
Fundamental Algorithms

Chapter 3:

Advanced Search Structures

Sevag Gharibian
(based on slides of Christian Scheideler)

WS 2019

24.10.2019 Chapter 3 2

Search Structure

4

8

18

11

3

20

24.10.2019 Chapter 3 3

Search Structure

4

8

18

11

3

20

insert(15)

15

24.10.2019 Chapter 3 4

Search Structure

4

8

18

11

3

20

delete(20)

15

24.10.2019 Chapter 3 5

Search Structure

4

8

18

11

3

search(7) gives 8 (closest successor)

15

24.10.2019 Chapter 3 6

Search Structure

S: set of elements

Every element e identified by key(e).

Operations:

• S.insert(e: Element): S:=S∪{e}

• S.delete(k: Key): S:=S\{e}, where e is the

element with key(e)=k (note: now given key,

not pointer to e!)

• S.search(k: Key): outputs eS with
minimal key(e) so that key(e)≥k

24.10.2019 Chapter 3 7

Static Search Structure

1. Store elements in sorted array.

search: via binary search (in O(log n) time)

1 3 10 14 195 28 31 58 60 82 89 94 9885

search(12)

24.10.2019 Chapter 3 8

Binary Search

Input: number x and sorted array A[1],…,A[n]

Algorithm BinarySearch:

l:=1; r:=n

while l < r do

m:=(r+l) div 2

if A[m] = x then return m

if A[m] < x then l:=m+1

else r:=m

return l

24.10.2019 Chapter 3 9

Dynamic Search Structure

insert und delete Operations:

Sorted array difficult to update!

Worst case: (n) time

1 3 10 145 19 28 31 58 60 82 85

15

24.10.2019 Chapter 3 10

Search Structure

2. Sorted List (with an ∞-Element)

Problem: insert, delete and search take (n) time
in the worst case (why for insert/delete?)

Observation: If search could be implemented
efficiently, then also all other operations

31

…
19 ∞

24.10.2019 Chapter 3 11

Search Structure

Idea: add navigation structure that allows

search to run efficiently

31

…
19

navigation structure

∞

24.10.2019 Chapter 3 12

Binary Search Tree (ideal)

1 3 10 14 195 28

1 5

3

14 28

19

10
search(12)

∞

24.10.2019 Chapter 3 13

Binary Search Tree

Search tree invariant:

k

T1 T2

For all keys k´ in T1 and
k´´ in T2: k´ k < k´´

24.10.2019 Chapter 3 14

Binary Search Tree

Formally: for every tree node v let

• key(v) be the key stored at v

• d(v) the number of children (degree) of v

• Search tree invariant: (as above)

• Degree invariant:
All tree nodes have exactly two children
(as long as the number of elements in the list is >0, recall
presence of ∞ node)

• Key invariant:
For every element e in the list there is exactly one tree
node v with key(v)=key(e).

24.10.2019 Chapter 3 15

Binary Search Tree

• Search tree invariant: (as before)

• Degree invariant:
All tree nodes have exactly two children
(as long as the number of elements is >0)

• Key invariant:
For every element e in the list there is exactly one tree node v
with key(v)=key(e).

From the search tree and key invariants
it follows that for every left subtree T of
a node v, the rightmost list element e
under T satisfies key(v)=key(e).

(Why?)
T

1 e…

v

24.10.2019 Chapter 3 16

search(x) Operation

Search strategy:

• Start at the root, v, of the search tree

• while v is a tree node:

– if x key(v) then let v be the left child of v,
otherwise let v be the right child of v

• Output (list node) v

k

T1 T2

For all keys k´ in T1 and
k´´ in T2: k´ k < k´´

24.10.2019 Chapter 3 17

search(x) Operation

Correctness of search strategy:

• For every left subtree T of a node
v, the rightmost list element e under
T satisfies key(v)=key(e).

• If search(x) enters T, since key(v)≥x, there is an
element e in the list below T with key(e)≥x.

k

T1 T2

For all keys k´ in T1 and
k´´ in T2: k´ k < k´´

T

1 e…

v

24.10.2019 Chapter 3 18

Search(9)

1 3 10 14 195 28

1 5

3

14 28

19

10

∞

24.10.2019 Chapter 3 19

Insert and Delete Operations

Strategy:

• insert(e):
First, execute search(key(e)) to obtain a list element e´.
If key(e)=key(e´), replace e´ by e, otherwise insert e
between e´ and its predecessor in the list and add a new
search tree leaf leading to e (left) and e´ (right) with key
key(e).

• delete(k):
First, execute search(k) to obtain a list element e. If
key(e)=k, then delete e from the list and the parent v of e
from the search tree, and relabel tree node w with
key(w)=k as key(w):=key(v).

