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Outline

• What is a network flow? Definitions, etc.

• Ford-Fulkerson algorithm

• Karp-Edmonds algorithms

• Dinic’s algorithm

• Goldberg’s algorithm

• Variants on network flow
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Foundations

Definition 6.1: A flow network (G,s,t,c) consists of a directed graph G=(V,E), a source 
s  V, a sink t  V, and a capacity function c:VV → ℝ≥0, with c(u,v) = 0 if
(u,v)  E.

In the following, we assume that s ↝G u ↝G t for all u  V, where u ↝G v means

that there is a directed path from u to v in G. (Otherwise, we can remove u and all 

of its edges from G, because a flow from s to t cannot be sent via u.)

Definition 6.2: Let (G,s,t,c) be a flow network. 

a) A network flow in G is a function f:VV → ℝ with the property that

f(u, v) ≤ c(u, v) for all u, v  V             (capacity constraints)

f(u, v) = - f(v, u) for all u, v  V  (skew symmetry)

ΣvV  f(u, v) = 0 for all u  V \ {s, t} (flow conservation)

b) The value  f  of a network flow f is defined as
 f  = ΣvV f (s, v). 
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Foundations

A network flow in G is a function f:VV → ℝ with the property that

f(u, v) ≤ c(u, v) for all u, v  V             (capacity constraints)

f(u, v) = - f(v, u) for all u, v  V  (skew symmetry)

ΣvV f(u, v) = 0 for all u  V \ {s, t} (flow conservation)

Remark 6.3: Let f be a flow in a flow network (G,s,t,c). Then 
a)  f (v, v) = 0 for all v  V (due to skew symmetry).

b)  ΣuV  f (u, v) = 0 for all v  V \ {s, t} (flow conservation & skew symmetry).

c)  For all u, v  V with (u, v), (v, u)  E  it holds that f (u, v) = f (v, u) = 0. 

d)  For all vV \ {s, t},

Σ f (u, v) =  - Σ f (u,v) (flow conserv., skew symmetry)

uV, f(u,v)>0 uV, f(u,v)<0

e)  A function f with f (u, v) = 0 for all u, v  V is a valid flow.
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Foundations

Example of a valid flow:

• Only positive flows are shown (negative flows are implied by 
skew symmetry).

• For example, f(v,u)=1, so f(u,v)=-1.

• This implies that flow cannot flow at the same time in both 
directions for a pair {u,v}.
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Foundations

Claim 6.4: For any network flow, the outgoing flow of s equal to the incoming 
flow at t.

Proof:

• From skew symmetry, we know:

Sv∈V Sw∈V f(v,w)  = S{v,w} (f(v,w)+f(w,v)) + Sv∈V f(v,v)  = 0

• Moreover, it follows from flow conservation:

Sv∈V Sw∈V f(v,w) = Sw∈V f(s,w) + Sw∈V f(t,w) = |f| + Sw∈V f(t,w)

(Recall flow conservation: ΣvV  f(u, v) = 0 if u  V \ {s, t})
• Hence, due to skew symmetry:

|f| = Sw∈V f(w,t) 
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Foundations
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Alternative definition of network flows:

Definition 6.5: Let (G,s,t,c) be a flow network. A network flow in G is a 
function f : E → ℝ≥0 with

• 0 ≤ f (u, v) ≤ c (u, v) for all (u, v)  E  (capacity constraints)

• ΣvV f (u, v) - ΣvV  f (v, u) = 0 for all u  V \ {s, t} 
(flow conservation)

i.e., we drop the skew symmetry constraint.

Remarks:

• Definition 6.5 is more intuitive whereas Definition 6.2 is more 

restrictive and sometimes simplifies the proofs. 

• We will use the alternative Definition 6.5 in later parts of this 

chapter.
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MAXFLOW Problem: 

Input: a flow network (G,s,t,c). 

Output: a flow f in G with maximum value | f |.

Remark 6.6: A maxflow problem (G, s1, …, sp, t1, …tq, c) with multiple sources 

s1, …, sp and multiple sinks t1, … tq with the goal to transfer as much flow as 
possible from the sources to the sinks (i.e., find a flow f:VV → ℝ maximizing

Si=1
p (SvV f(si,v)) ) can be reduced to the original maxflow problem:

Construct Gˈ = (Vˈ, Eˈ) and cˈ as follows:
Vˈ =  V ∪ {s, t}
Eˈ =  E ∪ {(s, si) | 1 ≤ i ≤ p} ∪ {(ti, t)| 1 ≤ i ≤ q}

cˈ (u, v) =   c (u, v)     u, v  V
 u = s  or v = t

Then there is a flow f from s1, …, sp to

t1, …, tq of value  in (G, s1, …, sp, t1, … tq, c) 
if and only if there is a flow fˈ from s to t in
(Gˈ, s, t, cˈ) of value  (see the figure).
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Ford-Fulkerson Algorithm
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How do we solve the maxflow problem?

