

Equivalent LP: Let $\Omega$ denote the set of all simple paths from $s$ to $t$ in $G$.

$$
\begin{array}{lr}
\operatorname{maximize} & \sum_{p \in \Omega} x_{p} \\
& \\
\text { subject to } & \\
& \sum_{p \in \Omega \text { containing }(u, v)} x_{p} \\
x_{p} & \leq c(u, v)
\end{array} \quad \forall(u, v) \in E
$$

Dual LP: For each $(u, v) \in E$, add dual variable $y_{u v}$.

$$
\operatorname{minimize} \quad \sum_{(u, v) \in E} c(u, v) y_{u v}
$$

subject to

$$
\begin{aligned}
\sum_{(u, v) \in p} y_{u v} & \geq 1 \quad \forall p \in \Omega \quad(*) \\
y_{u v} & \geq 0 \quad \forall(u, v) \in E
\end{aligned}
$$

- Claim: There exists dual feasible solution for each $s-t$ cut in $G$.
- Construction: Consider any partition $S, T$ of $V$, for $s \in S, t \in T$.
- For each cut edge $(u, v)$, i.e. $u \in S, t \in T$, set $y_{u v}=1$.
- For all other edges, set $y_{u v}=0$.


## Dual LP for Network Flow

Equivalent LP: Let $\Omega$ denote the set of all simple paths from $s$ to $t$ in $G$.

$$
\begin{aligned}
& \text { maximize } \quad \sum_{p \in \Omega} x_{p} \\
& \text { subject to } \\
& \begin{aligned}
\sum_{p \in \Omega \text { containing (u,v) }} x_{p} & \leq c(u, v) \\
x_{p} & \geq 0
\end{aligned} \quad \forall(u, v) \in E
\end{aligned}
$$

Dual LP: For each $(u, v) \in E$, add dual variable $y_{u v}$.

$$
\begin{aligned}
& \operatorname{minimize} \\
& \text { subject to }
\end{aligned} \quad \sum_{(u, v) \in E} c(u, v) y_{u v}
$$

$$
\begin{aligned}
\sum_{(u, v) \in p} y_{u v} & \geq 1 \quad \forall p \in \Omega \quad(*) \\
y_{u v} & \geq 0 \quad \forall(u, v) \in E
\end{aligned}
$$

- Claim: There exists dual feasible solution for each $s-t$ cut in $G$.
- Construction: Consider any partition $S, T$ of $V$, for $s \in S, t \in T$.
- For each cut edge $(u, v)$, i.e. $u \in S, t \in T$, set $y_{u v}=1$.
- For all other edges, set $y_{u v}=0$.
- Objective function value is precisely capacity across $S$ vs $T$ cut.
- Q: Why is this solution feasible?


## Dual LP for Network Flow

Equivalent LP: Let $\Omega$ denote the set of all simple paths from $s$ to $t$ in $G$.

$$
\begin{array}{lr}
\operatorname{maximize} & \sum_{p \in \Omega} x_{p} \\
& \\
\text { subject to } & \\
& \sum_{p \in \Omega \text { containing }(u, v)} x_{p} \\
x_{p} & \leq c(u, v)
\end{array} \quad \forall(u, v) \in E
$$

Dual LP: For each $(u, v) \in E$, add dual variable $y_{u v}$.

$$
\begin{aligned}
& \operatorname{minimize} \quad \sum_{(u, v) \in E} c(u, v) y_{u v} \\
& \text { subject to } \\
& \begin{aligned}
\sum_{(u, v) \in p} y_{u v} & \geq 1 \quad \forall p \in \Omega \quad(*) \\
y_{u v} & \geq 0 \quad \forall(u, v) \in E
\end{aligned}
\end{aligned}
$$

- Claim: There exists dual feasible solution for each $s-t$ cut in $G$.
- Construction: Consider any partition $S, T$ of $V$, for $s \in S, t \in T$.
- For each cut edge $(u, v)$, i.e. $u \in S, t \in T$, set $y_{u v}=1$.
- For all other edges, set $y_{u v}=0$.
- Objective function value is precisely capacity across $S$ vs $T$ cut.
- Q: Why is this solution feasible?
- A: Each path $p \in \Omega$ takes some cut edge to pass from $S$ to $T$, i.e. $(*)$ satisfied.


## In other words

- By weak duality, capacity across any $s-t$ cut upper bounds max flow value.


## In other words

- By weak duality, capacity across any $s-t$ cut upper bounds max flow value.
- But by strong duality, optimum primal and dual values must match.


## In other words

- By weak duality, capacity across any $s-t$ cut upper bounds max flow value.
- But by strong duality, optimum primal and dual values must match.
- From this, one can re-obtain the Max-Flow Min-Cut Theorem! (Which said the Max Flow value equals the Min Cut value.)


## In other words

- By weak duality, capacity across any $s-t$ cut upper bounds max flow value.
- But by strong duality, optimum primal and dual values must match.
- From this, one can re-obtain the Max-Flow Min-Cut Theorem! (Which said the Max Flow value equals the Min Cut value.)



