
Fundamental Algorithms
Chapter 7: Linear Programming

Sevag Gharibian

Universität Paderborn
WS 2019

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 1 / 39

Outline

1 Definitions

2 Applications

3 Duality theory

4 Solving LPs

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 2 / 39

References

CLRS Chapter 29
Convex Optimization (Boyd and Vandenberghe):
https://web.stanford.edu/~boyd/cvxbook/

Luca Trevisan lecture notes:
http://theory.stanford.edu/~trevisan/cs261/lecture15.pdf

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 3 / 39

https://web.stanford.edu/~boyd/cvxbook/
http://theory.stanford.edu/~trevisan/cs261/lecture15.pdf

Motivation

Studied shortest paths, matchings, network flow, etc.

What if I told you that many such problems can all be solved via a more general, unified
framework?

That framework is Linear Programming (LP).

LPs:

. . . are useful in everything from industrial optimization problems to approximating
NP-complete problems.

. . . have long history of algorithms for them (Simplex Method, Ellipsoid Method, Interior Point
Methods).

. . . can be generalized further to SDPs, cone programs, etc. Here, we focus on LPs.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 4 / 39

Motivation

Studied shortest paths, matchings, network flow, etc.

What if I told you that many such problems can all be solved via a more general, unified
framework?

That framework is Linear Programming (LP).

LPs:

. . . are useful in everything from industrial optimization problems to approximating
NP-complete problems.

. . . have long history of algorithms for them (Simplex Method, Ellipsoid Method, Interior Point
Methods).

. . . can be generalized further to SDPs, cone programs, etc. Here, we focus on LPs.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 4 / 39

Motivation

Studied shortest paths, matchings, network flow, etc.

What if I told you that many such problems can all be solved via a more general, unified
framework?

That framework is Linear Programming (LP).

LPs:

. . . are useful in everything from industrial optimization problems to approximating
NP-complete problems.

. . . have long history of algorithms for them (Simplex Method, Ellipsoid Method, Interior Point
Methods).

. . . can be generalized further to SDPs, cone programs, etc. Here, we focus on LPs.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 4 / 39

Motivation

Studied shortest paths, matchings, network flow, etc.

What if I told you that many such problems can all be solved via a more general, unified
framework?

That framework is Linear Programming (LP).

LPs:

. . . are useful in everything from industrial optimization problems to approximating
NP-complete problems.

. . . have long history of algorithms for them (Simplex Method, Ellipsoid Method, Interior Point
Methods).

. . . can be generalized further to SDPs, cone programs, etc. Here, we focus on LPs.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 4 / 39

Motivation

Studied shortest paths, matchings, network flow, etc.

What if I told you that many such problems can all be solved via a more general, unified
framework?

That framework is Linear Programming (LP).

LPs:

. . . are useful in everything from industrial optimization problems to approximating
NP-complete problems.

. . . have long history of algorithms for them (Simplex Method, Ellipsoid Method, Interior Point
Methods).

. . . can be generalized further to SDPs, cone programs, etc. Here, we focus on LPs.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 4 / 39

Example
Konditorei X produces 3 types of cake: Kirschtorte, Mohnkuchen, Sachertorte.

X sells a whole cake of each type for 30,20,40 EUR, respectively.

Assume the production of each cake requires:

Cake Flour Cocoa Powder Butter
Kirschtorte 2 3 1

Mohnkuchen 3 0 2
Sachertorte 2 4 2

X’s suppliers provide, per day, 90 units flour, 70 units cocoa, 80 units butter

Q: What is max profit X can make in one day, given above constraints?

maximize 30K + 20M + 25S (profit)
subject to 2K + 3M + 2S ≤ 90 (flour constraint)

3K + 4S ≤ 70 (cocoa constraint)
K + 2M + 2S ≤ 80 (butter constraint)

K ,M,S ≥ 0 (negative cakes = bad)

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 5 / 39

Example
Konditorei X produces 3 types of cake: Kirschtorte, Mohnkuchen, Sachertorte.

X sells a whole cake of each type for 30,20,40 EUR, respectively.

Assume the production of each cake requires:

Cake Flour Cocoa Powder Butter
Kirschtorte 2 3 1

Mohnkuchen 3 0 2
Sachertorte 2 4 2

X’s suppliers provide, per day, 90 units flour, 70 units cocoa, 80 units butter

Q: What is max profit X can make in one day, given above constraints?

maximize 30K + 20M + 25S (profit)
subject to 2K + 3M + 2S ≤ 90 (flour constraint)

3K + 4S ≤ 70 (cocoa constraint)
K + 2M + 2S ≤ 80 (butter constraint)

K ,M,S ≥ 0 (negative cakes = bad)

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 5 / 39

Example
Konditorei X produces 3 types of cake: Kirschtorte, Mohnkuchen, Sachertorte.

X sells a whole cake of each type for 30,20,40 EUR, respectively.

Assume the production of each cake requires:

Cake Flour Cocoa Powder Butter
Kirschtorte 2 3 1

Mohnkuchen 3 0 2
Sachertorte 2 4 2

X’s suppliers provide, per day, 90 units flour, 70 units cocoa, 80 units butter

Q: What is max profit X can make in one day, given above constraints?

maximize 30K + 20M + 25S (profit)

subject to 2K + 3M + 2S ≤ 90 (flour constraint)
3K + 4S ≤ 70 (cocoa constraint)

K + 2M + 2S ≤ 80 (butter constraint)
K ,M,S ≥ 0 (negative cakes = bad)

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 5 / 39

Example
Konditorei X produces 3 types of cake: Kirschtorte, Mohnkuchen, Sachertorte.

X sells a whole cake of each type for 30,20,40 EUR, respectively.

Assume the production of each cake requires:

Cake Flour Cocoa Powder Butter
Kirschtorte 2 3 1

Mohnkuchen 3 0 2
Sachertorte 2 4 2

X’s suppliers provide, per day, 90 units flour, 70 units cocoa, 80 units butter

Q: What is max profit X can make in one day, given above constraints?

maximize 30K + 20M + 25S (profit)
subject to 2K + 3M + 2S ≤ 90 (flour constraint)

3K + 4S ≤ 70 (cocoa constraint)
K + 2M + 2S ≤ 80 (butter constraint)

K ,M,S ≥ 0 (negative cakes = bad)

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 5 / 39

Example
Konditorei X produces 3 types of cake: Kirschtorte, Mohnkuchen, Sachertorte.

X sells a whole cake of each type for 30,20,40 EUR, respectively.

Assume the production of each cake requires:

Cake Flour Cocoa Powder Butter
Kirschtorte 2 3 1

Mohnkuchen 3 0 2
Sachertorte 2 4 2

X’s suppliers provide, per day, 90 units flour, 70 units cocoa, 80 units butter

Q: What is max profit X can make in one day, given above constraints?

maximize 30K + 20M + 25S (profit)
subject to 2K + 3M + 2S ≤ 90 (flour constraint)

3K + 4S ≤ 70 (cocoa constraint)

K + 2M + 2S ≤ 80 (butter constraint)
K ,M,S ≥ 0 (negative cakes = bad)

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 5 / 39

Example
Konditorei X produces 3 types of cake: Kirschtorte, Mohnkuchen, Sachertorte.

X sells a whole cake of each type for 30,20,40 EUR, respectively.

Assume the production of each cake requires:

Cake Flour Cocoa Powder Butter
Kirschtorte 2 3 1

Mohnkuchen 3 0 2
Sachertorte 2 4 2

X’s suppliers provide, per day, 90 units flour, 70 units cocoa, 80 units butter

Q: What is max profit X can make in one day, given above constraints?

maximize 30K + 20M + 25S (profit)
subject to 2K + 3M + 2S ≤ 90 (flour constraint)

3K + 4S ≤ 70 (cocoa constraint)
K + 2M + 2S ≤ 80 (butter constraint)

K ,M,S ≥ 0 (negative cakes = bad)

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 5 / 39

Example
Konditorei X produces 3 types of cake: Kirschtorte, Mohnkuchen, Sachertorte.

X sells a whole cake of each type for 30,20,40 EUR, respectively.

Assume the production of each cake requires:

Cake Flour Cocoa Powder Butter
Kirschtorte 2 3 1

Mohnkuchen 3 0 2
Sachertorte 2 4 2

X’s suppliers provide, per day, 90 units flour, 70 units cocoa, 80 units butter

Q: What is max profit X can make in one day, given above constraints?

maximize 30K + 20M + 25S (profit)
subject to 2K + 3M + 2S ≤ 90 (flour constraint)

3K + 4S ≤ 70 (cocoa constraint)
K + 2M + 2S ≤ 80 (butter constraint)

K ,M,S ≥ 0 (negative cakes = bad)

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 5 / 39

Outline

1 Definitions

2 Applications

3 Duality theory

4 Solving LPs

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 6 / 39

Standard form linear program (LP)
Input:

(Cost function) c1,. . . ,cn ∈ R.

(Constraints) aij ∈ R for i ∈ [m], j ∈ [n], and b1, . . . ,bm ∈ R.

Primal standard form LP:

maximize
∑n

j=1 cjxj (objective function)
subject to (constraints)∑n

j=1 aijxj ≤ bi for i = 1,2, . . . ,m
xj ≥ 0 for j = 1,2, . . . ,n.

Equivalent Linear Algebraic formulation:

maximize cT x (objective function)
subject to Ax ≤ b (constraints)

x ≥ 0

for matrix A ∈ Rm×n and column vectors c,b ∈ Rn.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 7 / 39

Standard form linear program (LP)
Input:

(Cost function) c1,. . . ,cn ∈ R.

(Constraints) aij ∈ R for i ∈ [m], j ∈ [n], and b1, . . . ,bm ∈ R.

Primal standard form LP:

maximize
∑n

j=1 cjxj (objective function)
subject to (constraints)∑n

j=1 aijxj ≤ bi for i = 1,2, . . . ,m
xj ≥ 0 for j = 1,2, . . . ,n.

