Fundamental Algorithms

Chapter 2: Advanced Heaps

Sevag Gharibian
(based on slides of Christian Scheideler) WS 2019

Contents

A heap implements a priority queue. We will consider the following heaps:

- Binomial heap
- Fibonacci heap
- Radix heap

Priority Queue

Priority Queue

insert(10)

Priority Queue

min() outputs 3 (minimal element)

Priority Queue

deleteMin()

Priority Queue

decreaseKey(12,9) (note: 9 is the offset)

Priority Queue

delete(8)

Priority Queue

merge(Q,Q')

Priority Queue

M : set of elements in priority queue Every element e identified by key(e).
Operations:

- M.build($\left\{\mathrm{e}_{1}, \ldots, \mathrm{e}_{n}\right\}$): $\mathrm{M}:=\left\{\mathrm{e}_{1}, \ldots, \mathrm{e}_{n}\right\}$
- M.insert(e: Element): $\mathrm{M}:=\mathrm{M} \cup\{\mathrm{e}\}$
- M.min: outputs $e \in M$ with minimal key(e)
- M.deleteMin: like M.min, but additionally $\mathrm{M}:=\mathrm{M} \backslash\{\mathrm{e}\}$, for that e with minimal key(e)

Extended Priority Queue

Additional operations:

- M.delete(e: Element): $\mathrm{M}:=\mathrm{M} \backslash\{\mathrm{e}\}$
- M.decreaseKey(e:Element, Δ):
key(e):=key(e)- Δ
- M.merge(M^{\prime}): $\mathrm{M}:=\mathrm{M} \cup \mathrm{M}^{\prime}$

Note: in delete and decreaseKey we have direct access to the corresponding element and therefore do not have to search for it.

Why Priority Queues?

- Sorting: Heapsort
- Shortest paths: Dijkstra's algorithm
- Minimum spanning trees: Prim's algorithm
- Job scheduling: EDF (earliest deadline first)

Why Priority Queues?

Problem from the ACM International Collegiate Programming Contest:

- A number whose only prime factors are $2,3,5$ or 7 is called a humble number. The sequence $1,2,3,4,5,6,7,8,9,10,12$, $14,15,16,18,20,21,24,25,27, \ldots$ shows the first 20 humble numbers.
- Write a program to find and print the n-th element in this sequence

Solution: use priority queue to systematically generate all humble numbers, starting with queue just containing 1. Repeatedly do:

- $\mathrm{x}:=\mathrm{M} . d e l e t e \mathrm{Min}$
- M.insert(2x); M.insert(3x); M.insert(5x), M.insert(7x) (assumption: only inserts element if not already in queue)

Priority Queue

- Priority Queue based on unsorted list:
- build(\{ $\left.\left.\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}\right\}\right)$: time $\mathrm{O}(\mathrm{n})$
- insert(e): O(1)
- min, deleteMin: O(n)
- Priority Queue based on sorted array:
- build(\{ $\left.\left.\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}\right\}\right)$: time $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ (needed for sorting)
- insert(e): O(n) (rearrange elements in array)
- min, deleteMin: $O(1)$

Better structure needed than list or array!

Binary Heap

Idee: use binary tree instead of list
Preserve two invariants:

- Form invariant:complete binary tree up to lowest level
- Heap invariant:

$$
\operatorname{key}\left(\mathrm{e}_{1}\right) \leq \min \left\{\operatorname{key}\left(\mathrm{e}_{2}\right), \operatorname{key}\left(\mathrm{e}_{3}\right)\right\}
$$

Binary Heap

Example:

Heap invariant

Binary Heap

Representation of binary tree via array:

Binary Heap

Representation of binary tree via array:

e_{1}	e_{2}	e_{3}	e_{4}	e_{5}	e_{6}	e_{7}	e_{8}	e_{9}

- H: Array [1..N] of Element ($\mathrm{N} \geq$ \#elements n)
- Children of e in $\mathrm{H}[\mathrm{i}]$: in $\mathrm{H}[2 \mathrm{i}], \mathrm{H}[2 \mathrm{i}+1]$
- Form invariant: $\mathrm{H}[1], \ldots, \mathrm{H}[\mathrm{n}]$ occupied
- Heap invariant: for all $i \in\{2, \ldots, n\}$,

$$
\operatorname{key}(\mathrm{H}[\mathrm{i}]) \geq \operatorname{key}(\mathrm{H}[\mathrm{~L} / 2]])
$$

Binary Heap

Representation of binary tree via array:

insert(e):

- Form invariant: $n:=n+1 ; H[n]:=e$
- Heap invariant: as long as e is in H[k] with k>1 and key(e)<key(H[[k/2]]), switch e with parent

Insert Operation

insert(e: Element):
$\mathrm{n}:=\mathrm{n}+1 ; \mathrm{H}[\mathrm{n}]:=\mathrm{e}$
heapifyUp(n)
heapifyUp(i: Integer):
while $\mathrm{i}>1$ and $\operatorname{key}(\mathrm{H}[\mathrm{i}])<\operatorname{key}(\mathrm{H}[\mathrm{L} / 2 \mathrm{~L}])$ do $H[i] \leftrightarrow H[[i / 2]]$
$i:=\lfloor\mathrm{i} / 2\rfloor$
Runtime: $\mathrm{O}(\log \mathrm{n})$

Insert Operation - Correctness

Invariant: $\mathrm{H}[\mathrm{k}]$ is minimal w.r.t. subtree of $\mathrm{H}[\mathrm{k}]$
: nodes that may violate invariant

Insert Operation - Correctness

Invariant: $\mathrm{H}[\mathrm{k}]$ is minimal w.r.t. subtree of $\mathrm{H}[\mathrm{k}]$
: nodes that may violate invariant

Insert Operation - Correctness

Invariant: $\mathrm{H}[\mathrm{k}]$ is minimal w.r.t. subtree of $\mathrm{H}[\mathrm{k}]$
) nodes that may violate invariant

Insert Operation - Correctness

Invariant: $\mathrm{H}[\mathrm{k}]$ is minimal w.r.t. subtree of $\mathrm{H}[\mathrm{k}]$
) nodes that may violate invariant