24.10.2019 Chapter 3 20

Insert(5)

1 10 14 28

1

28

14

10

∞

24.10.2019 Chapter 3 21

Insert(5)

1 10 14 28

1

28

14

10

5

5

∞

24.10.2019 Chapter 3 22

Insert(12)

1 10 14 28

1

28

14

10

5

5

∞

24.10.2019 Chapter 3 23

Insert(12)

1 10 12 28

1

28

14

10

5

5

14

12

∞

24.10.2019 Chapter 3 24

Delete(1)

1 10 12 28

1

28

14

10

5

5

14

12

∞

24.10.2019 Chapter 3 25

Delete(1)

10 12 28

28

14

10

5

5

14

12

∞

24.10.2019 Chapter 3 26

Delete(14)

10 12 28

28

14

10

5

5

14

12

∞

24.10.2019 Chapter 3 27

Delete(14)

10 12 28

28

12

10

5

5

∞

24.10.2019 Chapter 3 28

Binary Search Tree

Problem: binary tree can degenerate!

Example: numbers are inserted in sorted order

1 3 10 14 195 28

1

5
3

14

28

19

10

∞

24.10.2019 Chapter 3 29

Pop quiz

Q1: What is the worst case runtime for binary

search on a sorted array?

O(logn).

Q2: What is the worst case runtime for searching

in a binary search tree?

O(n)! (see e.g. previous slide)

24.10.2019 Chapter 3 30

Search Trees

Problem: binary tree can degenerate!

Solutions:

• Splay tree
(very effective heuristic)

• (a,b)-tree
(guaranteed well balanced)

• Patricia trie

24.10.2019 Chapter 3 31

Splay Tree

Usually: Implementation as internal search

tree (i.e., elements directly integrated into

tree and not in an extra list)

Here: Implementation as external search

tree (like for the binary search tree above)

24.10.2019 Chapter 3 32

Why Splay Trees?

• Self-adjusting binary search tree

• Invented by Sleator and Tarjan (1985)

• Pros:

– Recently accessed elements quick to access

again. (Great for caches, garbage collection!)

– Low amortized costs

• Cons:

– Can still have highly unbalanced trees, hence

worst-case linear time search.

24.10.2019 Chapter 3 33

Splay Tree

1 3 10 14 195 28

1 5

3

14 28

19

10
search(19) Idea: add shortcut

pointer to list element
⇒accelerates search

∞

24.10.2019 Chapter 3 34

Splay Tree

Ideas:

1. Add shortcut pointers in tree to list elements

2. For every search(k) operation, move
pred(k) (the closest predecessor of k in T)
to the root (why?)

Movement for (2): via Splay operation

For simplicity: we focus on search(k) for keys k
already in the search tree.

24.10.2019 Chapter 3 35

Splay Operation

Movement of key x to the root: 3 cases.

Case 1:

1a. x is a left child of the root:

A B

C

x

y x

A

B C

y
zig

24.10.2019 Chapter 3 36

Splay Operation

A B

C

y

xy

A

B C

x
zig

Movement of key x to the root: 3 cases

Case 1:

1b. x is a right child of the root:

24.10.2019 Chapter 3 37

Splay Operation

Case 2:

2a. x has father and grand father to the right

A B

C

x

y y

B

C D

z
zig-zig

D

z x

A

24.10.2019 Chapter 3 38

Splay Operation

zig-zig

A B

C

z

y

D

x

y

B

C D

x

z

A

Case 2:

2b. x has father and grand father to the left

24.10.2019 Chapter 3 39

Splay Operation

Case 3:

3a. x: father left, grand father right

zig-zag

A B C

y

x

D

z

y

A

B C

x

z

D

24.10.2019 Chapter 3 40

Splay Operation

zig-zag

A B C

z

x

D

y

B C

D

x

y

A

z

Case 3:

3b. x: father right, grand father left

24.10.2019 Chapter 3 41

Splay Operation

Example:

1 3 10 14 195 28

1 5

3

14 28

19

10

x

zig-zag operation (3a)

∞

24.10.2019 Chapter 3 42

Splay Operation

1 3 10 14 195 28

1
14 28

19

10

5

3

∞

24.10.2019 Chapter 3 43

Splay Operation

Examples:

zig-zig, zig-zag, zig-zag, zig zig-zig, zig-zag, zig-zig, zig

x x

24.10.2019 Chapter 3 44

Splay Operation

Observation: Tree can still be highly

imbalanced! But amortized costs are low.

1 3 10 14 195 28

1

5
3

14

28
19

10

∞

24.10.2019 Chapter 3 45

Splay Operation

search(k)-operation:
• Move downwards from the root (as in standard

binary tree) till pred(k) found in search tree (which
can be checked via shortcut to the list) or the list is
reached

• call splay(pred(k)), output next successor, succ(k)
(recall we assume k exists in tree for simplicity:
pred(k)=succ(k)=k)

Amortized Analysis:
• Note: runtime of search(k) is O(runtime of

splay(pred(k))).
• Our goal: bound runtime of m Splay operations on

arbitrary binary search tree with n elements (m>n)

24.10.2019 Chapter 3 46

Splay Operation

• Weight of node x: w(x)>0

• Tree weight of tree T with root x:

tw(x)= yT w(y)

• Rank of node x: r(x) = log(tw(x))

• Potential of tree T: (T) = xT r(x)

Lemma 3.1: Let T be a Splay tree with root x and u

be a node in T. The amortized cost for splay(u,T)

is at most 1+3(r(x)-r(u)).