Equivalent Linear Algebraic formulation:

maximize cT x (objective function)
subject to Ax ≤ b (constraints)

x ≥ 0

for matrix A ∈ Rm×n and column vectors c,b ∈ Rn.
Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 7 / 39

What does this geometrically mean?
Suppose LP has n = 2 variables, i.e. optimize over 2D plane R2.

Constraints
Restrict optimization over subset of R×R, called feasible region.

Example: Consider constraints x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1.

x1

x2

1

1

x2 ≥ 0

x1 ≥ 0

x1 + x2 ≤ 1feasible region (blue)

Each constraint partitions R2 into pair of halfspaces, i.e. “left” and “right” of each “dividing line” (formally,
each hyperplane).

Feasible region is intersection of these halfspaces (formally, convex polyhedron).

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 8 / 39

What does this geometrically mean?
Suppose LP has n = 2 variables, i.e. optimize over 2D plane R2.

Constraints
Restrict optimization over subset of R×R, called feasible region.

Example: Consider constraints x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1.

x1

x2

1

1

x2 ≥ 0

x1 ≥ 0

x1 + x2 ≤ 1feasible region (blue)

Each constraint partitions R2 into pair of halfspaces, i.e. “left” and “right” of each “dividing line” (formally,
each hyperplane).

Feasible region is intersection of these halfspaces (formally, convex polyhedron).

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 8 / 39

What does this geometrically mean?
Suppose LP has n = 2 variables, i.e. optimize over 2D plane R2.

Constraints
Restrict optimization over subset of R×R, called feasible region.

Example: Consider constraints x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1.

x1

x2

1

1

x2 ≥ 0

x1 ≥ 0

x1 + x2 ≤ 1feasible region (blue)

Each constraint partitions R2 into pair of halfspaces, i.e. “left” and “right” of each “dividing line” (formally,
each hyperplane).

Feasible region is intersection of these halfspaces (formally, convex polyhedron).

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 8 / 39

What does this geometrically mean?
Suppose LP has n = 2 variables, i.e. optimize over 2D plane R2.

Constraints
Restrict optimization over subset of R×R, called feasible region.

Example: Consider constraints x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1.

x1

x2

1

1

x2 ≥ 0

x1 ≥ 0

x1 + x2 ≤ 1feasible region (blue)

Each constraint partitions R2 into pair of halfspaces, i.e. “left” and “right” of each “dividing line” (formally,
each hyperplane).

Feasible region is intersection of these halfspaces (formally, convex polyhedron).

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 8 / 39

What about objective function?
Objective function f (x1, x2) = c1x1 + c2x2 is linear by definition.

Example: f (x1, x2) = x1.
I Know slope of line (representing objective function).
I Don’t know its offset from origin.

x1

x2

1

x1 = 0

1

x1 = 0.5

x1 = 1

Gradient, ∇f

I Observe: As f (x1, x2) = x1 grows, offset moves to right.
Formally, direction of movement given by gradient of f ,

∇f =

(
∂f
∂x1

,
∂f
∂x2

)
.

In this example: ∇f = (1, 0), hence the blue vector above.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 9 / 39

What about objective function?
Objective function f (x1, x2) = c1x1 + c2x2 is linear by definition.
Example: f (x1, x2) = x1.

I Know slope of line (representing objective function).
I Don’t know its offset from origin.

x1

x2

1

x1 = 0

1

x1 = 0.5

x1 = 1

Gradient, ∇f

I Observe: As f (x1, x2) = x1 grows, offset moves to right.
Formally, direction of movement given by gradient of f ,

∇f =

(
∂f
∂x1

,
∂f
∂x2

)
.

In this example: ∇f = (1, 0), hence the blue vector above.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 9 / 39

What about objective function?
Objective function f (x1, x2) = c1x1 + c2x2 is linear by definition.
Example: f (x1, x2) = x1.

I Know slope of line (representing objective function).
I Don’t know its offset from origin.

x1

x2

1

x1 = 0

1

x1 = 0.5

x1 = 1

Gradient, ∇f

I Observe: As f (x1, x2) = x1 grows, offset moves to right.

Formally, direction of movement given by gradient of f ,

∇f =

(
∂f
∂x1

,
∂f
∂x2

)
.

In this example: ∇f = (1, 0), hence the blue vector above.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 9 / 39

What about objective function?
Objective function f (x1, x2) = c1x1 + c2x2 is linear by definition.
Example: f (x1, x2) = x1.

I Know slope of line (representing objective function).
I Don’t know its offset from origin.

x1

x2

1

x1 = 0

1

x1 = 0.5

x1 = 1

Gradient, ∇f

I Observe: As f (x1, x2) = x1 grows, offset moves to right.
Formally, direction of movement given by gradient of f ,

∇f =

(
∂f
∂x1

,
∂f
∂x2

)
.

In this example: ∇f = (1, 0), hence the blue vector above.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 9 / 39

Putting it all together
Optimizing our LP corresponds to (in our example):

Move vertical line representing f as far right as possible, while ensuring it has non-empty intersection
with feasible region.

Last point of intersection is optimal solution:

x1

x2

1

1

x1 = 1

(1, 0) is optimal

Sanity check: Convince yourself that (x1, x2) = (1, 0) is indeed optimal for:

maximize x1

subject to x1 + x2 ≤ 1
x1, x2 ≥ 0.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 10 / 39

Putting it all together
Optimizing our LP corresponds to (in our example):

Move vertical line representing f as far right as possible, while ensuring it has non-empty intersection
with feasible region.

Last point of intersection is optimal solution:

x1

x2

1

1

x1 = 1

(1, 0) is optimal

Sanity check: Convince yourself that (x1, x2) = (1, 0) is indeed optimal for:

maximize x1

subject to x1 + x2 ≤ 1
x1, x2 ≥ 0.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 10 / 39

Putting it all together
Optimizing our LP corresponds to (in our example):

Move vertical line representing f as far right as possible, while ensuring it has non-empty intersection
with feasible region.

Last point of intersection is optimal solution:

x1

x2

1

1

x1 = 1

(1, 0) is optimal

Sanity check: Convince yourself that (x1, x2) = (1, 0) is indeed optimal for:

maximize x1

subject to x1 + x2 ≤ 1
x1, x2 ≥ 0.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 10 / 39

Boundary case

What if we drop a constraint?

maximize x1

subject to x1 + x2 ≤ 1
x1, x2 ≥ 0

maximize x1

subject to x1, x2 ≥ 0

x1

x2

1

1
x1

x2

1

1

Can move the vertical objective function line as far right as we like!

Optimal value is∞, i.e. the LP is unbounded.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 11 / 39

Boundary case

What if we drop a constraint?

maximize x1

subject to x1 + x2 ≤ 1
x1, x2 ≥ 0

maximize x1

subject to x1, x2 ≥ 0

x1

x2

1

1
x1

x2

1

1

Can move the vertical objective function line as far right as we like!

Optimal value is∞, i.e. the LP is unbounded.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 11 / 39

Boundary case

What if we drop a constraint?

maximize x1

subject to x1 + x2 ≤ 1
x1, x2 ≥ 0

maximize x1

subject to x1, x2 ≥ 0

x1

x2

1

1
x1

x2

1

1

Can move the vertical objective function line as far right as we like!

Optimal value is∞, i.e. the LP is unbounded.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 11 / 39

Outline

1 Definitions

2 Applications

3 Duality theory

4 Solving LPs

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 12 / 39

Application 1: Shortest paths

Recall single-source shortest paths problem:

I Given graph G = (V ,E) with real edge costs, and a source vertex s ∈ V , find smallest
weight path to all other v ∈ V .

Solved by Bellman-Ford in O(mn) time.

Can also be phrased as LP! Let’s consider scaled down problem:

Single-pair shortest path problem (SPSP)

Given graph G = (V ,E) with real edge costs, source and sink vertices s, t ∈ V , respectively, find
smallest weight path P from s to t in G.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 13 / 39

Application 1: Shortest paths

Recall single-source shortest paths problem:

I Given graph G = (V ,E) with real edge costs, and a source vertex s ∈ V , find smallest
weight path to all other v ∈ V .

Solved by Bellman-Ford in O(mn) time.

Can also be phrased as LP! Let’s consider scaled down problem:

Single-pair shortest path problem (SPSP)

Given graph G = (V ,E) with real edge costs, source and sink vertices s, t ∈ V , respectively, find
smallest weight path P from s to t in G.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 13 / 39

Application 1: Shortest paths
Single-pair shortest path problem (SPSP)

Given graph G = (V ,E) with real edge costs, source and sink vertices s, t ∈ V , respectively, find
smallest weight path P from s to t in G.

Claim: The following LP optimally solves SPSP.

For each v ∈ V , introduce variable dv .

maximize dt
subject to dv ≤ du + w(u, v) ∀(u, v) ∈ E

ds = 0

Observations:

No dv ≥ 0 constraints for all v ∈ V?

Equality constraint (i.e. ds = 0)?

Why are we maximizing dt?

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 14 / 39

Application 1: Shortest paths
Single-pair shortest path problem (SPSP)

Given graph G = (V ,E) with real edge costs, source and sink vertices s, t ∈ V , respectively, find
smallest weight path P from s to t in G.

Claim: The following LP optimally solves SPSP.

For each v ∈ V , introduce variable dv .

maximize dt
subject to dv ≤ du + w(u, v) ∀(u, v) ∈ E

ds = 0

Observations:

No dv ≥ 0 constraints for all v ∈ V?

Equality constraint (i.e. ds = 0)?

Why are we maximizing dt?

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 14 / 39

Application 1: Shortest paths
Single-pair shortest path problem (SPSP)

Given graph G = (V ,E) with real edge costs, source and sink vertices s, t ∈ V , respectively, find
smallest weight path P from s to t in G.

Claim: The following LP optimally solves SPSP.

For each v ∈ V , introduce variable dv .

maximize dt
subject to dv ≤ du + w(u, v) ∀(u, v) ∈ E

ds = 0

Observations:

No dv ≥ 0 constraints for all v ∈ V?

Equality constraint (i.e. ds = 0)?

Why are we maximizing dt?