Binary Heap

deleteMin:

- Form invariant: H[1]:=H[n]; n:=n-1
- Heap invariant: start with e in H[1]. Switch e with the child with minimum key until $H[k] \leq \min \{H[2 k], H[2 k+1]\}$ for the current position k of e or e is in a leaf

Binary Heap

deleteMin():
Runtime: $\mathrm{O}(\log \mathrm{n})$

```
e:=H[1]; H[1]:=H[n]; n:=n-1
heapifyDown(1)
return e
```

heapifyDown(i: Integer): while $2 i \leq n$ do $\quad / / \mathrm{i}$ is not a leaf position
if $2 i+1>n$ then $m:=2 i / / m$: pos. of the minimum child else
if key $(\mathrm{H}[2 \mathrm{i}])<\mathrm{key}(\mathrm{H}[2 i+1])$ then $\mathrm{m}:=2 \mathrm{i}$ else $m:=2 i+1$
if key $(\mathrm{H}[\mathrm{i}]) \leq \mathrm{key}(\mathrm{H}[\mathrm{m}])$ then return // heap inv. holds $\mathrm{H}[\mathrm{i}] \leftrightarrow \mathrm{H}[\mathrm{m}] ; \mathrm{i}:=\mathrm{m}$

deleteMin Operation - Correctness

Invariant: $\mathrm{H}[\mathrm{k}]$ is minimal w.r.t. subtree of $\mathrm{H}[\mathrm{k}]$
) nodes that may violate invariant

deleteMin Operation - Correctness

Invariant: $\mathrm{H}[\mathrm{k}]$ is minimal w.r.t. subtree of $\mathrm{H}[\mathrm{k}]$

- nodes that may violate invariant

deleteMin Operation - Correctness

Invariant: $\mathrm{H}[\mathrm{k}]$ is minimal w.r.t. subtree of $\mathrm{H}[\mathrm{k}]$
) nodes that may violate invariant

Binary Heap

Naive implementation:
build($\left\{\mathrm{e}_{1}, \ldots, \mathrm{e}_{n}\right\}$):

- Call insert(e) n times.
- Runtime $\mathrm{O}(\mathrm{n} \log \mathrm{n})$.

More careful implementation:
build $\left(\left\{e_{1}, \ldots, e_{n}\right\}\right)$:
for $i:=\lfloor n / 2\rfloor$ downto 1 do heapifyDown(i)

- Fact: $\mathrm{H}(\mathrm{i})$ for $\lfloor\mathrm{n} / 2\rfloor+1<=\mathrm{i}<=\mathrm{n}$ are leaves of heap
- Runtime: Why should this be faster than $\mathrm{O}(\mathrm{n} \log \mathrm{n})$?

Careful analysis

More careful implementation:
build $\left(\left\{e_{1}, \ldots, e_{n}\right\}\right)$:
for $i:=\lfloor n / 2\rfloor$ downto 1 do
heapifyDown(i)
Observation: Cost of heapifyDown(i) is $\mathrm{O}(\mathrm{h})$, for h the height of the subtree rooted at $\mathrm{H}(\mathrm{i})$.

Height(i): \#edges on longest simple path from i to leaf

Careful analysis

build $\left(\left\{e_{1}, \ldots, e_{n}\right\}\right)$:
for $\mathrm{i}:=\lfloor\mathrm{n} / 2\rfloor$ downto 1 do heapifyDown(i)

Facts for n-element heap:

1. $\operatorname{Height}($ root $)=\lfloor\log (\mathrm{n})\rfloor$
2. \#nodes of height $\mathrm{h} \leq\left\lceil n / 2^{h+1}\right\rceil$

Runtime (use fact $\sum_{k=0}^{\infty} k x^{k}=x /(1-x)^{2}$ for $|x| \leq 1$):

$$
\sum_{h=0}^{\lfloor\log (n)\rfloor}\left\lceil\frac{n}{2^{h+1}}\right\rceil O(h)=O\left(n \sum_{h=0}^{\lfloor\log (n)\rfloor} \frac{h}{2^{h}}\right)=O(n)
$$

Binary Heap

Runtime:

- build(\{ $\left.\left.\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}\right\}\right)$: $\mathrm{O}(\mathrm{n})$
- insert(e): O(log n)
- min: O(1)
- deleteMin: O(log n)

Extended Priority Queue

Additional Operations:

- M.delete(e: Element): M:=M
{e\} }
- M.decreaseKey(e:Element, Δ): key(e):=key(e)- Δ
- M.merge(M^{\prime}): $\mathrm{M}:=\mathrm{M} \cup \mathrm{M}^{\prime}$
- delete and decreaseKey can be implemented with runtime $\mathrm{O}(\log n$) in binary heap (if position of e is known)
- merge is expensive $(\Theta(\mathrm{n})$ time)!

Ouch!

- M.merge($\left.\mathrm{M}^{\prime}\right): \mathrm{M}:=\mathrm{M} \cup \mathrm{M}^{\prime}$
- merge is expensive ($\Theta(\mathrm{n})$ time)!
- merging binary heaps M and $\mathrm{M}^{‘}$ requires „starting from scratch", i.e. building a new binary heap containing all elements of M and $\mathrm{M}^{\text {c }}$
- Bad news if our application needs many merges. Can we do better?
- Yes! Via Binomial Heaps.

Binomial Heap

Goal: Maintain costs of Binary Heaps, but bring cost of merge from $\Theta(n)$ to $O(\operatorname{logn})$.

Binomial heap is collection of binomial trees

So let us first define binomial trees!

Binomial Heap

Binomial trees:

- defined recursively for rank r
- Tree B_{r} is two trees B_{r-1} linked together.
- Form invariant:

Binomial Trees

Examples of Binomial trees:

$$
r=0
$$

$$
r=1
$$

$r=2$

$$
r=3
$$

Binomial Trees

Properties of Binomial trees:

$$
r=0
$$

$$
r=1
$$

$$
r \rightarrow r+1
$$

- 2^{r} nodes
number of neighbors
- maximum degree r (at root)
- root deleted: Tree splits into Binomial trees of rank 0 to r -1 (exactly one of each rank!)