## Outline

(2) Applications
(3) Duality theory

4 Solving LPs

## What if we want to solve an LP?

Observations:

- Any primal feasible solution lower bounds $p^{*}$.
- Implies solving primal LP is in NP.


## What if we want to solve an LP?

Observations:

- Any primal feasible solution lower bounds $p^{*}$.
- Implies solving primal LP is in NP.
- Any dual feasible solution upper bounds $d^{*}$, and hence $p^{*}$ (by weak duality).
- Implies refuting candidate optimal LP values is in co-NP.


## What if we want to solve an LP?

Observations:

- Any primal feasible solution lower bounds $p^{*}$.
- Implies solving primal LP is in NP.
- Any dual feasible solution upper bounds $d^{*}$, and hence $p^{*}$ (by weak duality).
- Implies refuting candidate optimal LP values is in co-NP.
- Conclusion: Solving LPs is in NP $\cap$ co-NP.
- But is it also in P?


## Long history

Dates:

- (1827) Fourier proposes method for solving systems of linear inequalities


## Long history

## Dates:

- (1827) Fourier proposes method for solving systems of linear inequalities
- (1939-ish) Kantorovich and Koopmans independently study more general LPs. They would later share Nobel prize in Economics (1975).


## Long history

## Dates:

- (1827) Fourier proposes method for solving systems of linear inequalities
- (1939-ish) Kantorovich and Koopmans independently study more general LPs. They would later share Nobel prize in Economics (1975).
- (1941) Hitchcock gives solution very similar to simplex method.
- (1947) Dantzig discovers simplex method for solving LPs.


## Long history

## Dates:

- (1827) Fourier proposes method for solving systems of linear inequalities
- (1939-ish) Kantorovich and Koopmans independently study more general LPs. They would later share Nobel prize in Economics (1975).
- (1941) Hitchcock gives solution very similar to simplex method.
- (1947) Dantzig discovers simplex method for solving LPs.
- (1979) Khachiyan discovers poly-time algorithm using ellipsoid method.


## Long history

## Dates:

- (1827) Fourier proposes method for solving systems of linear inequalities
- (1939-ish) Kantorovich and Koopmans independently study more general LPs. They would later share Nobel prize in Economics (1975).
- (1941) Hitchcock gives solution very similar to simplex method.
- (1947) Dantzig discovers simplex method for solving LPs.
- (1979) Khachiyan discovers poly-time algorithm using ellipsoid method.
- (1984) Karmarkar discovers poly-time algorithm using interior-point method.


## Long history

## Dates:

- (1827) Fourier proposes method for solving systems of linear inequalities
- (1939-ish) Kantorovich and Koopmans independently study more general LPs. They would later share Nobel prize in Economics (1975).
- (1941) Hitchcock gives solution very similar to simplex method.
- (1947) Dantzig discovers simplex method for solving LPs.
- (1979) Khachiyan discovers poly-time algorithm using ellipsoid method.
- (1984) Karmarkar discovers poly-time algorithm using interior-point method.

Efficiency notes:

- Ellipsoid method rarely used in practice, numerically unstable.


## Long history

## Dates:

- (1827) Fourier proposes method for solving systems of linear inequalities
- (1939-ish) Kantorovich and Koopmans independently study more general LPs. They would later share Nobel prize in Economics (1975).
- (1941) Hitchcock gives solution very similar to simplex method.
- (1947) Dantzig discovers simplex method for solving LPs.
- (1979) Khachiyan discovers poly-time algorithm using ellipsoid method.
- (1984) Karmarkar discovers poly-time algorithm using interior-point method.

Efficiency notes:

- Ellipsoid method rarely used in practice, numerically unstable.
- In practice, one uses simplex method or interior-point method.


## Long history

## Dates:

- (1827) Fourier proposes method for solving systems of linear inequalities
- (1939-ish) Kantorovich and Koopmans independently study more general LPs. They would later share Nobel prize in Economics (1975).
- (1941) Hitchcock gives solution very similar to simplex method.
- (1947) Dantzig discovers simplex method for solving LPs.
- (1979) Khachiyan discovers poly-time algorithm using ellipsoid method.
- (1984) Karmarkar discovers poly-time algorithm using interior-point method.

Efficiency notes:

- Ellipsoid method rarely used in practice, numerically unstable.
- In practice, one uses simplex method or interior-point method.
- Simplex method is, in its current known variants, not poly-time.


## Long history

## Dates:

- (1827) Fourier proposes method for solving systems of linear inequalities
- (1939-ish) Kantorovich and Koopmans independently study more general LPs. They would later share Nobel prize in Economics (1975).
- (1941) Hitchcock gives solution very similar to simplex method.
- (1947) Dantzig discovers simplex method for solving LPs.
- (1979) Khachiyan discovers poly-time algorithm using ellipsoid method.
- (1984) Karmarkar discovers poly-time algorithm using interior-point method.

Efficiency notes:

- Ellipsoid method rarely used in practice, numerically unstable.
- In practice, one uses simplex method or interior-point method.
- Simplex method is, in its current known variants, not poly-time.

In practice:

- Many LP solvers available.
- Ex: CVX (implemented in Matlab), which can do LPs and a whole lot more.


Have a great break!