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 14 / 39

Application 1: Shortest paths
Single-pair shortest path problem (SPSP)

Given graph G = (V ,E) with real edge costs, source and sink vertices s, t ∈ V , respectively, find
smallest weight path P from s to t in G.

Claim: The following LP optimally solves SPSP.

For each v ∈ V , introduce variable dv .

maximize dt
subject to dv ≤ du + w(u, v) ∀(u, v) ∈ E

ds = 0

Observations:

No dv ≥ 0 constraints for all v ∈ V?

Equality constraint (i.e. ds = 0)?

Why are we maximizing dt?

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 14 / 39

Application 1: Shortest paths
Single-pair shortest path problem (SPSP)

Given graph G = (V ,E) with real edge costs, source and sink vertices s, t ∈ V , respectively, find
smallest weight path P from s to t in G.

Claim: The following LP optimally solves SPSP.

For each v ∈ V , introduce variable dv .

maximize dt
subject to dv ≤ du + w(u, v) ∀(u, v) ∈ E

ds = 0

Observations:

No dv ≥ 0 constraints for all v ∈ V?

Equality constraint (i.e. ds = 0)?

Why are we maximizing dt?

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 14 / 39

Application 1: Shortest paths
Single-pair shortest path problem (SPSP)

Given graph G = (V ,E) with real edge costs, source and sink vertices s, t ∈ V , respectively, find
smallest weight path P from s to t in G.

Claim: The following LP optimally solves SPSP.

For each v ∈ V , introduce variable dv .

maximize dt
subject to dv ≤ du + w(u, v) ∀(u, v) ∈ E

ds = 0

Observations:

No dv ≥ 0 constraints for all v ∈ V?

Equality constraint (i.e. ds = 0)?

Why are we maximizing dt?

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 14 / 39

Application 1: Shortest paths

maximize dt
subject to dv ≤ du + w(u, v) ∀(u, v) ∈ E

ds = 0

Observation: No dv ≥ 0 constraints for all v ∈ V?

Optimal solution might require dt < 0! Can you give an example?

Ex. G has only one edge, (s, t), of weight w(s, t) = −1.

Recall: Standard form for LPs required variables to be non-negative. . .

Solution: For all v ∈ V , rewrite dv = dv1 − dv2 with dv1 ,dv2 ≥ 0.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 15 / 39

Application 1: Shortest paths

maximize dt
subject to dv ≤ du + w(u, v) ∀(u, v) ∈ E

ds = 0

Observation: No dv ≥ 0 constraints for all v ∈ V?

Optimal solution might require dt < 0! Can you give an example?

Ex. G has only one edge, (s, t), of weight w(s, t) = −1.

Recall: Standard form for LPs required variables to be non-negative. . .

Solution: For all v ∈ V , rewrite dv = dv1 − dv2 with dv1 ,dv2 ≥ 0.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 15 / 39

Application 1: Shortest paths

maximize dt
subject to dv ≤ du + w(u, v) ∀(u, v) ∈ E

ds = 0

Observation: No dv ≥ 0 constraints for all v ∈ V?

Optimal solution might require dt < 0! Can you give an example?

Ex. G has only one edge, (s, t), of weight w(s, t) = −1.

Recall: Standard form for LPs required variables to be non-negative. . .

Solution: For all v ∈ V , rewrite dv = dv1 − dv2 with dv1 ,dv2 ≥ 0.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 15 / 39

Application 1: Shortest paths

maximize dt
subject to dv ≤ du + w(u, v) ∀(u, v) ∈ E

ds = 0

Observation: No dv ≥ 0 constraints for all v ∈ V?

Optimal solution might require dt < 0! Can you give an example?

Ex. G has only one edge, (s, t), of weight w(s, t) = −1.

Recall: Standard form for LPs required variables to be non-negative. . .

Solution: For all v ∈ V , rewrite dv = dv1 − dv2 with dv1 ,dv2 ≥ 0.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 15 / 39

Application 1: Shortest paths

maximize dt
subject to dv ≤ du + w(u, v) ∀(u, v) ∈ E

ds = 0

Observation: Equality constraint (i.e. ds = 0)?

Recall: Standard form for LPs allowed only inequalities. . .

Solution:
I Replace ds = 0 with two constraints:

1 ds ≥ 0
2 −ds ≥ 0

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 16 / 39

Application 1: Shortest paths

maximize dt
subject to dv ≤ du + w(u, v) ∀(u, v) ∈ E

ds = 0

Observation: Equality constraint (i.e. ds = 0)?

Recall: Standard form for LPs allowed only inequalities. . .

Solution:
I Replace ds = 0 with two constraints:

1 ds ≥ 0
2 −ds ≥ 0

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 16 / 39

Application 1: Shortest paths

maximize dt
subject to dv ≤ du + w(u, v) ∀(u, v) ∈ E

ds = 0

Observation: Equality constraint (i.e. ds = 0)?

Recall: Standard form for LPs allowed only inequalities. . .

Solution:
I Replace ds = 0 with two constraints:

1 ds ≥ 0
2 −ds ≥ 0

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 16 / 39

Application 1: Shortest paths

maximize dt
subject to dv ≤ du + w(u, v) ∀(u, v) ∈ E (∗∗)

ds = 0

Observation: Why are we maximizing dt?

LP essentially encodes recursive dynamic programming approach, i.e. cheapest path to t
has cost

min
(u,t)∈E

du + w(u, t).

Inequality (**) uses ∀ over neighbors of t to “simulate” min(u,t)∈E .

Hence, maximizing dt ensures optimal solution satisfies (with equality):

dt = min
(u,t)∈E

du + w(u, t).

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 17 / 39

Application 1: Shortest paths

maximize dt
subject to dv ≤ du + w(u, v) ∀(u, v) ∈ E (∗∗)

ds = 0

Observation: Why are we maximizing dt?

LP essentially encodes recursive dynamic programming approach, i.e. cheapest path to t
has cost

min
(u,t)∈E

du + w(u, t).

Inequality (**) uses ∀ over neighbors of t to “simulate” min(u,t)∈E .

Hence, maximizing dt ensures optimal solution satisfies (with equality):

dt = min
(u,t)∈E

du + w(u, t).

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 17 / 39

Application 1: Shortest paths

maximize dt
subject to dv ≤ du + w(u, v) ∀(u, v) ∈ E (∗∗)

ds = 0

Observation: Why are we maximizing dt?

LP essentially encodes recursive dynamic programming approach, i.e. cheapest path to t
has cost

min
(u,t)∈E

du + w(u, t).

Inequality (**) uses ∀ over neighbors of t to “simulate” min(u,t)∈E .

Hence, maximizing dt ensures optimal solution satisfies (with equality):

dt = min
(u,t)∈E

du + w(u, t).

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 17 / 39

Application 1: Shortest paths

maximize dt
subject to dv ≤ du + w(u, v) ∀(u, v) ∈ E (∗∗)

ds = 0

Observation: Why are we maximizing dt?

LP essentially encodes recursive dynamic programming approach, i.e. cheapest path to t
has cost

min
(u,t)∈E

du + w(u, t).

Inequality (**) uses ∀ over neighbors of t to “simulate” min(u,t)∈E .

Hence, maximizing dt ensures optimal solution satisfies (with equality):

dt = min
(u,t)∈E

du + w(u, t).

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 17 / 39

Application 1: Shortest paths

maximize dt
subject to dv ≤ du + w(u, v) ∀(u, v) ∈ E (∗∗)

ds = 0

Observation: Why are we maximizing dt?

LP essentially encodes recursive dynamic programming approach, i.e. cheapest path to t
has cost

min
(u,t)∈E

du + w(u, t).

Inequality (**) uses ∀ over neighbors of t to “simulate” min(u,t)∈E .

Hence, maximizing dt ensures optimal solution satisfies (with equality):

dt = min
(u,t)∈E

du + w(u, t).

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 17 / 39

Application 2: Network Flow

The Max Flow problem is, by definition, an LP!

Given a flow network (G, s, t , c) for capacity function c : E 7→ R+, the following LP yields max
flow value:

maximize
∑

v∈V f (s, v)

subject to f (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity constraint)
f (u, v) = −f (v , u) ∀u, v ∈ V (skew symmetry)∑

v∈V f (u, v) = 0 ∀u ∈ V \ {s, t} (flow conservation)

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 18 / 39

Application 2: Network Flow

The Max Flow problem is, by definition, an LP!

Given a flow network (G, s, t , c) for capacity function c : E 7→ R+, the following LP yields max
flow value:

maximize
∑

v∈V f (s, v)
subject to f (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity constraint)

f (u, v) = −f (v , u) ∀u, v ∈ V (skew symmetry)∑
v∈V f (u, v) = 0 ∀u ∈ V \ {s, t} (flow conservation)

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 18 / 39

Application 2: Network Flow

The Max Flow problem is, by definition, an LP!

Given a flow network (G, s, t , c) for capacity function c : E 7→ R+, the following LP yields max
flow value:

maximize
∑

v∈V f (s, v)
subject to f (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity constraint)

f (u, v) = −f (v , u) ∀u, v ∈ V (skew symmetry)

∑
v∈V f (u, v) = 0 ∀u ∈ V \ {s, t} (flow conservation)

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 18 / 39

Application 2: Network Flow

The Max Flow problem is, by definition, an LP!

Given a flow network (G, s, t , c) for capacity function c : E 7→ R+, the following LP yields max
flow value:

maximize
∑

v∈V f (s, v)
subject to f (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity constraint)

f (u, v) = −f (v , u) ∀u, v ∈ V (skew symmetry)∑
v∈V f (u, v) = 0 ∀u ∈ V \ {s, t} (flow conservation)

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 18 / 39

Application 2: Network Flow

The Max Flow problem is, by definition, an LP!

Given a flow network (G, s, t , c) for capacity function c : E 7→ R+, the following LP yields max
flow value:

maximize
∑

v∈V f (s, v)
subject to f (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity constraint)

f (u, v) = −f (v , u) ∀u, v ∈ V (skew symmetry)∑
v∈V f (u, v) = 0 ∀u ∈ V \ {s, t} (flow conservation)

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 18 / 39

Application 3: Multi-commodity flow (MCF)
Like Max Flow, except instead of 1 commodity to route through network (e.g. water), have k
commodities which share the network.