Binomial Trees

Example for decomposition into Binomial trees of rank 0 to r - 1 (exactly one per rank)

Binomial Heap

Binomial trees:

- defined recursively for rank r
- Tree B_{r} is two trees B_{r-1} linked together.
- Form invariant:

$$
r=0 \quad r=1 \quad r \rightarrow r+1
$$

- Heap invariant:

(key(Parent) \leq key(Children))

Binomial Heap

Binomial Heap:

- linked list of Binomial trees, ordered by ranks
- for each rank at most 1 Binomial tree
- pointer to root with minimal key (optional)

Binomial Heap

Data type:

$$
\begin{array}{l|l}
\text { binTree: } & \text { parent: binTree } \\
& \text { prev: binTree } \\
& \text { next: binTree } \\
& \text { key: Integer } \\
& \text { rank: Integer } \\
& \text { Children: binTree }
\end{array}
$$

Binomial Heap

Example of a correct Binomial heap:

Binomial Heap

Example of a correct Binomial heap:

Binomial Heap

Question: How many times can a distinct rank appear between both trees? 2.

Merge of Binomial heaps H_{1} and H_{2} :

Idea: binary addition H_{1}

10100100
$+101100$

11010000

Example of Merge Operation

by the merging!

outcome

Binomial Heap

Runtime of merge operation: $\mathrm{O}(\log \mathrm{n})$ because

- the largest rank in a Binomial heap with n elements at most log n (see analogy with binary numbers), and
- at most one Binomial tree is allowed for each rank value
B_{i} : Binomial tree of rank i
- insert(e): merge existing heap with B_{0} containing only element e
- min: use min-pointer, time $O(1)$. (Without min-pointer, O(logn).)
- deleteMin: let the min-pointer point to the root of B_{i}. In H, deleting the root of B_{i} results in Binomial trees B_{0}, \ldots, B_{i-1}.
- Obs: Since $\mathrm{B}_{0}, \ldots, \mathrm{~B}_{\text {t }}$ have distinct ranks, can link them immediately to make a temporary Binomial heap H^{\prime}. Then merge H and H^{\prime}.

Remarks:

- insert and deleteMin reduce to merge, yielding runtime of $O(\log n)$.
- If using min-pointer, update min-pointer after insert and deleteMin. Additive cost: O(log n).

Example of Insert Operation

Insert(8):

Example of Insert Operation

Insert(8):

Example of Insert Operation

Insert(8):

Example of Insert Operation

Outcome of Insert(8):

Binomial Heap

- decreaseKey(e, $\Delta)$: perform heapifyUp operation in Binomial tree starting with e, update min-pointer. Time: $\mathrm{O}(\log n)$
- Note: Does not change ranks, only keys, so suffices to locally relabel nodes of tree containing e.
- delete(e): reduce to deleteMin!
- call decreaseKey (e,-ヵ), then deleteMin Time: O(log n)

Example of decreaseKey

decreaseKey(24,19):

Example of decreaseKey

decreaseKey(24,19):

Example of decreaseKey

decreaseKey(24,19):

Example of decreaseKey

Outcome of decreaseKey $(24,19)$:

Recall: Binomial Heap

Goal: Maintain costs of Binary Heaps, but bring cost of merge from $\Theta(n)$ to $O(\operatorname{logn})$.

- Goal is achieved.
- But... can we do better?
- Yes, if we work with amortized costs.

Fibonacci Heap

- Goal: To bring amortized cost of operations not involving deletion of an element down to O(1).
- Price we pay: Fibonacci Heaps more complicated to implement in practice, large constants hidden in Big-Oh notation

Summary

Runtime	Binomial Heap	Fibonacci Heap
insert	$\mathrm{O}(\log n)$	$\mathrm{O}(1)$
min	$\mathrm{O}(1)$	$\mathrm{O}(1)$
deleteMin	$\mathrm{O}(\log n)$	$\mathrm{O}(\log n)$ amor.
delete	$\mathrm{O}(\log n)$	$\mathrm{O}(\log n)$ amor.
merge	$\mathrm{O}(\log n)$	$\mathrm{O}(1)$
decreaseKey	$\mathrm{O}(\log n)$	$\mathrm{O}(1)$ amor.

Fibonacci Heap

- Based on Binomial trees, but it allows lazy merge and lazy delete.
- Lazy merge: no merging of Binomial trees of the same rank during merge, only concatenation of the two lists
- Lazy delete: creates incomplete Binomial trees

Fibonacci Heap

Tree in a Binomial heap:

Fibonacci Heap

Tree in a Fibonacci heap:

Every parent only knows first and last child of list

Fibonacci Heap

Tree in a Fibonacci heap:

Data type fibTree:

parent: fibTree prev: fibTree next: fibTree key: Integer rank: Integer mark: $\{0,1\}$ Children: fibTree

Fibonacci Heap

Lazy merge of

results in
min

Fibonacci Heap

Lazy delete:

Fibonacci Heap

Lazy delete:

(not deleteMin!) should not happen "too often" without a cleanup step

Fibonacci Heap

For any node v in the Fibonacci heap:

- parent(v) points to the parent of v (if v is a root, then parent $(\mathrm{v})=\perp$)
- $\operatorname{prev}(\mathrm{v})$ and next(v) connect v to its preceding and succeeding siblings
- key(v) stores the key of v
- rank(v) is equal to the number of children
parent: fibTree prev: fibTree next: fibTree
key: Integer rank: Integer mark: $\{0,1\}$
Children: fibTree of v
- mark(v) stores whether v has lost a child from a lazy delete (unless v is a root node, in which case where mark $(x)=0$)
- Children(v) points to the first child in the childlist of v (this is sufficient for the data structure, but for the formal presentation of the Fibonacci heap we assume that v knows the first and last child in its childlist)

Fibonacci Heap

Fibonacci heap is a list of Fibonacci trees
Fibonacci tree has to satisfy:

- Form invariant:

Every node of rank r has exactly r children.