(Recall: Amortized cost AX(s) := TX(s) + ((s´) - (s)))

Proof of Lemma 3.1:

Induction over the sequence of rotations.

• r and tw : rank and weight before the rotation

• r’ and tw’: rank and weight after the rotation

Case 1:

Amortized cost:

≤ 1+r’(u)+r’(v)-r(u)-r(v) ≤ 1+r’(u)-r(u) since r’(v)≤r(v)

≤ 1+3(r’(u)-r(u)) since r’(u)≥r(u)

24.10.2019 Chapter 3 47

Splay Operation

A B

C

u
v u

A

B C

vzig

Runtime

(# rotations)

Change in

24.10.2019 Chapter 3 48

Splay Operation

Case 2:

Amortized cost:

≤ 2+r’(u)+r’(v)+r’(w)-r(u)-r(v)-r(w)

= 2+r’(v)+r’(w)-r(u)-r(v) since r’(u)=r(w)

≤ 2+r’(u)+r’(w)-2r(u) since r’(u)≥r’(v) and r(v)≥r(u)

A B

C

u

v v

B

C D

w
zig-zig

D

w u

A

24.10.2019 Chapter 3 49

Splay Operation

Case 2:

Claim: It holds that

2+r’(u)+r’(w)-2r(u) ≤ 3(r’(u)-r(u))

i.e.

r(u)+r’(w) ≤ 2(r’(u)-1)

A B

C

u

v v

B

C D

w
zig-zig

D

w u

A
r(u)

r’(w)

r’(u)

24.10.2019 Chapter 3 50

Splay Operation

Case 2:

Claim: It holds that

r(u)+r’(w) ≤ 2(r’(u)-1)

• Observe: There exist 0<x,y<1 and scaling factor c>0 with
r(u)=log(cx), r’(w)=log(cy), and r’(u)log(c(x+y)).

• Hence, the claim holds if log(cx)+log(cy) ≤
2(log(c(x+y))-1) for all 0<x,y<1 and c>0.

A B

C

u

v v

B

C D

w
zig-zig

D

w u

A
r(u)

r’(w)

r’(u)

24.10.2019 Chapter 3 51

Splay Operation

Case 2:

• For all 0<x,y<1 and c>0 holds:

log(cx)+log(cy) ≤ 2(log(c(x+y))-1)

 log(x)+log(y) ≤ 2(log(x+y)-1)

• WLOG set c so that c(x+y)=1. Let x’=cx and y’=cy.

A B

C

u

v v

B

C D

w
zig-zig

D

w u

A
r(u)

r’(w)

r’(u)

24.10.2019 Chapter 3 52

Splay Operation

Case 2:

• To show: for all 0<x’,y’1,with x’+y’=1:

log(x’)+log(y’) ≤ 2(log(1)-1) = -2

• Or more generally: show for f(x,y)=log(x)+log(y) that

f(x,y)≤-2 for all x,y>0 with x+y≤1

A B

C

u

v v

B

C D

w
zig-zig

D

w u

A
r(u)

r’(w)

r’(u)

24.10.2019 Chapter 3 53

Splay Operation

Lemma 3.2: In the area x,y>0 with x+y≤1, the function
f(x,y)=log x + log y has its maximum at (½,½).

Proof:

• Reduce to univariate problem:

– log x is monotonically increasing. Hence, WLOG
maximum satisfies x+y=1, x,y>0.

– Consider determining the maximum for
g(x) = log x + log (1-x)

• High school calculus: (note base of log WLOG is e)

– The only root of g’(x) = 1/x - 1/(1-x) is at x=1/2.

– For g’’(x)= -(1/x2 + 1/(1-x)2)) it holds that g’’(1/2)<0.

• Hence, f has its maximum at (½,½).