Like Max Flow, given G = (V ,E) and capacities c(u, v) ≥ 0.

Unlike Max Flow, each commodity Ki specified via Ki = (si , ti ,di):
I si and ti are source/sink for Ki , respectively.
I di is the total demand for Ki which must be met, i.e.∑

v∈V

fi(si , v) = di for all i ∈ [k].

I Above, fi is flow for commodity i , so that aggregate flow f satisfies

f (u, v) =
k∑

i=1

fi(u, v).

Q: Possible to route all k commodities through network, while meeting demand constraints
but (2) not violating capacity constraints?

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 19 / 39

Application 3: Multi-commodity flow (MCF)
Like Max Flow, except instead of 1 commodity to route through network (e.g. water), have k
commodities which share the network.

Like Max Flow, given G = (V ,E) and capacities c(u, v) ≥ 0.

Unlike Max Flow, each commodity Ki specified via Ki = (si , ti ,di):
I si and ti are source/sink for Ki , respectively.
I di is the total demand for Ki which must be met, i.e.∑

v∈V

fi(si , v) = di for all i ∈ [k].

I Above, fi is flow for commodity i , so that aggregate flow f satisfies

f (u, v) =
k∑

i=1

fi(u, v).

Q: Possible to route all k commodities through network, while meeting demand constraints
but (2) not violating capacity constraints?

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 19 / 39

Application 3: Multi-commodity flow (MCF)
Like Max Flow, except instead of 1 commodity to route through network (e.g. water), have k
commodities which share the network.

Like Max Flow, given G = (V ,E) and capacities c(u, v) ≥ 0.

Unlike Max Flow, each commodity Ki specified via Ki = (si , ti ,di):
I si and ti are source/sink for Ki , respectively.
I di is the total demand for Ki which must be met, i.e.∑

v∈V

fi(si , v) = di for all i ∈ [k].

I Above, fi is flow for commodity i , so that aggregate flow f satisfies

f (u, v) =
k∑

i=1

fi(u, v).

Q: Possible to route all k commodities through network, while meeting demand constraints
but (2) not violating capacity constraints?

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 19 / 39

Application 3: Multi-commodity flow (MCF)
Like Max Flow, except instead of 1 commodity to route through network (e.g. water), have k
commodities which share the network.

Like Max Flow, given G = (V ,E) and capacities c(u, v) ≥ 0.

Unlike Max Flow, each commodity Ki specified via Ki = (si , ti ,di):
I si and ti are source/sink for Ki , respectively.
I di is the total demand for Ki which must be met, i.e.∑

v∈V

fi(si , v) = di for all i ∈ [k].

I Above, fi is flow for commodity i , so that aggregate flow f satisfies

f (u, v) =
k∑

i=1

fi(u, v).

Q: Possible to route all k commodities through network, while meeting demand constraints
but (2) not violating capacity constraints?

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 19 / 39

Application 3: Multi-commodity flow (MCF)
Q: Can you guess the LP for MCF?

maximize ?

subject to
∑k

i=1 fi (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity)
fi (u, v) = −fi (v , u) ∀i ∈ [k], u, v ∈ V (skew symmetry)∑

v∈V fi (u, v) = 0 ∀i ∈ [k], u ∈ V \ {s, t} (flow conservation)∑
v∈V fi (si , v) = di ∀i ∈ [k] (demand)

Q: What about objective function?

Recall defined MCF as decision problem (answer is YES or NO).

(Recall: Possible to route all k commodities through network, while meeting demand constraints but (2)
not violating capacity constraints?)

Once we have flows fi satisfying all constraints, we know the answer is YES. Hence, we don’t “need”
objective function.

Geometrically, MCF only asks if LP feasible region is non-empty.

Hence, can set objective function to 0.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 20 / 39

Application 3: Multi-commodity flow (MCF)
Q: Can you guess the LP for MCF?

maximize ?

subject to
∑k

i=1 fi (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity)
fi (u, v) = −fi (v , u) ∀i ∈ [k], u, v ∈ V (skew symmetry)∑

v∈V fi (u, v) = 0 ∀i ∈ [k], u ∈ V \ {s, t} (flow conservation)∑
v∈V fi (si , v) = di ∀i ∈ [k] (demand)

Q: What about objective function?

Recall defined MCF as decision problem (answer is YES or NO).

(Recall: Possible to route all k commodities through network, while meeting demand constraints but (2)
not violating capacity constraints?)

Once we have flows fi satisfying all constraints, we know the answer is YES. Hence, we don’t “need”
objective function.

Geometrically, MCF only asks if LP feasible region is non-empty.

Hence, can set objective function to 0.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 20 / 39

Application 3: Multi-commodity flow (MCF)
Q: Can you guess the LP for MCF?

maximize ?

subject to
∑k

i=1 fi (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity)

fi (u, v) = −fi (v , u) ∀i ∈ [k], u, v ∈ V (skew symmetry)∑
v∈V fi (u, v) = 0 ∀i ∈ [k], u ∈ V \ {s, t} (flow conservation)∑
v∈V fi (si , v) = di ∀i ∈ [k] (demand)

Q: What about objective function?

Recall defined MCF as decision problem (answer is YES or NO).

(Recall: Possible to route all k commodities through network, while meeting demand constraints but (2)
not violating capacity constraints?)

Once we have flows fi satisfying all constraints, we know the answer is YES. Hence, we don’t “need”
objective function.

Geometrically, MCF only asks if LP feasible region is non-empty.

Hence, can set objective function to 0.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 20 / 39

Application 3: Multi-commodity flow (MCF)
Q: Can you guess the LP for MCF?

maximize ?

subject to
∑k

i=1 fi (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity)
fi (u, v) = −fi (v , u) ∀i ∈ [k], u, v ∈ V (skew symmetry)

∑
v∈V fi (u, v) = 0 ∀i ∈ [k], u ∈ V \ {s, t} (flow conservation)∑
v∈V fi (si , v) = di ∀i ∈ [k] (demand)

Q: What about objective function?

Recall defined MCF as decision problem (answer is YES or NO).

(Recall: Possible to route all k commodities through network, while meeting demand constraints but (2)
not violating capacity constraints?)

Once we have flows fi satisfying all constraints, we know the answer is YES. Hence, we don’t “need”
objective function.

Geometrically, MCF only asks if LP feasible region is non-empty.

Hence, can set objective function to 0.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 20 / 39

Application 3: Multi-commodity flow (MCF)
Q: Can you guess the LP for MCF?

maximize ?

subject to
∑k

i=1 fi (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity)
fi (u, v) = −fi (v , u) ∀i ∈ [k], u, v ∈ V (skew symmetry)∑

v∈V fi (u, v) = 0 ∀i ∈ [k], u ∈ V \ {s, t} (flow conservation)

∑
v∈V fi (si , v) = di ∀i ∈ [k] (demand)

Q: What about objective function?

Recall defined MCF as decision problem (answer is YES or NO).

(Recall: Possible to route all k commodities through network, while meeting demand constraints but (2)
not violating capacity constraints?)

Once we have flows fi satisfying all constraints, we know the answer is YES. Hence, we don’t “need”
objective function.

Geometrically, MCF only asks if LP feasible region is non-empty.

Hence, can set objective function to 0.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 20 / 39

Application 3: Multi-commodity flow (MCF)
Q: Can you guess the LP for MCF?

maximize ?

subject to
∑k

i=1 fi (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity)
fi (u, v) = −fi (v , u) ∀i ∈ [k], u, v ∈ V (skew symmetry)∑

v∈V fi (u, v) = 0 ∀i ∈ [k], u ∈ V \ {s, t} (flow conservation)∑
v∈V fi (si , v) = di ∀i ∈ [k] (demand)

Q: What about objective function?

Recall defined MCF as decision problem (answer is YES or NO).

(Recall: Possible to route all k commodities through network, while meeting demand constraints but (2)
not violating capacity constraints?)

Once we have flows fi satisfying all constraints, we know the answer is YES. Hence, we don’t “need”
objective function.

Geometrically, MCF only asks if LP feasible region is non-empty.

Hence, can set objective function to 0.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 20 / 39

Application 3: Multi-commodity flow (MCF)
Q: Can you guess the LP for MCF?

maximize ?

subject to
∑k

i=1 fi (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity)
fi (u, v) = −fi (v , u) ∀i ∈ [k], u, v ∈ V (skew symmetry)∑

v∈V fi (u, v) = 0 ∀i ∈ [k], u ∈ V \ {s, t} (flow conservation)∑
v∈V fi (si , v) = di ∀i ∈ [k] (demand)

Q: What about objective function?

Recall defined MCF as decision problem (answer is YES or NO).

(Recall: Possible to route all k commodities through network, while meeting demand constraints but (2)
not violating capacity constraints?)

Once we have flows fi satisfying all constraints, we know the answer is YES. Hence, we don’t “need”
objective function.

Geometrically, MCF only asks if LP feasible region is non-empty.

Hence, can set objective function to 0.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 20 / 39

Application 3: Multi-commodity flow (MCF)
Q: Can you guess the LP for MCF?

maximize ?

subject to
∑k

i=1 fi (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity)
fi (u, v) = −fi (v , u) ∀i ∈ [k], u, v ∈ V (skew symmetry)∑

v∈V fi (u, v) = 0 ∀i ∈ [k], u ∈ V \ {s, t} (flow conservation)∑
v∈V fi (si , v) = di ∀i ∈ [k] (demand)

Q: What about objective function?

Recall defined MCF as decision problem (answer is YES or NO).

(Recall: Possible to route all k commodities through network, while meeting demand constraints but (2)
not violating capacity constraints?)

Once we have flows fi satisfying all constraints, we know the answer is YES. Hence, we don’t “need”
objective function.

Geometrically, MCF only asks if LP feasible region is non-empty.