- Heap invariant:

For every node v, $\operatorname{key}(\mathrm{v}) \leq k e y$ (children of v).
The min-pointer points to the minimal key among all keys in the Fibonacci heap.

Fibonacci Heap

Operations:

- merge: concatenate root lists, update minpointer. Time O(1)
- insert(x): add x as B_{0} (with mark $(x)=0$) to root list, update min-pointer. Time $O(1)$
- min(): output element that the min-pointer is pointing to. Time $O(1)$
- deleteMin(), delete(x), decreaseKey(x, Δ): to be determined...

Fibonacci Heap

deleteMin(): This operation will clean up the Fibonacci heap. Let the min-pointer point to x.

Algorithm deleteMin():

- remove x from root list
- for every child c in child list of x, set parent(c):= \perp and mark(c):=0 // mark not needed for root nodes
- integrate child list of x into root list
- while ≥ 2 trees of the same rank i do
merge trees to a tree of rank $\mathrm{i}+1$
(like with two Binomial trees)
- update min-pointer

Fibonacci Heap

Merging of two trees of rank i
(i.e., root has i children):
i+1 children, thus rank i+1

Fibonacci Heap

Efficient searching for roots of the same rank:

- Before executing the while-loop, scan all roots and store them according to their rank in an array:

- Merge like for Binomial trees starting with rank 0 until the maximum rank has been reached (like binary addition)

Fibonacci Heap

Ideas behind delete(x) operation:

- Like deleteMin(), except:
- Since node being deleted is potentially not a root, need to use the mark variables now
- Each time a node v loses a second child, v is promoted to a separate tree in the root list of the heap
- No "cleanup" or "consolidation step" based on ranks as for deleteMin() is performed.

Fibonacci Heap

Algorithm delete(x):
if x is min-root then deleteMin() else
$y:=$ parent (x) delete x
for every child c in child list of x, set parent(c): $=\perp$ and
mark(c):=0
add child list to root list
while $y \neq$ NULL do $/ /$ parent node of x exists
rank(y):=rank(y)-1 // one more child gone
if parent $(\mathrm{y})=\perp$ then return $/ / \mathrm{y}$ is root node: done
if mark $(\mathrm{y})=0$ then $\{\operatorname{mark}(\mathrm{y}):=1$; return \}
else // mark(y)=1, so one child already gone $x:=y$; $y:=$ parent (x)
move x with its subtree into the root list parent(x):= ; mark(x):=0 // roots do not need mark

Fibonacci Heap

Example for delete operations: (O : mark=1)

Fibonacci Heap

Algorithm decreaseKey(x, x):
$\mathrm{y}:=$ parent (x)
move x with its subtree into root list
parent $(x):=$ NULL; mark $(x):=0$ key (x):=key (x)- Δ
update min-pointer
while $y \neq N U L L$ do , // parent node of x exists
rank(y):=rank $(y)-1 / /$ one more child gone
if parent $(y)=$ NULL then return $/ / y$ is root node: done if $\operatorname{mark}(y)=0$ then $\{\operatorname{mark}(y):=1$; return \}
else /f mark $(\mathrm{y})=1$, so one child already gone
$x:=y ; y:=$ parent (x)
move x with its subtree into the root list parent(x):=NULL
$\operatorname{mark}(\mathrm{x}):=0$ // roots do not need mark

Fibonacci Heap

Runtime:

- deleteMin(): O(max. rank + \#tree mergings)
- delete(x): O(max. rank + \#cascading cuts) i.e., \#relocated marked nodes
- decreaseKey(x, $\Delta): ~ O(1$ + \#cascading cuts)

We will see: runtime of deleteMin can reach $\Theta(n)$, but on average over a sequence of operations much better (even in the worst case).

Amortized Analysis

Consider a sequence of n operations on an initially empty Fibonacci heap.

- Sum of individual worst case costs too high!
- Average-case analysis does not mean much
- Better: amortized analysis, i.e., average cost of operations in the worst case (i.e., a sequence of operations with overall maximum runtime)

Amortized Analysis

Recall:

Theorem 1.5: Let S be the state space of a data structure, s_{0} be its initial state, and let $\phi: S \rightarrow \mathbb{R}_{\geq 0}$ be a non-negative function. Given an operation X and a state s with $s \xrightarrow{X} s^{\prime}$, we define

$$
A_{x}(s):=T_{x}(s)+\left(\phi\left(s^{\prime}\right)-\phi(s)\right) .
$$

Then the functions $A_{x}(s)$ are a family of amortized time bounds.

Amortized Analysis

For Fibonacci heaps we will use the potential function
bal(s):= \#trees + 2•\#marked nodes in in state s
node v marked: $\operatorname{mark}(\mathrm{v})=1$
But: Before we do amortized analysis, useful to understand ranks and sizes of subtrees in heap.

Fibonacci Heap

Lemma 2.1: Let x be a node in the Fibonacci heap with $\operatorname{rank}(x)=k$. Let the children of x be sorted in the order in which they were added below x. Then the rank of the i-th child is $\geq i-2$.
Proof:

- When the i-th child is added, $\operatorname{rank}(x)=i-1$.
- Only step which can add i-th child is "consolidation step" of deleteMin. Thus, the i-th child must have also had rank i-1 at this time.
- Afterwards, the i-th child loses at most one of its children, i.e., its rank is $\geq i-2$. (Why?)

Fibonacci Heap

Theorem 2.2: Let x be a node in the Fibonacci heap with $\operatorname{rank}(x)=k$. Then the subtree with root x contains at least F_{k+2} elements, where F_{k} is the k-th Fibonacci number.

Definition of Fibonacci numbers:

- $F_{0}=0$ and $F_{1}=1$
- $F_{k}=F_{k-1}+F_{k-2}$ for all $k>1$

One can prove: $F_{k+2}=1+\sum_{i=1}^{k} F_{i}$.