Case 2:

Hence, it holds that f(x,y)≤-2 for all x,y>0 with x+y≤1, which
implies the claim that r(u)+r’(w) ≤ 2(r’(u)-1), which was
equivalent to obtaining upper bound

3(r’(u)-r(u)).
24.10.2019 Chapter 3 54

Splay Operation

A B

C

u

v v

B

C D

w
zig-zig

D

w u

A
r(u)

r’(w)

r’(u)

24.10.2019 Chapter 3 55

Splay Operation

Case 3:

Amortized cost:

≤ 2+r’(u)+r’(v)+r’(w)-r(u)-r(v)-r(w)

≤ 2+r’(v)+r’(w)-2r(u) since r’(u)=r(w) and r(u)≤r(v)

≤ 2(r’(u)-r(u)) because…

zig-zag

A B C

v

u

D

w

v

A

B C

u

w

D

24.10.2019 Chapter 3 56

Splay Operation

Case 3:

…it holds that:

2+r’(v)+r’(w)-2r(u) ≤ 2(r’(u)-r(u))

⇔ 2r’(u)-r’(v)-r’(w) ≥ 2

⇔ r’(v)+r’(w) ≤ 2(r’(u)-1), which can be
shown to hold

zig-zag

A B C

v

u

D

w

v

A

B C

u

w

D

24.10.2019 Chapter 3 57

Splay Operation

Proof of Lemma 3.1: (Follow-up)

Induction over the sequence of rotations.

• r and tw : rank and weight before the rotation

• r’ und tw’: rank and weight after the rotation

• For every rotation (i.e. zig, zig-zig, or zig-zag), the

amortized cost is <= 1+3(r’(u)-r(u)) (case 1) resp. 3(r’(u)-

r(u)) (cases 2 and 3)

• Summation of the costs gives at most (x: root)

1 + Rotations 3(r’(u)-r(u)) = 1+3(r(x)-r(u))

– 1. Why do we only add 1 before the summation?

– 2. Why do we get a telescoping series above?

24.10.2019 Chapter 3 58

Splay Operation

• Tree weight of tree T with root x:
tw(x)= yT w(y)

• Rank of node x: r(x) = log(tw(x))

• Potential of tree T: (T) = xT r(x)

Lemma 3.1: Let T be a Splay tree with root x and u be a
node in T. The amortized cost for splay(u,T) is at most
1+3(r(x)-r(u)) = 1+3log(tw(x)/tw(u)).

Corollary 3.3: Let W=x w(x) and wi be the weight of key ki

in the i-th search call (recall we assume ki is in tree). For
m search operations, the amortized cost is O(m + i=1

m

log (W/wi)).

24.10.2019 Chapter 3 59

Splay Tree

Theorem 3.4: The runtime for m successful search
operations in a Splay tree T with n elements is at most

O(m+(m+n)log n).

Proof:

• Let w(x) = 1 for all nodes x in T.

• Then W=n and r(x) ≤ log W = log n for all x in T.

• For sequence F of operations, total runtime satisfies T(F)
≤ A(F) + (s0) for any amortized cost function A and any
initial state s0 (Recall: AX(s) := TX(s) + ((s´) - (s)))

• (s0) = xT r0(x) ≤ n log n

• Hence, Corollary 3.3 implies Theorem 3.4.

24.10.2019 Chapter 3 60

Splay Tree

Suppose we have a probability distribution for the search

requests, where each key in tree is searched for at least once.

• p(x) : probability of searching for key x

• H(p) = x p(x)log(1/p(x)) : entropy of p

Theorem 3.5: The expected runtime for m successful search
operations in a Splay tree T with n elements is at most

O(m(1+H(p))).

Proof: Follows from proof of Theorem 3.4 with w(x) = p(x) for all
x, and assuming each item x is searched for mp(x) times.

Note: This proof requires us to relax our requirement that the
potential function is non-negative. Why?

24.10.2019 Chapter 3 61

Splay Tree

Something amazing:

For a fixed optimal Binary Search Tree where each key x in
tree is searched for with probability p(x), one can show
expected cost of a successful search is

Ω(H(p)) (entropy bound).

Our Theorem 3.5 says Splay Trees are almost optimal, in
that the cost per search scales as O(1+H(p))!

Note: 0<=H(p)<=logn

Question: How does this O(1+H(p)) support the idea that
Splay trees would be good for applications like caching?

24.10.2019 Chapter 3 62

Splay Tree

So far, we assumed all searches were successful, i.e. the
key we were searching for was in the tree.

Q1: Where in our analysis did this assumption play a role?

Q2: What if we consider the more general case of allowing
unsuccessful searches?

Splay Tree – Unsuccessful

Searches
• Instead of just successful searches, the Splay tree T

should also support the search for the closest

successor.

24.10.2019 Chapter 3 63

search(23):

1 3 10 14 285 19

1 5

3

14 28

19

10

∞

23[19,28):

• output 28

• splay(19)

23[10,14), 23>10

Splay Tree – Unsuccessful

Searches
• To obtain a low amortized time bound, we

associate with a key x in T the search range [x,x+)
(including x but excluding x+), where x+ is closest
successor of x in T.

• Each search range [x,x+) is associated with a
weight w([x,x+)). Using that, we can revise
Corollary 3.3 to:

Corollary 3.3’: Let W=x w(x) and wi be the weight of
the range [x,x+) containing the i-th search key. For
m search operations, the amortized cost is

O(m + i=1
m log (W/wi)).