Hence, can set objective function to 0.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 20 / 39

Application 3: Multi-commodity flow (MCF)
Q: Can you guess the LP for MCF?

maximize ?

subject to
∑k

i=1 fi (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity)
fi (u, v) = −fi (v , u) ∀i ∈ [k], u, v ∈ V (skew symmetry)∑

v∈V fi (u, v) = 0 ∀i ∈ [k], u ∈ V \ {s, t} (flow conservation)∑
v∈V fi (si , v) = di ∀i ∈ [k] (demand)

Q: What about objective function?

Recall defined MCF as decision problem (answer is YES or NO).

(Recall: Possible to route all k commodities through network, while meeting demand constraints but (2)
not violating capacity constraints?)

Once we have flows fi satisfying all constraints, we know the answer is YES. Hence, we don’t “need”
objective function.

Geometrically, MCF only asks if LP feasible region is non-empty.

Hence, can set objective function to 0.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 20 / 39

Application 3: Multi-commodity flow
Final LP:

maximize 0
subject to

∑k
i=1 fi (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity)

fi (u, v) = −fi (v , u) ∀i ∈ [k], u, v ∈ V (skew symmetry)∑
v∈V fi (u, v) = 0 ∀i ∈ [k], u ∈ V \ {s, t} (flow conservation)∑
v∈V fi (si , v) = di ∀i ∈ [k] (demand)

The only polynomial-time algorithm know for MCF is via LPs.

In this sense, LPs “seem” strictly more powerful than network flow algorithms.

Indeed, linear programming is P-complete! (Roughly, any algorithm in P can be reduced to solving an
LP.)

If we demand integer flow, i.e. fi (u, v) ∈ Z, then MCF becomes NP-complete.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 21 / 39

Application 3: Multi-commodity flow
Final LP:

maximize 0
subject to

∑k
i=1 fi (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity)

fi (u, v) = −fi (v , u) ∀i ∈ [k], u, v ∈ V (skew symmetry)∑
v∈V fi (u, v) = 0 ∀i ∈ [k], u ∈ V \ {s, t} (flow conservation)∑
v∈V fi (si , v) = di ∀i ∈ [k] (demand)

The only polynomial-time algorithm know for MCF is via LPs.

In this sense, LPs “seem” strictly more powerful than network flow algorithms.

Indeed, linear programming is P-complete! (Roughly, any algorithm in P can be reduced to solving an
LP.)

If we demand integer flow, i.e. fi (u, v) ∈ Z, then MCF becomes NP-complete.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 21 / 39

Application 3: Multi-commodity flow
Final LP:

maximize 0
subject to

∑k
i=1 fi (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity)

fi (u, v) = −fi (v , u) ∀i ∈ [k], u, v ∈ V (skew symmetry)∑
v∈V fi (u, v) = 0 ∀i ∈ [k], u ∈ V \ {s, t} (flow conservation)∑
v∈V fi (si , v) = di ∀i ∈ [k] (demand)

The only polynomial-time algorithm know for MCF is via LPs.

In this sense, LPs “seem” strictly more powerful than network flow algorithms.

Indeed, linear programming is P-complete! (Roughly, any algorithm in P can be reduced to solving an
LP.)

If we demand integer flow, i.e. fi (u, v) ∈ Z, then MCF becomes NP-complete.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 21 / 39

Application 3: Multi-commodity flow
Final LP:

maximize 0
subject to

∑k
i=1 fi (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity)

fi (u, v) = −fi (v , u) ∀i ∈ [k], u, v ∈ V (skew symmetry)∑
v∈V fi (u, v) = 0 ∀i ∈ [k], u ∈ V \ {s, t} (flow conservation)∑
v∈V fi (si , v) = di ∀i ∈ [k] (demand)

The only polynomial-time algorithm know for MCF is via LPs.

In this sense, LPs “seem” strictly more powerful than network flow algorithms.

Indeed, linear programming is P-complete! (Roughly, any algorithm in P can be reduced to solving an
LP.)

If we demand integer flow, i.e. fi (u, v) ∈ Z, then MCF becomes NP-complete.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 21 / 39

But there is more black magic to come. . .

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 22 / 39

Outline

1 Definitions

2 Applications

3 Duality theory

4 Solving LPs

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 23 / 39

I haven’t told you yet how to actually solve an LP.

But do we need to actually solve the LP to provably get the optimal solution?

Remarkably, no. . . Can:
I Guess a solution x = {xi}.
I If x is optimal, can use duality theory to prove this.

Yields powerful method for proving analytic bounds on optimization problems in math proofs. (Where in
this course have we used this idea, at least indirectly?)

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 24 / 39

I haven’t told you yet how to actually solve an LP.

But do we need to actually solve the LP to provably get the optimal solution?

Remarkably, no. . . Can:
I Guess a solution x = {xi}.
I If x is optimal, can use duality theory to prove this.

Yields powerful method for proving analytic bounds on optimization problems in math proofs. (Where in
this course have we used this idea, at least indirectly?)

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 24 / 39

I haven’t told you yet how to actually solve an LP.

But do we need to actually solve the LP to provably get the optimal solution?

Remarkably, no. . . Can:
I Guess a solution x = {xi}.
I If x is optimal, can use duality theory to prove this.

Yields powerful method for proving analytic bounds on optimization problems in math proofs. (Where in
this course have we used this idea, at least indirectly?)

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 24 / 39

Intuition
Let’s return to our LP example, slightly rewritten below:

maximize x1 (1)
subject to x1 + x2 ≤ 1 (2)

−x1 ≤ 0 (3)
−x2 ≤ 0 (4)

Recall: Optimal solution was (x1, x2) = (1, 0), with value 1.

Claim: Can prove no solution can do better.

I Adding inequalities (2) and (4) yields bound x1 ≤ 1.
I Thus, objective function upper bounded by 1, and (1, 0) is indeed optimal.

Even better: Can generalize this idea to get tight upper bound on optimal value.

Idea:
I To each constraint, assign a “dual” variable yi .
I “Do a minimization” over linear combinations of yi to get upper bound on objective function.
I This minimization itself an LP, called dual LP.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 25 / 39

Intuition
Let’s return to our LP example, slightly rewritten below:

maximize x1 (1)
subject to x1 + x2 ≤ 1 (2)

−x1 ≤ 0 (3)
−x2 ≤ 0 (4)

Recall: Optimal solution was (x1, x2) = (1, 0), with value 1.

Claim: Can prove no solution can do better.
I Adding inequalities (2) and (4) yields bound x1 ≤ 1.
I Thus, objective function upper bounded by 1, and (1, 0) is indeed optimal.

Even better: Can generalize this idea to get tight upper bound on optimal value.

Idea:
I To each constraint, assign a “dual” variable yi .
I “Do a minimization” over linear combinations of yi to get upper bound on objective function.
I This minimization itself an LP, called dual LP.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 25 / 39

Intuition
Let’s return to our LP example, slightly rewritten below:

maximize x1 (1)
subject to x1 + x2 ≤ 1 (2)

−x1 ≤ 0 (3)
−x2 ≤ 0 (4)

Recall: Optimal solution was (x1, x2) = (1, 0), with value 1.

Claim: Can prove no solution can do better.
I Adding inequalities (2) and (4) yields bound x1 ≤ 1.
I Thus, objective function upper bounded by 1, and (1, 0) is indeed optimal.

Even better: Can generalize this idea to get tight upper bound on optimal value.

Idea:
I To each constraint, assign a “dual” variable yi .
I “Do a minimization” over linear combinations of yi to get upper bound on objective function.
I This minimization itself an LP, called dual LP.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 25 / 39

Intuition
Let’s return to our LP example, slightly rewritten below:

maximize x1 (1)
subject to x1 + x2 ≤ 1 (2)

−x1 ≤ 0 (3)
−x2 ≤ 0 (4)

Recall: Optimal solution was (x1, x2) = (1, 0), with value 1.

Claim: Can prove no solution can do better.
I Adding inequalities (2) and (4) yields bound x1 ≤ 1.
I Thus, objective function upper bounded by 1, and (1, 0) is indeed optimal.

Even better: Can generalize this idea to get tight upper bound on optimal value.

Idea:
I To each constraint, assign a “dual” variable yi .
I “Do a minimization” over linear combinations of yi to get upper bound on objective function.
I This minimization itself an LP, called dual LP.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 25 / 39

I did say there was more black magic to come, no?

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 26 / 39

Primal-dual pair

LPs come in pairs, known as the primal (left) and dual (right) LP:

max
∑n

j=1 cjxj

s.t.
∑n

j=1 aijxj ≤ bi ∀i ∈ [m]

xj ≥ 0 ∀j ∈ [n]

min
∑m

i=1 biyi

s.t.
∑m

i=1 aijyi ≥ cj ∀j ∈ [n]
yi ≥ 0 ∀j ∈ [m]

Our example:
max x1
s.t. x1 + x2 ≤ 1

−x1 ≤ 0
−x2 ≤ 0

min y1
s.t. y1 − y2 ≥ 1

y1 − y3 ≥ 0
y1, y2, y3 ≥ 0

Q: Can you give dual solution with dual objective function value 1?

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 27 / 39

Primal-dual pair

LPs come in pairs, known as the primal (left) and dual (right) LP:

max
∑n

j=1 cjxj

s.t.
∑n

j=1 aijxj ≤ bi ∀i ∈ [m]

xj ≥ 0 ∀j ∈ [n]

min
∑m

i=1 biyi

s.t.
∑m

i=1 aijyi ≥ cj ∀j ∈ [n]
yi ≥ 0 ∀j ∈ [m]

Our example:
max x1
s.t. x1 + x2 ≤ 1

−x1 ≤ 0
−x2 ≤ 0

min y1
s.t. y1 − y2 ≥ 1

y1 − y3 ≥ 0
y1, y2, y3 ≥ 0

Q: Can you give dual solution with dual objective function value 1?