Fibonacci Heap

Proof of Theorem 2.2:

- Let f_{k} be the minimal number of elements in a tree of rank k.
- From Lemma 2.1 we get: 1. child

$$
f_{k} \geq\left(f_{k-2}+f_{k-3}+\ldots+f_{0}+1\right)+1
$$

- Moreover, $\mathrm{f}_{0}=1$ and $\mathrm{f}_{1}=2$

- It follows from the Fibonacci numbers:

$$
f_{k} \geq F_{k+2}
$$

Fibonacci Heap

- It is known that $\mathrm{F}_{\mathrm{k}+2}>\Phi^{\mathrm{k}+2}$ with

$$
\Phi=(1+\sqrt{5}) / 2 \approx 1,618034
$$

- Hence, a tree of rank k in the Fibonacci heap contains at least $1,61^{k+2}$ nodes.
- Therefore, a Fibonacci heap with n elements contains trees of rank at most O(log n) (like in a Binomial heap)

Fibonacci Heap

- t_{i} : time for operation i
- bal ${ }_{i}$: value of bal(s) after operation i (bal(s) = \#trees + 2•\#marked nodes)
- a_{i} : amortized runtime of operation i $\mathrm{a}_{\mathrm{i}}=\mathrm{t}_{\mathrm{i}}+\Delta \mathrm{bal}_{\mathrm{i}}$ with $\Delta \mathrm{bal}_{\mathrm{i}}=$ bal $_{\mathrm{i}}-$-bal $_{\mathrm{i}-1}$

Amortized runtime of operations:

- insert: $t=0$ (1) and $\Delta b a l=+1$, so $a=O(1)$
- merge: $t=O(1)$ and \triangle bal $=0$, so $\mathrm{a}=\mathrm{O}(1)$
- \#trees before merge = total \#trees in both heaps
- min: $t=O(1)$ and $\Delta b a l=0$, so $a=O(1)$

Fibonacci Heap

Let H_{i} denote the heap after operation i.
Theorem 2.3: The amortized runtime of deleteMin() is $\mathrm{O}(\log \mathrm{n})$. Proof:

- Actual cost: $t_{i}=O\left(\operatorname{rank}(x)+\# \operatorname{trees}\left(H_{i-1}\right)\right)$. Why?
- Move children of x to separate trees in heap: $O(\operatorname{rank}(x))$
- Consolidate $O\left(\operatorname{rank}(x)+\# \operatorname{trees}\left(H_{i-1}\right)\right)$ trees: $O(\operatorname{rank}(x)+$ \#trees $\left(H_{i-1}\right)$)
- Update min-pointer: $O\left(\operatorname{rank}(x)+\# \operatorname{trees}\left(H_{i-1}\right)\right)$
- Theorem 2.2 says $\operatorname{rank}(x)=O(\operatorname{logn})$
- Potential function before deleteMin():
- bal ${ }_{i-1}=\#$ trees $\left(H_{i-1}\right)+2 \#$ markednodes $\left(H_{i-1}\right)$ (by def.)
- bal ${ }_{i} \leq O(\log n)+2 \#$ markednodes $\left(H_{i-1}\right)$. Why?
- deleteMin() can only unmark nodes
- Consolidation step creates heap with unique root ranks. Theorem 2.2 implies \#trees $\left(H_{i-1}\right) \leq 0(\operatorname{logn})$.
- Amortized cost: $a_{i}=t_{i}+b a l_{i}-b a l_{i-1}=O(\log n)$.

Fibonacci Heap

Theorem 2.4: Amortized runtime of delete (x) is $\mathrm{O}(\log \mathrm{n})$.
Proof: (x is not the min-element - otherwise like Th. 2.3)

- Insertion of child list of x into root list: $\Delta \mathrm{bal} \leq \operatorname{rank}(\mathrm{x})$
- Every cascading cut (i.e., relocation of a marked node) increases the number of trees by 1 : Δ bal = \#cascading cuts
- Every cascading cut removes one marked node: $\Delta \mathrm{bal}=-2$.\#cascading cuts
- The last cut possibly introduces a new marked node: Δ bal $\in\{0,2\}$

Fibonacci Heap

Theorem 2.4: The amortized runtime of delete(x) is O(logn).
Proof:

- Altogether:
$\Delta \mathrm{bal}_{\mathrm{i}} \leq \operatorname{rank}(\mathrm{x})$ - \#cascading cuts + O(1)
= O(log n) - \#cascading cuts
because of Theorem 2.2
- Real runtime (in appropriate time units): $\mathrm{t}_{\mathrm{i}}=\mathrm{O}(\log \mathrm{n})+$ \#cascading cuts
- Amortized runtime:

$$
a_{i}=t_{i}+\Delta \text { bal }_{i}=O(\log n)
$$

Fibonacci Heap

Thm 2.5: Amortized runtime of decreaseKey (x, Δ) is $\mathrm{O}(1)$.
Proof:

- Every cascading cut increases the number of trees by 1 : $\Delta \mathrm{bal}=$ \#cascading cuts
- Every cascading cut removes a marked node: Δ bal $\leq-2 \cdot \#$ cascading cuts
- The last cut possibly creates a new marked node: Δ bal $\in\{0,2\}$
- Altogether: Δ bal $_{\mathrm{i}}=-$ \#cascading cuts $+\mathrm{O}(1)$
- Real runtime: $\mathrm{t}_{\mathrm{i}}=$ \#cascading cuts $+\mathrm{O}(1)$
- Amortized runtime: $\mathrm{a}_{\mathrm{i}}=\mathrm{t}_{\mathrm{i}}+\Delta$ bal $_{\mathrm{i}}=\mathrm{O}(1)$

Summary

Runtime	Binomial Heap	Fibonacci Heap
insert	$\mathrm{O}(\log n)$	$\mathrm{O}(1)$
min	$\mathrm{O}(1)$	$\mathrm{O}(1)$
deleteMin	$\mathrm{O}(\log n)$	$\mathrm{O}(\log n)$ amor.
delete	$\mathrm{O}(\log n)$	$\mathrm{O}(\log n)$ amor.
merge	$\mathrm{O}(\log n)$	$\mathrm{O}(1)$
decreaseKey	$\mathrm{O}(\log n)$	$\mathrm{O}(1)$ amor.

Summary

Great, but... can we do better?