24.10.2019 Chapter 3 64

24.10.2019 Chapter 3 65

Splay Tree Operations

Let T1 and T2 be two Splay trees with

key(x)<key(y) for all xT1 und yT2.

merge(T1,T2):

T1 T2 T’1 T2 T’1 T2

Take max. element x<∞ in T1 and splay it up to root

x x

∞

24.10.2019 Chapter 3 66

Splay Tree Operations

split(k,T): returns two trees as follows

T
T1 T2 T1 T2

k (or pred(k))

search(k):

causes splay(k)

or splay(pred(k))

>k

∞

24.10.2019 Chapter 3 67

Splay Tree Operations

insert(e):

• insert like in binary search tree

• Splay operation to move key(e) to the root

delete(k):

• execute search(k) (splays k to the root)

• remove root and execute merge(T1,T2) of
the two resulting subtrees

24.10.2019 Chapter 3 68

Splay Operations

• k-: closest predecessor k in T

• k+: closest successor >k in T

Theorem 3.6: The amortized cost of the following
operations in the Splay tree are:

• search(k): O(1+log(W/w([k-,k+))))

• insert(e): O(1+log(W/w([key(e),key(e)+))))

• delete(k): O(1+log(W/w([k,k+))) +
log((W-w([k,k+)))/w([k-,k))))

24.10.2019 Chapter 3 69

Search Trees

Problem: binary tree can degenerate!

Solutions:

• Splay tree
(very effective heuristic)

• (a,b)-tree
(guaranteed well balanced)

• Patricia trie

24.10.2019 Chapter 3 70

(a,b)-Trees

Problem: how to maintain balanced search
tree

Idea:

• All nodes v (except for the root) have
degree d(v) with a≤d(v)≤b, where a≥2
and b≥2a-1 (otherwise this cannot be
enforced)

• All leaves have the same depth

24.10.2019 Chapter 3 71

(a,b)-Trees

Formally: for a tree node v let

• d(v) be the number of children of v

• t(v) be the depth of v (root has depth 0)

• Form Invariant:
For all leaves v,w: t(v)=t(w)

• Degree Invariant:
For all inner nodes v
except for root: d(v)[a,b],
for root r: d(r)[2,b]
(as long as #elements >1)

24.10.2019 Chapter 3 72

(a,b)-Trees

Lemma 3.10: An (a,b)-tree with n elements
has depth at most 1+⌊loga (n/2)⌋

Proof:

• The root has degree ≥2 and every other

inner node has degree ≥a.

• At depth t there are at least 2at-1 nodes

• n≥2at-1⇔ t≤1+⌊loga(n/2)⌋

24.10.2019 Chapter 3 73

(a,b)-Trees

(a,b)-Tree-Rule:

Then search operation easy to implement.

s1, s2,…,sd-1

T1 T2 Td

. . . .

For all keys k in Ti and

k´ in Ti+1: k si < k´

24.10.2019 Chapter 3 74

Search(9)

1 3 10 14 195 28 ∞

1 3 5 14 28

10 19

24.10.2019 Chapter 3 75

Insert(e) Operation

Strategy:

• First search(key(e)) until some e´ found in

the list. If key(e´)>key(e), insert e in front

of e´, otherwise replace e´ by e.

e´ ∞.

24.10.2019 Chapter 3 76

Insert(e) Operation

e´e ∞.

Strategy:

• First search(key(e)) until some e´ found in

the list. If key(e´)>key(e), insert e in front

of e´, otherwise replace e´ by e.

24.10.2019 Chapter 3 77

Insert(e) Operation

• Add key(e) and pointer to e in tree node v

which is parent of e´. If we still have

d(v)[a,b] after-wards, then we are done.

x zy. x zy.

… x z … … x y z …
v v

e e’ e e’

24.10.2019 Chapter 3 78

Insert(e) Operation

• If d(v)>b, then cut v into two nodes.

(Example: a=2, b=4)

x u‘u

x u u‘ y
v

… b z …
w

y z x u u‘ y z

x u‘ y

… b u z …

e e’ e e’

split

24.10.2019 Chapter 3 79

Insert(e) Operation

• If after splitting v, d(w)>b, then cut w into two

nodes (and so on, until all nodes have degree
≤b or we reached the root)

a b u z
w

… r s …

a u z

… r b s …

split

24.10.2019 Chapter 3 80

Insert(e) Operation

• If for the root v of T, d(v)>b, then cut v into two

nodes and create a new root node.

a b c d
v

a c d

b

split

24.10.2019 Chapter 3 81

Insert(8)

1 3 10 14 195 28 ∞

1 3 5 14 28

10 19

a=2, b=4

24.10.2019 Chapter 3 82

Insert(8)

1 3 10 14 195 28 ∞

1 3 5 8 14 28

10 19

a=2, b=4

8

24.10.2019 Chapter 3 83

Insert(8)

1 3 10 14 195 28 ∞

14 28

3 10 19

a=2, b=4

8

1 5 8

24.10.2019 Chapter 3 84

Insert(6)

1 3 10 14 195 28 ∞

14 28

3 10 19

a=2, b=4

8

1 5 8

24.10.2019 Chapter 3 85

Insert(6)

1 3 10 14 195

14

3 10 19

a=2, b=4

8

1 5 6 8

6

. . .