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 27 / 39

Primal-dual pair

LPs come in pairs, known as the primal (left) and dual (right) LP:

max
∑n

j=1 cjxj

s.t.
∑n

j=1 aijxj ≤ bi ∀i ∈ [m]

xj ≥ 0 ∀j ∈ [n]

min
∑m

i=1 biyi

s.t.
∑m

i=1 aijyi ≥ cj ∀j ∈ [n]
yi ≥ 0 ∀j ∈ [m]

Our example:
max x1
s.t. x1 + x2 ≤ 1

−x1 ≤ 0
−x2 ≤ 0

min y1
s.t. y1 − y2 ≥ 1

y1 − y3 ≥ 0
y1, y2, y3 ≥ 0

Q: Can you give dual solution with dual objective function value 1?

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 27 / 39

Primal-dual pair

LPs come in pairs, known as the primal (left) and dual (right) LP:

max
∑n

j=1 cjxj

s.t.
∑n

j=1 aijxj ≤ bi ∀i ∈ [m]

xj ≥ 0 ∀j ∈ [n]

min
∑m

i=1 biyi

s.t.
∑m

i=1 aijyi ≥ cj ∀j ∈ [n]
yi ≥ 0 ∀j ∈ [m]

Our example:
max x1
s.t. x1 + x2 ≤ 1

−x1 ≤ 0
−x2 ≤ 0

min y1
s.t. y1 − y2 ≥ 1

y1 − y3 ≥ 0
y1, y2, y3 ≥ 0

Q: Can you give dual solution with dual objective function value 1?

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 27 / 39

Formalization primal vs dual
max

∑n
j=1 cjxj

s.t.
∑n

j=1 aijxj ≤ bi ∀i ∈ [m]

xj ≥ 0 ∀j ∈ [n]

min
∑m

i=1 biyi
s.t.

∑m
i=1 aijyi ≥ cj ∀j ∈ [n]

yi ≥ 0 ∀j ∈ [m]

Let P and D denote primal and dual LP, respectively.
Let p∗ and d∗ denote optimal solutions for P and D, respectively.

Intuitively: Designed D so that d∗ yields upper bound on p∗. Let’s prove this!

Theorem (Weak duality)
For any primal feasible x = {xj} and dual feasible y = {yi},

n∑
j=1

cjxj ≤
m∑

i=1

biyi .

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 28 / 39

Formalization primal vs dual
max

∑n
j=1 cjxj

s.t.
∑n

j=1 aijxj ≤ bi ∀i ∈ [m]

xj ≥ 0 ∀j ∈ [n]

min
∑m

i=1 biyi
s.t.

∑m
i=1 aijyi ≥ cj ∀j ∈ [n]

yi ≥ 0 ∀j ∈ [m]

Let P and D denote primal and dual LP, respectively.
Let p∗ and d∗ denote optimal solutions for P and D, respectively.

Intuitively: Designed D so that d∗ yields upper bound on p∗. Let’s prove this!

Theorem (Weak duality)
For any primal feasible x = {xj} and dual feasible y = {yi},

n∑
j=1

cjxj ≤
m∑

i=1

biyi .

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 28 / 39

Formalization primal vs dual
max

∑n
j=1 cjxj

s.t.
∑n

j=1 aijxj ≤ bi ∀i ∈ [m]

xj ≥ 0 ∀j ∈ [n]

min
∑m

i=1 biyi
s.t.

∑m
i=1 aijyi ≥ cj ∀j ∈ [n]

yi ≥ 0 ∀j ∈ [m]

Let P and D denote primal and dual LP, respectively.
Let p∗ and d∗ denote optimal solutions for P and D, respectively.

Intuitively: Designed D so that d∗ yields upper bound on p∗. Let’s prove this!

Theorem (Weak duality)
For any primal feasible x = {xj} and dual feasible y = {yi},

n∑
j=1

cjxj ≤
m∑

i=1

biyi .

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 28 / 39

Formalization primal vs dual
max

∑n
j=1 cjxj

s.t.
∑n

j=1 aijxj ≤ bi ∀i ∈ [m]

xj ≥ 0 ∀j ∈ [n]

min
∑m

i=1 biyi
s.t.

∑m
i=1 aijyi ≥ cj ∀j ∈ [n]

yi ≥ 0 ∀j ∈ [m]

Theorem (Weak duality)
For any primal feasible x = {xj} and dual feasible y = {yi},

n∑
j=1

cjxj ≤
m∑

i=1

biyi .

Proof.
n∑

j=1

cjxj ≤
n∑

j=1

(
m∑

i=1

aijyi

)
xj =

m∑
i=1

yi

 n∑
j=1

aijxj

 ≤ m∑
i=1

biyi .

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 29 / 39

Formalization primal vs dual
max

∑n
j=1 cjxj

s.t.
∑n

j=1 aijxj ≤ bi ∀i ∈ [m]

xj ≥ 0 ∀j ∈ [n]

min
∑m

i=1 biyi
s.t.

∑m
i=1 aijyi ≥ cj ∀j ∈ [n]

yi ≥ 0 ∀j ∈ [m]

Theorem (Weak duality)
For any primal feasible x = {xj} and dual feasible y = {yi},

n∑
j=1

cjxj ≤
m∑

i=1

biyi .

Proof.
n∑

j=1

cjxj ≤
n∑

j=1

(
m∑

i=1

aijyi

)
xj =

m∑
i=1

yi

 n∑
j=1

aijxj

 ≤ m∑
i=1

biyi .

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 29 / 39

Formalization primal vs dual
Theorem (Weak duality)
For any primal feasible x = {xj} and dual feasible y = {yi},

n∑
j=1

cjxj ≤
m∑

i=1

biyi .

Corollary
For any primal and dual LPs P and D, respectively, p∗ ≤ d∗.

Corollary
If you can guess primal solution x and dual solution y with matching objective function values
p = d, then guaranteed x is optimal! (No need to explicitly solve either LP.)

Q: Is it always true that p∗ = d∗? Yes! Called strong duality.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 30 / 39

Formalization primal vs dual
Theorem (Weak duality)
For any primal feasible x = {xj} and dual feasible y = {yi},

n∑
j=1

cjxj ≤
m∑

i=1

biyi .

Corollary
For any primal and dual LPs P and D, respectively, p∗ ≤ d∗.

Corollary
If you can guess primal solution x and dual solution y with matching objective function values
p = d, then guaranteed x is optimal! (No need to explicitly solve either LP.)

Q: Is it always true that p∗ = d∗?

Yes! Called strong duality.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 30 / 39

Formalization primal vs dual
Theorem (Weak duality)
For any primal feasible x = {xj} and dual feasible y = {yi},

n∑
j=1

cjxj ≤
m∑

i=1

biyi .

Corollary
For any primal and dual LPs P and D, respectively, p∗ ≤ d∗.

Corollary
If you can guess primal solution x and dual solution y with matching objective function values
p = d, then guaranteed x is optimal! (No need to explicitly solve either LP.)

Q: Is it always true that p∗ = d∗? Yes! Called strong duality.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 30 / 39

Returning to Max Flow

Primal LP:

maximize
∑

v∈V f (s, v)
subject to f (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity constraint)

f (u, v) = −f (v , u) ∀u, v ∈ V (skew symmetry)∑
v∈V f (u, v) = 0 ∀u ∈ V \ {s, t} (flow conservation)

Recall: Max flow is bounded by min capacity across any s − t cut in G.

Claim: This is precisely what the dual LP for Max Flow says.

Unfortunately, dual of our current primal LP is messy.

Idea: First rewrite LP in an equivalent, but “simpler” way, bringing us into standard form.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 31 / 39

Returning to Max Flow

Primal LP:

maximize
∑

v∈V f (s, v)
subject to f (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity constraint)

f (u, v) = −f (v , u) ∀u, v ∈ V (skew symmetry)∑
v∈V f (u, v) = 0 ∀u ∈ V \ {s, t} (flow conservation)

Recall: Max flow is bounded by min capacity across any s − t cut in G.

Claim: This is precisely what the dual LP for Max Flow says.

Unfortunately, dual of our current primal LP is messy.

Idea: First rewrite LP in an equivalent, but “simpler” way, bringing us into standard form.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 31 / 39

Rewriting the primal LP
Primal LP:

maximize
∑

v∈V f (s, v)
subject to f (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity constraint)

f (u, v) = −f (v , u) ∀u, v ∈ V (skew symmetry)∑
v∈V f (u, v) = 0 ∀u ∈ V \ {s, t} (flow conservation)

Equivalent LP: Let Ω denote the set of all simple paths from s to t in G.

maximize
∑

p∈Ω xp

subject to ∑
p∈Ω containing (u,v) xp ≤ c(u, v) ∀(u, v) ∈ E

xp ≥ 0 ∀p ∈ Ω

In this new view, each xp denotes flow along path p.

Clearly, such flow along any p is limited by the bottleneck edge (u, v) of p.

Taking dual of this new LP will yield much nicer dual.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 32 / 39

Rewriting the primal LP
Primal LP:

maximize
∑

v∈V f (s, v)
subject to f (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity constraint)

f (u, v) = −f (v , u) ∀u, v ∈ V (skew symmetry)∑
v∈V f (u, v) = 0 ∀u ∈ V \ {s, t} (flow conservation)

Equivalent LP: Let Ω denote the set of all simple paths from s to t in G.

maximize
∑

p∈Ω xp

subject to ∑
p∈Ω containing (u,v) xp ≤ c(u, v) ∀(u, v) ∈ E

xp ≥ 0 ∀p ∈ Ω

In this new view, each xp denotes flow along path p.

Clearly, such flow along any p is limited by the bottleneck edge (u, v) of p.

Taking dual of this new LP will yield much nicer dual.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 32 / 39

Rewriting the primal LP
Primal LP:

maximize
∑

v∈V f (s, v)
subject to f (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity constraint)

f (u, v) = −f (v , u) ∀u, v ∈ V (skew symmetry)∑
v∈V f (u, v) = 0 ∀u ∈ V \ {s, t} (flow conservation)

Equivalent LP: Let Ω denote the set of all simple paths from s to t in G.

maximize
∑

p∈Ω xp

subject to ∑
p∈Ω containing (u,v) xp ≤ c(u, v) ∀(u, v) ∈ E

xp ≥ 0 ∀p ∈ Ω

In this new view, each xp denotes flow along path p.