Yes... if we're willing to make assumptions about the input

Radix Heap

Assumptions:

1. At all times, maximum key - minimum key $<=$ constant C. (Think of fixed architecture, like 32-bit ints.)
2. Insert(e) only inserts elements e with $\operatorname{key}(\mathrm{e}) \geq \mathrm{k}_{\text {min }}$ ($\mathrm{k}_{\text {min }}$: minimum key).

The priority queue we implement is called a "monotone" priority queue, i.e. top-priority element's key monotonically increases.

Radix Heap

Idea:
Define $K=\lceil\log C\rceil$.
Two integers x and y s.t. $|x-y| \leq C \leq 2^{K}$ must agree on all bits after (i.e. more significant than) K.

Thus: suffices to keep track of first K bit positions.

Radix Heap

Let $\mathrm{B}[-1 . . \mathrm{K}]$ be array of lists $\mathrm{B}[-1]$ to $\mathrm{B}[\mathrm{K}]$, where $K=\lceil\log C\rceil$.

Invariant: Each e stored in $\mathrm{B}\left[m s d\left(\mathrm{k}_{\text {min }}, \mathrm{key}(\mathrm{e})\right)\right]$

- msd($\left.\mathrm{k}_{\text {min }}, \mathrm{key}(\mathrm{e})\right)$:
- most significant bit for which binary representations of $k_{\text {min }}$ and key(e) differ (-1: no difference)
- If $\mathrm{k}_{\min }=-\infty$ (heap empty), msd returns -1 .

Radix Heap

Example for $\mathrm{msd}\left(\mathrm{k}_{\text {min }}, \mathrm{k}\right)$:

- let $\mathrm{k}_{\text {min }}=17$, or in binary form, 10001
- $\mathrm{k}=17: \mathrm{msd}\left(\mathrm{k}_{\min }, \mathrm{k}\right)=-1$
- $k=18$: in binary 10010 , so msd $\left(\mathrm{k}_{\text {min }}, \mathrm{k}\right)=1$
- $k=21$: in binary 10101 , so msd $\left(k_{\text {min }}, k\right)=2$
- $\mathrm{k}=52$: in binary 110100 , so $\mathrm{msd}\left(\mathrm{k}_{\text {min }}, \mathrm{k}\right)=5$

Computation of msd for $\mathrm{a} \neq \mathrm{b}$:

$$
\operatorname{msd}(a, b)=\lfloor\log (a \oplus b)\rfloor
$$

where \oplus denotes bit-wise xor.
Time: O(1) (with appropriate machine instruction set)

Radix Heap

$\min ():$

- output $\mathrm{k}_{\text {min }}$ in $\mathrm{B}[-1]$

Runtime: $\mathrm{O}(1)$

Radix Heap

insert(e): ($\operatorname{key}(\mathrm{e}) \geq \mathrm{k}_{\text {min }}$)

- i:=msd(k $\mathrm{kmin}, \mathrm{key}(\mathrm{e}))$
- store e in $B[i]$

Runtime: O(1)
delete(e): (key(e)> $\mathrm{k}_{\text {min }}$, otherwise call deleteMin())

- Remove e from its list B[j]

Runtime: O(1) (assuming have pointer to e)
decreaseKey (e, Δ): ($\operatorname{key}(\mathrm{e})-\Delta \geq \mathrm{k}_{\text {min }}, \Delta>0$)

- call delete(e) and insert(e) with key(e):=key(e) - Δ Runtime: O(1)

Radix Heap

deleteMin():

- if $\mathrm{B}[-1]$ is unoccupied, heap is empty, we are done
- else, remove some e from $\mathrm{B}[-1]$
- find minimal i so that $\mathrm{B}[\mathrm{i}] \neq \varnothing$ (if there is no such i or $\mathrm{i}=-1$ then we are done)
- determine $k_{\text {min }}$ in $B[i]$
- distribute nodes in $\mathrm{B}[i]$ among $\mathrm{B}[-1], \ldots, \mathrm{B}[\mathrm{i}-1]$ w.r.t. the new $\mathrm{k}_{\text {min }}$

Question: What about the bins $\mathrm{B}[\mathrm{j}]$ for $\mathrm{j}>\mathrm{i}$? Do their elements need to be moved as well?

Radix Heap

We consider a sequence of deleteMin operations

Radix Heap

We consider a sequence of deleteMin operations

Radix Heap

Claim: In deleteMin(), after we distribute nodes in $\mathrm{B}[\mathrm{i}]$ among $\mathrm{B}[-1], \ldots, \mathrm{B}[i-1]$ w.r.t. the new $\mathrm{k}_{\text {min }}$, all nodes e in $B[j]$, j>i do not have to be moved, i.e. $m s d\left(k_{\text {min }}, k e y(e)\right)=j$.

Proof:

- Assume the new min element is to be drawn from B[i].
- By def, $\mathrm{B}[\mathrm{i}]$ agrees with (the old) $\mathrm{k}_{\text {min }}$ on all bits $>\mathrm{i}$, but disagrees on bit i.
- Similarly, $B[j]$ for $j>i$ agrees with $\mathrm{k}_{\text {min }}$ on all bits $>\mathrm{j}$, but disagrees on bit j.
- By transitivity, $B[i], B[j]$ hence agree on all bits > j, and they disagree on bit j.
- Thus, $\operatorname{msd}(B[i], B[j])=j$.

Radix Heap

In illustration, all elements in new minimal list $\mathrm{B}[\mathrm{i}]$ were moved (when $i>=0$) with each deleteMin() call. Let's prove this holds!
Lemma 2.6: Let $\mathrm{B}[i]$ be the minimal non-empty list,
$i \geq 0$. Let $x_{\min }$ be the minimal key in $B[i]$. Then $m s d\left(x_{\min }, x\right)<i$ for all keys x in $B[i]$.

Proof:

- Consider any x in $B[i]$.
- If $x=x_{\text {min }}$: x placed in $B[-1]$, so claim holds.
- What if $x \neq x_{\text {min }}$?
24.10.2019

Radix Heap

- By assumption, $\mathrm{k}_{\text {min }}, \mathrm{x}_{\text {min }}, \mathrm{x}$ agree on all bits after K .
- Since $x, x_{\min }$ in $B[i]$, they agree on bits i to K.
24.10.2019 ${ }^{\text {Thus }}, \operatorname{msd}\left(\mathrm{x}_{\text {min }}, \mathrm{x}\right)<$ i.