24.10.2019 Chapter 3 86

Insert(7)

1 3 10 14 195

14

3 10 19

a=2, b=4

8

1 5 6 8

6

. . .

24.10.2019 Chapter 3 87

Insert(7)

1 3 10 14 195

14

3 10 19

a=2, b=4

8

1 5 6 7 8

6

. . .

7

24.10.2019 Chapter 3 88

Insert(7)

1 3 10 14 195

14

3 6 10 19

a=2, b=4

8

1

6

. . .

7

5 7 8

24.10.2019 Chapter 3 89

Insert(7)

1 3 10 14 195

14

a=2, b=4

8

1

6

. . .

7

5 7 8

3 10 19

6

24.10.2019 Chapter 3 90

Insert Operation

• Form Invariant:
For all leaves v,w: t(v)=t(w)
Satisfied by Insert!

• Degree Invariant:
For all inner nodes v except for the root:
d(v)[a,b], for root r: d(r)[2,b]

1) Insert splits nodes of degree b+1 into nodes
of degree ⌊(b+1)/2⌋ and ⌈(b+1)/2⌉. If b≥2a-1,
then both values are at least a.

2) If root has reached degree b+1, then a new
root of degree 2 is created.

24.10.2019 Chapter 3 91

Delete(k) Operation

Strategy:

• First search(k) until some element e is

reached in the list. If key(e)=k, remove e

from the list, otherwise we are done.

e´ e ∞e´´.

24.10.2019 Chapter 3 92

Delete(k) Operation

e´ ∞e´´.

Strategy:

• First search(k) until some element e is

reached in the list. If key(e)=k, remove e

from the list, otherwise we are done.

24.10.2019 Chapter 3 93

Delete(k) Operation

• Remove pointer to e and key k from the leaf

node v above e. (e rightmost child: perform key

exchange like in binary tree!) If afterwards we
still have d(v)≥a, we are done.

x yk. x y.

… x k y … … x y …
v v

e

24.10.2019 Chapter 3 94

Delete(k) Operation

• Remove pointer to e and key k from the leaf

node v above e. (e rightmost child: perform key

exchange like in binary tree!) If afterwards we
still have d(v)≥a, we are done.

x y k. x y.

… x y … x
v v

e

… k … … y …

24.10.2019 Chapter 3 95

Delete(k) Operation

• If d(v)<a and the preceding or succeeding sibling

of v has degree >a, steal an edge from that

sibling. (Example: a=2, b=4)

x ry

v

s t x y r s t

u y t

y r s

u x t

x r s

24.10.2019 Chapter 3 96

Delete(k) Operation

• If d(v)<a and the preceding and succeeding

siblings of v have degree a, merge v with one of

these. (Example: a=3, b=5)

x ry

v

s t x y r s t

u t

x y r sx r s

u y t

merge

24.10.2019 Chapter 3 97

Delete(k) Operation

• Perform changes upwards until all inner

nodes (except for the root) have degree
≥a. If root has degree <2: remove root.

x y z x y z

24.10.2019 Chapter 3 98

Delete(10)

1 3 10 14 195 28 ∞

1 3 5 14 28

10 19

a=2, b=4

24.10.2019 Chapter 3 99

Delete(10)

1 3 14 195 28 ∞

14 28

5 19

a=2, b=4

1 3

24.10.2019 Chapter 3 100

Delete(14)

1 3 14 195 28 ∞

14 28

5 19

a=2, b=4

1 3

24.10.2019 Chapter 3 101

Delete(14)

1 3 195 28 ∞

28

5 19

a=2, b=4

1 3

24.10.2019 Chapter 3 102

Delete(14)

1 3 195 28 ∞

5 28

3 19

a=2, b=4

1

24.10.2019 Chapter 3 103

Delete(3)

1 3 195 28 ∞

5 28

3 19

a=2, b=4

1

24.10.2019 Chapter 3 104

Delete(3)

1 195 28 ∞

5 28

3 19

a=2, b=4

1

24.10.2019 Chapter 3 105

Delete(3)

1 195 28 ∞

5 28

1 19

a=2, b=4

24.10.2019 Chapter 3 106

Delete(3)

1 195 28 ∞

28

19

a=2, b=4

1 5

24.10.2019 Chapter 3 107

Delete(1)

1 195 28 ∞

28

19

a=2, b=4

1 5

24.10.2019 Chapter 3 108

Delete(1)

195 28 ∞

28

19

a=2, b=4

5

24.10.2019 Chapter 3 109

Delete(19)

195 28 ∞

28

19

a=2, b=4

5

24.10.2019 Chapter 3 110

Delete(19)

5 28 ∞

5

a=2, b=4

28

24.10.2019 Chapter 3 111

Delete(19)

5 28 ∞

a=2, b=4

5 28

24.10.2019 Chapter 3 112

Delete(19)

5 28 ∞

a=2, b=4

5 28

24.10.2019 Chapter 3 113

Delete Operation

• Form Invariant:
For all leaves v,w: t(v)=t(w)
Satisfied by Delete!