Clearly, such flow along any p is limited by the bottleneck edge (u, v) of p.

Taking dual of this new LP will yield much nicer dual.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 32 / 39

Sanity check
Primal LP:

maximize
∑

v∈V f (s, v)
subject to f (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity constraint)

f (u, v) = −f (v , u) ∀u, v ∈ V (skew symmetry)∑
v∈V f (u, v) = 0 ∀u ∈ V \ {s, t} (flow conservation)

Q: How many constraints are in the LP above?

Equivalent LP: Let Ω denote the set of all simple paths from s to t in G.

maximize
∑

p∈Ω xp

subject to ∑
p∈Ω containing (u,v) xp ≤ c(u, v) ∀(u, v) ∈ E

xp ≥ 0 ∀p ∈ Ω

Q: How many constraints are in the LP above?

A: In the worst case, exponential in n. (Hint: Consider two binary trees glued together at leaves.)
Does it matter that our new formulation is too big to write down?
Yes, if you plan to solve the LP in practice via a solver.
No, if all you want to do is look at the dual to extract theoretical bounds on primal value. (Our goal.)

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 33 / 39

Sanity check
Primal LP:

maximize
∑

v∈V f (s, v)
subject to f (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity constraint)

f (u, v) = −f (v , u) ∀u, v ∈ V (skew symmetry)∑
v∈V f (u, v) = 0 ∀u ∈ V \ {s, t} (flow conservation)

Q: How many constraints are in the LP above?

Equivalent LP: Let Ω denote the set of all simple paths from s to t in G.

maximize
∑

p∈Ω xp

subject to ∑
p∈Ω containing (u,v) xp ≤ c(u, v) ∀(u, v) ∈ E

xp ≥ 0 ∀p ∈ Ω

Q: How many constraints are in the LP above?
A: In the worst case, exponential in n. (Hint: Consider two binary trees glued together at leaves.)
Does it matter that our new formulation is too big to write down?

Yes, if you plan to solve the LP in practice via a solver.
No, if all you want to do is look at the dual to extract theoretical bounds on primal value. (Our goal.)

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 33 / 39

Sanity check
Primal LP:

maximize
∑

v∈V f (s, v)
subject to f (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity constraint)

f (u, v) = −f (v , u) ∀u, v ∈ V (skew symmetry)∑
v∈V f (u, v) = 0 ∀u ∈ V \ {s, t} (flow conservation)

Q: How many constraints are in the LP above?

Equivalent LP: Let Ω denote the set of all simple paths from s to t in G.

maximize
∑

p∈Ω xp

subject to ∑
p∈Ω containing (u,v) xp ≤ c(u, v) ∀(u, v) ∈ E

xp ≥ 0 ∀p ∈ Ω

Q: How many constraints are in the LP above?
A: In the worst case, exponential in n. (Hint: Consider two binary trees glued together at leaves.)
Does it matter that our new formulation is too big to write down?
Yes, if you plan to solve the LP in practice via a solver.

No, if all you want to do is look at the dual to extract theoretical bounds on primal value. (Our goal.)

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 33 / 39

Sanity check
Primal LP:

maximize
∑

v∈V f (s, v)
subject to f (u, v) ≤ c(u, v) ∀u, v ∈ V (capacity constraint)

f (u, v) = −f (v , u) ∀u, v ∈ V (skew symmetry)∑
v∈V f (u, v) = 0 ∀u ∈ V \ {s, t} (flow conservation)

Q: How many constraints are in the LP above?

Equivalent LP: Let Ω denote the set of all simple paths from s to t in G.

maximize
∑

p∈Ω xp

subject to ∑
p∈Ω containing (u,v) xp ≤ c(u, v) ∀(u, v) ∈ E

xp ≥ 0 ∀p ∈ Ω

Q: How many constraints are in the LP above?
A: In the worst case, exponential in n. (Hint: Consider two binary trees glued together at leaves.)
Does it matter that our new formulation is too big to write down?
Yes, if you plan to solve the LP in practice via a solver.
No, if all you want to do is look at the dual to extract theoretical bounds on primal value. (Our goal.)

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 33 / 39

Dual LP for Network Flow
Equivalent LP: Let Ω denote the set of all simple paths from s to t in G.

maximize
∑

p∈Ω xp

subject to ∑
p∈Ω containing (u,v) xp ≤ c(u, v) ∀(u, v) ∈ E

xp ≥ 0 ∀p ∈ Ω

Dual LP: For each (u, v) ∈ E , add dual variable yuv .

minimize
∑

(u,v)∈E c(u, v)yuv

subject to ∑
(u,v)∈p yuv ≥ 1 ∀p ∈ Ω (∗)

yuv ≥ 0 ∀(u, v) ∈ E

Claim: There exists dual feasible solution for each s − t cut in G.

Construction: Consider any partition S,T of V , for s ∈ S, t ∈ T .
I For each cut edge (u, v), i.e. u ∈ S, t ∈ T , set yuv = 1.
I For all other edges, set yuv = 0.

Objective function value is precisely capacity across S vs T cut.
Q: Why is this solution feasible?
A: Each path p ∈ Ω takes some cut edge to pass from S to T , i.e. (∗) satisfied.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 34 / 39

Dual LP for Network Flow
Equivalent LP: Let Ω denote the set of all simple paths from s to t in G.

maximize
∑

p∈Ω xp

subject to ∑
p∈Ω containing (u,v) xp ≤ c(u, v) ∀(u, v) ∈ E

xp ≥ 0 ∀p ∈ Ω

Dual LP: For each (u, v) ∈ E , add dual variable yuv .

minimize
∑

(u,v)∈E c(u, v)yuv

subject to ∑
(u,v)∈p yuv ≥ 1 ∀p ∈ Ω (∗)

yuv ≥ 0 ∀(u, v) ∈ E

Claim: There exists dual feasible solution for each s − t cut in G.

Construction: Consider any partition S,T of V , for s ∈ S, t ∈ T .
I For each cut edge (u, v), i.e. u ∈ S, t ∈ T , set yuv = 1.
I For all other edges, set yuv = 0.

Objective function value is precisely capacity across S vs T cut.
Q: Why is this solution feasible?
A: Each path p ∈ Ω takes some cut edge to pass from S to T , i.e. (∗) satisfied.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 34 / 39

Dual LP for Network Flow
Equivalent LP: Let Ω denote the set of all simple paths from s to t in G.

maximize
∑

p∈Ω xp

subject to ∑
p∈Ω containing (u,v) xp ≤ c(u, v) ∀(u, v) ∈ E

xp ≥ 0 ∀p ∈ Ω

Dual LP: For each (u, v) ∈ E , add dual variable yuv .

minimize
∑

(u,v)∈E c(u, v)yuv

subject to ∑
(u,v)∈p yuv ≥ 1 ∀p ∈ Ω (∗)

yuv ≥ 0 ∀(u, v) ∈ E

Claim: There exists dual feasible solution for each s − t cut in G.

Construction: Consider any partition S,T of V , for s ∈ S, t ∈ T .
I For each cut edge (u, v), i.e. u ∈ S, t ∈ T , set yuv = 1.
I For all other edges, set yuv = 0.

Objective function value is precisely capacity across S vs T cut.
Q: Why is this solution feasible?
A: Each path p ∈ Ω takes some cut edge to pass from S to T , i.e. (∗) satisfied.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 34 / 39

Dual LP for Network Flow
Equivalent LP: Let Ω denote the set of all simple paths from s to t in G.

maximize
∑

p∈Ω xp

subject to ∑
p∈Ω containing (u,v) xp ≤ c(u, v) ∀(u, v) ∈ E

xp ≥ 0 ∀p ∈ Ω

Dual LP: For each (u, v) ∈ E , add dual variable yuv .

minimize
∑

(u,v)∈E c(u, v)yuv

subject to ∑
(u,v)∈p yuv ≥ 1 ∀p ∈ Ω (∗)

yuv ≥ 0 ∀(u, v) ∈ E

Claim: There exists dual feasible solution for each s − t cut in G.

Construction: Consider any partition S,T of V , for s ∈ S, t ∈ T .
I For each cut edge (u, v), i.e. u ∈ S, t ∈ T , set yuv = 1.
I For all other edges, set yuv = 0.

Objective function value is precisely capacity across S vs T cut.
Q: Why is this solution feasible?
A: Each path p ∈ Ω takes some cut edge to pass from S to T , i.e. (∗) satisfied.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 34 / 39

Dual LP for Network Flow
Equivalent LP: Let Ω denote the set of all simple paths from s to t in G.

maximize
∑

p∈Ω xp

subject to ∑
p∈Ω containing (u,v) xp ≤ c(u, v) ∀(u, v) ∈ E

xp ≥ 0 ∀p ∈ Ω

Dual LP: For each (u, v) ∈ E , add dual variable yuv .

minimize
∑

(u,v)∈E c(u, v)yuv

subject to ∑
(u,v)∈p yuv ≥ 1 ∀p ∈ Ω (∗)

yuv ≥ 0 ∀(u, v) ∈ E

Claim: There exists dual feasible solution for each s − t cut in G.

Construction: Consider any partition S,T of V , for s ∈ S, t ∈ T .
I For each cut edge (u, v), i.e. u ∈ S, t ∈ T , set yuv = 1.
I For all other edges, set yuv = 0.

Objective function value is precisely capacity across S vs T cut.
Q: Why is this solution feasible?

A: Each path p ∈ Ω takes some cut edge to pass from S to T , i.e. (∗) satisfied.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 34 / 39

Dual LP for Network Flow
Equivalent LP: Let Ω denote the set of all simple paths from s to t in G.

maximize
∑

p∈Ω xp

subject to ∑
p∈Ω containing (u,v) xp ≤ c(u, v) ∀(u, v) ∈ E

xp ≥ 0 ∀p ∈ Ω

Dual LP: For each (u, v) ∈ E , add dual variable yuv .

minimize
∑

(u,v)∈E c(u, v)yuv

subject to ∑
(u,v)∈p yuv ≥ 1 ∀p ∈ Ω (∗)

yuv ≥ 0 ∀(u, v) ∈ E

Claim: There exists dual feasible solution for each s − t cut in G.