Radix Heap

- Lemma 2.6: Let $B[i]$ be the minimal non-empty list, $i \geq 0$. Let $x_{\text {min }}$ be the minimal key in $B[i]$. Then $\operatorname{msd}\left(x_{\min }, x\right)<i$ for all keys x in $B[i]$.

Consequence:

- Each element can be moved at most K times (due to deleteMin or decreaseKey operations)
- insert(): amortized runtime $\mathrm{O}(\mathrm{K})=\mathrm{O}(\log \mathrm{C})$.
(i.e. When an item is inserted, it „pays up front" for later potentially needing to be moved K times)

Summary

Runtime	Fibonacci Heap	Radix Heap
insert	$\mathrm{O}(1)$	$\mathrm{O}(\log \mathrm{C})$ amor.
min	$\mathrm{O}(1)$	$\mathrm{O}(1)$
deleteMin	$\mathrm{O}(\log$ n) amor.	$\mathrm{O}(1)$ amor.
delete	$\mathrm{O}(\log$ n) amor.	$\mathrm{O}(1)$
merge	$\mathrm{O}(1)$	$? ? ?$
decreaseKey	$\mathrm{O}(1)$ amor.	$\mathrm{O}(1)$

Extended Radix Heap

Assumptions:

1. At all times, maximum key - minimum key $<=$ constant C. (Think of fixed architecture, like 32-bit ints.)
2. Insert(e) only inserts elements e with key (e) $\geq k_{\text {min }}$ ($k_{\text {min }} \div$ minimum $k e y$).

The priority queue we implement is called a "monotone" priority queue, i.e. top-priority element's key monotonically increases.

Extended Radix Heap

At least one "normal"
element in -1

O : "super element" e contains a Radix heap with $\mathrm{k}_{\text {min }}=\mathrm{key}(\mathrm{e})$ where $\mathrm{k}_{\text {min }}$ is the smallest value in the Radix heap of e and $\mathrm{B}_{\mathrm{e}}[-1]$ has ≥ 1 "normal" element.
Note: super elements may contain super elements

Extended Radix Heap

Example:

Extended Radix Heap

Further details:

- Every list is doubly-linked.
- "Normal" elements are (added) at the front of the list, superelements in the back.
- The first element of each list points to the Radix heap it belongs to.

Extended Radix Heap

Merge of two extended Radix heaps B and B^{\prime} with $k_{\text {min }}(B) \leq k_{\text {min }}\left(B^{\prime}\right)$:
(Case $k_{\text {min }}(B)>k_{\text {min }}\left(B^{\prime}\right)$: flip B and $\left.B^{\prime}\right)$

- transform B^{\prime} into a super element e with $\operatorname{key}(\mathrm{e})=\mathrm{k}_{\text {min }}\left(\mathrm{B}^{\prime}\right)$
- call insert(e) on B

Runtime: $\mathrm{O}(1)$

Extended Radix Heap

Example of a merge operation:

Extended Radix Heap

insert(e):

- $k e y(e) \geq k_{\text {min }}$: as in standard Radix heap
- else, merge extended Radix heap with a new Radix heap just containing e
Runtime: O(1)
$\min ()$: like in a standard Radix heap (note -1 bucket has at least one "normal" element)
Runtime: O(1)

Extended Radix Heap

deleteMin():

- Remove normal element e from $\mathrm{B}[-1]$
(B: Radix heap at highest level, i.e. "top" heap)
- If B[-1] does not contain any elements, then update B like in a standard Radix heap (i.e., dissolve smallest non-empty bucket $\mathrm{B}[i]$)
- If $\mathrm{B}[-1]$ does not contain normal elements any more, then take the first super element e' from $B[-1]$ and merge the lists of e' with B (then there is again a normal element in $\mathrm{B}[-1]$!)
Runtime: $\mathrm{O}(\log \mathrm{C})+$ time for updates

Extended Radix Heap

deleteMin():

Extended Radix Heap

deleteMin():

Extended Radix Heap

delete(e):
Case 1: key $(e)>k_{\text {min }}$ for heap of e :

- like delete(e) in a standard Radix heap

Case 2: key $(\mathrm{e})=\mathrm{k}_{\text {min }}$ for heap of e:

- if e is in "top" Radix heap, proceed like deleteMin()
- Else, e is in Radix heap of super element e':
- if e' is afterwards empty, then remove e' from heap B' containing e'
- if the minimum key in e' has changed, then move e' to its correct bin in B'
Since there is a normal element in $B^{\prime}[-1]$, both cases have no cascading effects! (don't have to recurse upwards)
Runtime: $\mathrm{O}(\log \mathrm{C})+$ time for updates

Extended Radix Heap

delete(10):

Extended Radix Heap

delete(10):

Extended Radix Heap

delete(10):

Extended Radix heap

decreaseKey(e, Δ): [precondition: $\operatorname{key}(\mathrm{e})-\Delta>=\mathrm{k}_{\text {min }}$]

- call delete(e) in heap of e
- set $\operatorname{key}(\mathrm{e}):=\mathrm{key}(\mathrm{e})-\Delta$
- call insert(e) on "top" Radix heap

Runtime: $\mathrm{O}(\log \mathrm{C})+$ time for updates

Amortized analysis: similar to Radix heap, omitted here

Summary

Runtime	Radix heap	ext. Radix heap
insert	$\mathrm{O}(\log \mathrm{C})$ amor.	$\mathrm{O}(\log \mathrm{C})$ amor.
min	$\mathrm{O}(1)$	$\mathrm{O}(1)$
deleteMin	$\mathrm{O}(1)$ amor.	$\mathrm{O}(1)$ amor.
delete	$\mathrm{O}(1)$	$\mathrm{O}(1)$ amor.
merge	$? ? ?$	$\mathrm{O}(\log \mathrm{C})$ amor.
decreaseKey	$\mathrm{O}(1)$	$\mathrm{O}(\log \mathrm{C})$ amor.