• Degree Invariant:
For all inner nodes v except for the root: d(v)[a,b], for
root r: d(r)[2,b]

1) Delete merges node of degree a-1 with node of
degree a. Since b2a-1, the resulting node has degree
at most b.

2) Delete moves edge from a node of degree >a to a
node of degree a-1. Also OK.

3) Root deleted: children have been merged, degree of
the remaining child is ≥a (and also ≤b), so also OK.

24.10.2019 Chapter 3 114

More Operations

• min/max Operation:

Pointers to both ends of list: time O(1).

• Range queries:

To obtain all elements in the range [x,y],

perform search(x) and go through the list

till an element >y is found.

Time O(log n + size of output).

24.10.2019 Chapter 3 115

n Update Operations

Theorem 3.11: There is a sequence of n

insert and delete operations in a (2,3)-tree

that require (n log n) many split and

merge Operations.

Proof: Exercise

24.10.2019 Chapter 3 116

n Update Operations

Theorem 3.12: Consider an (a,b)-tree with
b≥2a that is initially empty. For any

sequence of n insert and delete opera-

tions, only O(n) split and merge operations

are needed.

Proof:

Amortized analysis

24.10.2019 Chapter 3 117

External (a,b)-Tree

Internal memory (RAM)

External memory (harddisk)

block size B

size M

(a,b)-trees well suited for large amounts of data

24.10.2019 Chapter 3 118

External (a,b)-Tree

Problem: minimize number of block transfers between
internal and external memory

Solution:

• use b=B (block size) and a=b/2

• keep highest (1/2)loga(M/b) levels of (a,b)-tree in internal
memory (storage needed ≤ M)

• Lemma 3.10: depth of (a,b)-tree ≤1+⌊loga (n/2)⌋

• How many levels are not in internal memory?
loga[n/2] - (1/2)loga(M/b) ≤ loga[n/(2 M)] + O(1) (a, b are O(1))

• Cost for insert, delete and search operations:
O(logB(n/ M)) block transfers

24.10.2019 Chapter 3 119

External (a,b)-Tree

Problem: minimize number of block transfers between
internal and external memory

A better analysis can show (exercise):

• Cost for insert, delete and search operations:
~2logB/2(n/M)+1 block transfers (+1: list access)

Example:

• n = 100,000,000,000,000 keys

• M = 16 Gbyte (~4,000,000,000 keys)

• B = 256 Kbyte (~64,000 keys)

• 2logB/2(n/M)+13

24.10.2019 Chapter 3 120

Search Trees

Problem: binary tree can degenerate!

Solutions:

• Splay tree
(very effective heuristic)

• (a,b)-tree
(guaranteed well balanced)

• Patricia trie

24.10.2019 Chapter 3 121

Longest Prefix Search

• All keys are encoded as binary sequence {0,1}W

• Prefix of a key x∈{0,1}W: arbitrary subsequence
of x that starts with the first bit of x
(example: 101 is a prefix of 10110100)

Problem: given a key x∈{0,1}W, find a key y∈S
with longest common prefix

Solution: Trie Hashing

24.10.2019 Chapter 3 122

Trie

A trie is a search tree over some alphabet that has the

following properties:

• Every edge is associated with a symbol c∈

• Every key x∈k that has been inserted into the trie can
be reached from the root of the trie by following the
unique path of length k whose edge labels result in x.

For simplicity: all keys from {0,1}W for some W∈ℕ.

Example:

(0,2,3,5,6) with W=3 results in (000,010,011,101,110)

24.10.2019 Chapter 3 123

Trie

Example: (without list at bottom)

0

1

1

0

0

0

10 1

1

0

000 010 011 101 110

24.10.2019 Chapter 3 124

Trie

search(4) (4 corresponds to 100):

0

1

1

0

0

0

10 1

1

0

000 010 011 101 110

Output: 5 (longest common prefix)

24.10.2019 Chapter 3 125

Trie

In general: a search(x) request follows the edges in the trie

as long as their labels form a prefix of x. Once no edge is

available any more to follow the bits in x, the request

may be forwarded to any leaf y in the subtrie below since

all of them have the same longest prefix match with x.

x

y

24.10.2019 Chapter 3 126

Trie

insert(1) (1 corresponds to 001):