Construction: Consider any partition S,T of V , for s ∈ S, t ∈ T .
I For each cut edge (u, v), i.e. u ∈ S, t ∈ T , set yuv = 1.
I For all other edges, set yuv = 0.

Objective function value is precisely capacity across S vs T cut.
Q: Why is this solution feasible?
A: Each path p ∈ Ω takes some cut edge to pass from S to T , i.e. (∗) satisfied.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 34 / 39

In other words

By weak duality, capacity across any s − t cut upper bounds max flow value.

But by strong duality, optimum primal and dual values must match.

From this, one can re-obtain the Max-Flow Min-Cut Theorem! (Which said the Max Flow
value equals the Min Cut value.)

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 35 / 39

In other words

By weak duality, capacity across any s − t cut upper bounds max flow value.

But by strong duality, optimum primal and dual values must match.

From this, one can re-obtain the Max-Flow Min-Cut Theorem! (Which said the Max Flow
value equals the Min Cut value.)

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 35 / 39

In other words

By weak duality, capacity across any s − t cut upper bounds max flow value.

But by strong duality, optimum primal and dual values must match.

From this, one can re-obtain the Max-Flow Min-Cut Theorem! (Which said the Max Flow
value equals the Min Cut value.)

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 35 / 39

In other words

By weak duality, capacity across any s − t cut upper bounds max flow value.

But by strong duality, optimum primal and dual values must match.

From this, one can re-obtain the Max-Flow Min-Cut Theorem! (Which said the Max Flow
value equals the Min Cut value.)

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 35 / 39

Outline

1 Definitions

2 Applications

3 Duality theory

4 Solving LPs

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 36 / 39

What if we want to solve an LP?

Observations:

Any primal feasible solution lower bounds p∗.

I Implies solving primal LP is in NP.

Any dual feasible solution upper bounds d∗, and hence p∗ (by weak duality).

I Implies refuting candidate optimal LP values is in co-NP.

Conclusion: Solving LPs is in NP ∩ co-NP.

But is it also in P?

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 37 / 39

What if we want to solve an LP?

Observations:

Any primal feasible solution lower bounds p∗.

I Implies solving primal LP is in NP.

Any dual feasible solution upper bounds d∗, and hence p∗ (by weak duality).

I Implies refuting candidate optimal LP values is in co-NP.

Conclusion: Solving LPs is in NP ∩ co-NP.

But is it also in P?

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 37 / 39

What if we want to solve an LP?

Observations:

Any primal feasible solution lower bounds p∗.

I Implies solving primal LP is in NP.

Any dual feasible solution upper bounds d∗, and hence p∗ (by weak duality).

I Implies refuting candidate optimal LP values is in co-NP.

Conclusion: Solving LPs is in NP ∩ co-NP.

But is it also in P?

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 37 / 39

Long history
Dates:

(1827) Fourier proposes method for solving systems of linear inequalities

(1939-ish) Kantorovich and Koopmans independently study more general LPs. They would later share
Nobel prize in Economics (1975).

(1941) Hitchcock gives solution very similar to simplex method.

(1947) Dantzig discovers simplex method for solving LPs.

(1979) Khachiyan discovers poly-time algorithm using ellipsoid method.

(1984) Karmarkar discovers poly-time algorithm using interior-point method.

Efficiency notes:

Ellipsoid method rarely used in practice, numerically unstable.

In practice, one uses simplex method or interior-point method.

Simplex method is, in its current known variants, not poly-time.

In practice:

Many LP solvers available.

Ex: CVX (implemented in Matlab), which can do LPs and a whole lot more.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 38 / 39

Long history
Dates:

(1827) Fourier proposes method for solving systems of linear inequalities

(1939-ish) Kantorovich and Koopmans independently study more general LPs. They would later share
Nobel prize in Economics (1975).

(1941) Hitchcock gives solution very similar to simplex method.

(1947) Dantzig discovers simplex method for solving LPs.

(1979) Khachiyan discovers poly-time algorithm using ellipsoid method.

(1984) Karmarkar discovers poly-time algorithm using interior-point method.

Efficiency notes:

Ellipsoid method rarely used in practice, numerically unstable.

In practice, one uses simplex method or interior-point method.

Simplex method is, in its current known variants, not poly-time.

In practice:

Many LP solvers available.

Ex: CVX (implemented in Matlab), which can do LPs and a whole lot more.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 38 / 39

Long history
Dates:

(1827) Fourier proposes method for solving systems of linear inequalities

(1939-ish) Kantorovich and Koopmans independently study more general LPs. They would later share
Nobel prize in Economics (1975).

(1941) Hitchcock gives solution very similar to simplex method.

(1947) Dantzig discovers simplex method for solving LPs.

(1979) Khachiyan discovers poly-time algorithm using ellipsoid method.

(1984) Karmarkar discovers poly-time algorithm using interior-point method.

Efficiency notes:

Ellipsoid method rarely used in practice, numerically unstable.

In practice, one uses simplex method or interior-point method.

Simplex method is, in its current known variants, not poly-time.

In practice:

Many LP solvers available.

Ex: CVX (implemented in Matlab), which can do LPs and a whole lot more.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 38 / 39

Long history
Dates:

(1827) Fourier proposes method for solving systems of linear inequalities

(1939-ish) Kantorovich and Koopmans independently study more general LPs. They would later share
Nobel prize in Economics (1975).

(1941) Hitchcock gives solution very similar to simplex method.

(1947) Dantzig discovers simplex method for solving LPs.

(1979) Khachiyan discovers poly-time algorithm using ellipsoid method.

(1984) Karmarkar discovers poly-time algorithm using interior-point method.

Efficiency notes:

Ellipsoid method rarely used in practice, numerically unstable.

In practice, one uses simplex method or interior-point method.

Simplex method is, in its current known variants, not poly-time.

In practice:

Many LP solvers available.

Ex: CVX (implemented in Matlab), which can do LPs and a whole lot more.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 38 / 39

Long history
Dates:

(1827) Fourier proposes method for solving systems of linear inequalities

(1939-ish) Kantorovich and Koopmans independently study more general LPs. They would later share
Nobel prize in Economics (1975).

(1941) Hitchcock gives solution very similar to simplex method.

(1947) Dantzig discovers simplex method for solving LPs.

(1979) Khachiyan discovers poly-time algorithm using ellipsoid method.

(1984) Karmarkar discovers poly-time algorithm using interior-point method.

Efficiency notes:

Ellipsoid method rarely used in practice, numerically unstable.

In practice, one uses simplex method or interior-point method.

Simplex method is, in its current known variants, not poly-time.

In practice:

Many LP solvers available.

Ex: CVX (implemented in Matlab), which can do LPs and a whole lot more.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 38 / 39

Long history
Dates:

(1827) Fourier proposes method for solving systems of linear inequalities

(1939-ish) Kantorovich and Koopmans independently study more general LPs. They would later share
Nobel prize in Economics (1975).

(1941) Hitchcock gives solution very similar to simplex method.

(1947) Dantzig discovers simplex method for solving LPs.

(1979) Khachiyan discovers poly-time algorithm using ellipsoid method.

(1984) Karmarkar discovers poly-time algorithm using interior-point method.

Efficiency notes:

Ellipsoid method rarely used in practice, numerically unstable.

In practice, one uses simplex method or interior-point method.

Simplex method is, in its current known variants, not poly-time.

In practice:

Many LP solvers available.

Ex: CVX (implemented in Matlab), which can do LPs and a whole lot more.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 38 / 39

Long history
Dates:

(1827) Fourier proposes method for solving systems of linear inequalities

(1939-ish) Kantorovich and Koopmans independently study more general LPs. They would later share
Nobel prize in Economics (1975).

(1941) Hitchcock gives solution very similar to simplex method.

(1947) Dantzig discovers simplex method for solving LPs.

(1979) Khachiyan discovers poly-time algorithm using ellipsoid method.

(1984) Karmarkar discovers poly-time algorithm using interior-point method.

Efficiency notes:

Ellipsoid method rarely used in practice, numerically unstable.

In practice, one uses simplex method or interior-point method.

Simplex method is, in its current known variants, not poly-time.

In practice:

Many LP solvers available.

Ex: CVX (implemented in Matlab), which can do LPs and a whole lot more.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 38 / 39

Long history
Dates:

(1827) Fourier proposes method for solving systems of linear inequalities

(1939-ish) Kantorovich and Koopmans independently study more general LPs. They would later share
Nobel prize in Economics (1975).

(1941) Hitchcock gives solution very similar to simplex method.

(1947) Dantzig discovers simplex method for solving LPs.

(1979) Khachiyan discovers poly-time algorithm using ellipsoid method.

(1984) Karmarkar discovers poly-time algorithm using interior-point method.

Efficiency notes:

Ellipsoid method rarely used in practice, numerically unstable.

In practice, one uses simplex method or interior-point method.

Simplex method is, in its current known variants, not poly-time.

In practice:

Many LP solvers available.

Ex: CVX (implemented in Matlab), which can do LPs and a whole lot more.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 38 / 39

Long history
Dates:

(1827) Fourier proposes method for solving systems of linear inequalities

(1939-ish) Kantorovich and Koopmans independently study more general LPs. They would later share
Nobel prize in Economics (1975).

(1941) Hitchcock gives solution very similar to simplex method.

(1947) Dantzig discovers simplex method for solving LPs.

(1979) Khachiyan discovers poly-time algorithm using ellipsoid method.

(1984) Karmarkar discovers poly-time algorithm using interior-point method.

Efficiency notes:

Ellipsoid method rarely used in practice, numerically unstable.

In practice, one uses simplex method or interior-point method.

Simplex method is, in its current known variants, not poly-time.

In practice:

Many LP solvers available.

Ex: CVX (implemented in Matlab), which can do LPs and a whole lot more.

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 38 / 39

Have a great break!

Sevag Gharibian (Universität Paderborn) Ch. 7: Linear Programming Fundamental Algs WS 2019 39 / 39

	Definitions
	Applications
	Duality theory
	Solving LPs