Contents

- Binomial heap
- Fibonacci heap
- Radix heap
- Applications

Shortest Paths

Central question: Determine fastest way to get from s to t .

Shortest Paths

$d(s, v)$: distance from s to v
$d(s, v)=\left\{\begin{array}{l}\infty \quad \text { no path from } s \text { to } v \\ \min \{c(p) \mid p \text { is a path from } s \text { to } v\}\end{array}\right.$

Dijkstra's Algorithm

Consider the single source shortest path problem (SSSP), i.e., find the shortest path from a source s to all other nodes, in a graph with arbitrary non-negative edge costs.

Basic idea behind Dijkstra's Algorithm: visit nodes in the order of their distance from s

Dijkstra's Algorithm

- Initially, set $d(s):=0$ and $d(v):=\infty$ for all other nodes. Use a priority queue q in which the priorities represent the current distances $d(v)$ from s. Add s to q.
- Repeat until q is empty:
- Remove node v with lowest $d(v)$ from q (via deleteMin).
- For all $(\mathrm{v}, \mathrm{w}) \in \mathrm{E}$,
- set $d(w):=\min \{d(w), d(v)+c(v, w)\}$. If w is already in q, this needs a decreaseKey operation. Else, if w was never in q, insert w into q.

Dijkstra's Algorithm

Example: (\bigcirc : current, \bigcirc : done)

Dijkstra's Algorithm

Procedure Dijkstra(s: Nodeld) $\mathrm{d}=\langle\infty, \ldots, \infty>$: NodeArray of $\mathbb{R} \cup\{-\infty, \infty\}$ parent $=<\perp, \ldots, \perp>$: NodeArray of Nodeld $\mathrm{d}[\mathrm{s}]:=0 ;$ parent[s]:=s $\mathrm{q}=\langle\mathrm{s}>$: NodePQ
while q $\neq<>$ do
u:=q.deleteMin() // u: node with min distance foreach $e=(u, v) \in E$ do if $d[v]>d[u]+c(e)$ then // update $d[v]$ if $d[v]=\infty$ then q.insert $(\mathrm{v}) / / \mathrm{v}$ in q ?
parent[v]:=u
// d[v] set to d[u]+c(e)
q.decreaseKey(v, d[v]-(d[u]+c(e)))

Dijkstra's Algorithm

- Assume input graph has n nodes, m edges
- $T_{\text {op }}(n)$: runtime of operation Op on data structure with n elements
each vertex added/removed precisely once

Binary heap: all operations have runtime $O(\log n)$, so $\mathrm{Dijkstra}=\mathrm{O}((\mathrm{m}+\mathrm{n}) \log \mathrm{n})$
Fibonacci heap: amortized runtimes

- $T_{\text {DeleteMin }}(n)=T_{\text {Insert }}(n)=O(\log n)$
- $T_{\text {decreaseKey }}(n)=O(1)$
- Therefore, $T_{\text {Dijkstra }}=O(n \log n+m)$

Dijkstra's Algorithm

Remark: Dijkstra's Algorithm does not need a general priority queue but only a monotonic priority queue (i.e., labels are distances, which are monotonically decreasing!)

If all edge costs are integer values in [0, C], use a Radix heap. Its amortized runtimes are

- $T_{\text {DeleteMin }}(n)=T_{\text {decreaseKey }}(n)=O(1)$
- $T_{\text {Insert }}(\mathrm{n})=\mathrm{O}(\log \mathrm{C})$
- Thus in this case, $\mathrm{T}_{\text {Dijkstra }}=\mathrm{O}(\mathrm{n} \log \mathrm{C}+\mathrm{m})$

Minimal Spanning Tree

Problem: Which edges do I need to take in order to connect all nodes at the lowest possible cost?

Minimal Spanning Tree

Input:

- Undirected graph G=(V,E)
- Edge costs $\mathrm{c}: \mathrm{E} \rightarrow \mathbb{R}_{+}$

Output:

- Subset $\mathrm{T} \subseteq E$ so that the graph (V, T) is connected and $c(T)=\sum_{e \in T} C(e)$ is minimal
- T always forms a tree (if c is positive). (Why?)
- Tree over all nodes in V with minimum cost: minimal spanning tree (MST)

Prim's Algorithm

Procedure Prim(s: Nodeld) $\mathrm{d}=\langle\infty, \ldots, \infty>$: NodeArray of $\mathbb{R} \cup\{-\infty, \infty\}$ parent $=<\perp, \ldots, \perp>$: NodeArray of Nodeld d[s]:=0; parent[s]:=s
q=<s>: NodePQ
while $q \neq<>$ do
u:=q.deleteMin() // u: node with min distance foreach $e=(u, v) \in E$ do if $d[v]>c(e)$ then // update $d[v]$ if $d[v]=\infty$ then q.insert $(\mathrm{v}) / / \mathrm{v}$ in q ?
parent[v]:=u
// d[v] set to c(e)
q.decreaseKey(v, d[v]-c(e)) store e along with v

Prim's Algorithm

- Assume input graph has n nodes, m edges
- $T_{\text {Op }}(\mathrm{n})$: runtime of operation Op on data structure with n elements

Runtime:

$$
T_{\text {Prim }}=O\left(n\left(T_{\text {Deletemin }}(n)+T_{\text {Insert }}(n)\right)+m \cdot T_{\text {decreaseKey }}(n)\right)
$$

Binary heap: all operations have runtime $\mathrm{O}(\log n)$, so $T_{\text {Prim }}=O((m+n) \log n)$
Fibonacci heap: amortized runtimes

- $T_{\text {DeleteMin }}(n)=T_{\text {Insert }}(n)=O(\log n)$
- $T_{\text {decreaseKey }}(\mathrm{n})=\mathrm{O}(1)$
- Therefore, $T_{\text {Prim }}=O(n \log n+m)$

Prim's Algorithm

Can we use Radix heap? (does a monotone priority queue suffice?)

Next Chapter

Topic: Search structures