0

1

1

0

0

0

10 1

1

0

000 010 011 101 110

1

001

24.10.2019 Chapter 3 127

Trie

In general: an insert(x) request follows the edges in the trie

as long as their labels form a prefix of x. Once no edge is

available any more to follow the bits in x, a new path (of

length the remaining bits in x) is created that leads to the

new leaf x.

x

24.10.2019 Chapter 3 128

Trie

delete(5):

0

1

1

0

0

0

10 1

1

0

000 010 011 101 110

1

001

24.10.2019 Chapter 3 129

Trie

In general: a delete(x) request follows the edges in the trie

down to the leaf x. If x does not exist, the delete

operation terminates. Otherwise, x as well as the chain

of nodes upwards till the first node with at least two

children is deleted.

x

24.10.2019 Chapter 3 130

Patricia Trie

Problem:

• Longest common prefix search for some x∈{0,1}W

can take (W) time.

• Insert and delete may require (W) structural
changes in the trie.

Improvement: use Patricia trie

A Patricia trie is a compressed trie in which all chains
(i.e., maximal sequences of nodes of degree 1) are
merged into a single edge whose label is equal to
the concatenation of the labels of the merged trie
edges.

24.10.2019 Chapter 3 131

Trie

Example 1:

0

1

1

0

0

0

10 1

1

0

000 010 011 101 110

24.10.2019 Chapter 3 132

Patricia Trie

Example 1:

00

1

1

0

01

0 1

10

000 010 011 101 110

24.10.2019 Chapter 3 133

Trie

Example 2:

0 1

0

0

0 1

000 010 011

24.10.2019 Chapter 3 134

Patricia Trie

Example 2:

00

1

0 1

000 010 011

root stores prefix 0

24.10.2019 Chapter 3 135

Patricia Trie

search(4):

00

1

1

0

01

0 1

10

000 010 011 101 110

24.10.2019 Chapter 3 136

Patricia Trie
In general: a search(x) request follows the edges in the

Patricia trie as long as their labels form a prefix of x.

Once no edge is available any more to follow the bits in

x, choose the current child c with longest common prefix.

Then, the request may be forwarded to any leaf y in the

subtrie rooted c at below since all of them have the same

longest prefix match with x.

x

y

c

24.10.2019 Chapter 3 137

Patricia Trie

insert(1):

00

1

1

0

01

0 1

10

000 010 011 101 110

0

0 1

001

24.10.2019 Chapter 3 138

Patricia Trie

Insert(5):

00

1

0 1

000 010 011 101

0

101

0

24.10.2019 Chapter 3 139

Patricia Trie

In general: an insert(x) request follows the edges in the

Patricia trie as long as their labels form a prefix of x.

Once an edge e is reached whose label l(e) does not

follow the bits in x, a new tree node is created in the

middle of e.

x

e

e´

x

e

x

e´´

24.10.2019 Chapter 3 140

Patricia Trie

In general: an insert(x) request follows the edges in the

Patricia trie as long as their labels form a prefix of x.

Once an edge e is reached whose label l(e) does not

follow the bits in x, a new tree node is created in the

middle of e.

Example: l(e)=10010, x=…10110100

e´

x

e

x

e´´

l(e´)=10

l(e´´)=010

l(e´´´)=110100
e´´´

24.10.2019 Chapter 3 141

Patricia Trie

In general: an insert(x) request follows the edges in the

Patricia trie as long as their labels form a prefix of x.

Once an edge e is reached whose label l(e) does not

follow the bits in x, a new tree node is created in the

middle of e.

Special case:

x

old root

e

x

old root

new roote

24.10.2019 Chapter 3 142

Patricia Trie

delete(5):

1

1

0

01

0 1

10

000 010 011 101 110

0

0 1

001

110

24.10.2019 Chapter 3 143

Patricia Trie

delete(6):

1

0

0 1

000 010 011 110

0

0 1

001

110

0

24.10.2019 Chapter 3 144

Patricia Trie

In general: a delete(x) request follows the edges in the

Patricia trie down to the leaf x. If x does not exist, the

delete operation terminates. Otherwise, x as well as its

parent are deleted.

Example: l(e´)=10, l(e´´)=010, l(e´´´)=110100,

x=…10110100

e´

x

e

e´´

l(e)=10010

e´´´

24.10.2019 Chapter 3 145

Patricia Trie

• Search, insert, and delete like in an

ordinary binary tree, with the difference

that we have labels at the edges.

• Search time still O(W) in the worst case,

but just O(1) structural changes.

24.10.2019 Chapter 3 146

Patricia Trie

• History:
– Invented independently by D. R. Morrison (1968) and

G. Gwehenberger (1968).

– Morrison called them „Patricia trees“, where
PATRICIA stands for Practical Algorithm To Retrieve
Information Coded in Alphanumeric.

– Patricia trees are also referred to as radix trees (with
radix 2).

Idea (Kniesburges and Scheideler, 2011):

• Can improve search time to O(log W) using
„hashed Patricia tries“. (Will not cover this here.)