Definition 6.7:  Let (G,s,t,c) be a flow network and f be a flow in G.

a) For any u, v  V, the residual capacity cf(u,v) is defined as

cf(u,v) = c (u,v) – f (u,v) >= 0

(how much capacity for flow is unused?)

b) The residual network Gf = (V,Ef) is defined as 

Ef = { (u,v)  VV | cf(u,v) > 0}

c) A simple path P from s to t in Gf is called an augmenting path.

The residual capacity (or „bottleneck“) cf (P) of P is defined as

cf(P) = min { cf(u,v) | (u,v)P }.

9
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cf(P) = min { cf(u,v) | (u,v)P }
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Let‘s formalize the idea of augmenting flows with augmenting paths. Need 
2 lemmas – one says an augmenting path defines an „augmenting 
flow“, and the other says we can safely add an „augmenting flow“ to our 
current flow to get a new flow.

Lemma 6.8: Let (G, s, t, c) be a flow network and f be a flow in G. Let Gf be 
the residual network of G induced by f, and let fˈ be a flow in Gf. Then

(f + fˈ)(u, v) = f (u, v) + fˈ (u, v)

is a valid flow in G with value |f + fˈ| = |f| + |fˈ|. 

Proof:

• Capacity constraints:
f(u,v) ≤ c(u,v) and fˈ(u,v) ≤ cf(u,v) = c(u,v)-f(u,v) for all u,vV.
Hence, (f + fˈ)(u, v) ≤ f(u,v) + c(u,v)-f(u,v) ≤ c(u,v).

• Skew symmetry:
f(u,v) = -f(v,u) and fˈ(u,v) = -fˈ(v,u) for all u,vV.
Hence, (f + fˈ)(u, v)  = - (f + fˈ)(v, u) for all u,vV.

• Flow conservation:
Sv f(u,v) = 0 and Sv fˈ(u,v) = 0 for all uV\{s,t}.
Hence, Sv (f + fˈ)(u,v) = 0 for all uV\{s,t}.
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Ford-Fulkerson Algorithm
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How to define a flow for an augmenting path in Gf?

Lemma 6.9: Let (G, s, t, c) be a flow network and f be a flow in G. Let Gf be the 

residual network of G induced by f and let P be an augmenting path in Gf. Then    
fP : V  V  ℝ with

cf (P)  if (u,v) belongs to P

fP (u,v) = -cf (P)  if (v,u) belongs to P

0        otherwise

is a valid flow in Gf with value |fP| = cf (P) > 0. 

Proof: 

Check capacity constraints, skew symmetry and flow conservation.

Corollary 6.10:  Let (G, s, t, c) be a flow network and f be a flow in G. Let Gf be the 

residual network of G induced by f and let P be an augmenting path in Gf. Let fP be 

defined as in Lemma 6.9. Then fˈ = f + fP is a valid flow in G with value  

|f ˈ| = |f + fP| = |f| + |fP| > |f|.

Ford-Fulkerson Algorithm
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Ford-Fulkerson Algorithm

Idea: Start with empty flow. Repeatedly find augmenting paths to improve flow.

FORDFULKERSON (Flow network G = (V, E), s, t, c))

{

for each edge (u, v)  E 

{ f [u, v] := 0; f [v, u] := 0; }                                             // initially empty flow

Gf := residual network of G w.r.t. f;
while (Ǝ a path P from s to t in Gf) // P is an augmenting path 

{ // compute maximal flow („bottleneck“) along P

cf (P) := min {cf (u, v) | (u, v)  P)}; // cf (u, v) = c (u, v) – f (u, v)

for each edge (u, v)  P // update flow along P

{ f [u, v] := f [u, v] + cf (P); f [v, u] := - f [u, v]; }

Gf := residual network of G w.r.t. f;

}

output f

}

17



1/28/2019 Chapter 6

u x

v y

ts

12

20

4

7
9

4

16

13

14

Flow network:

G

10

Example: Ford-Fulkerson Algorithm

18



1/28/2019 Chapter 6

Example: Ford-Fulkerson Algorithm
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Example: Ford-Fulkerson Algorithm
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Example: Ford-Fulkerson Algorithm
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Example: Ford-Fulkerson Algorithm
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Example: Ford-Fulkerson Algorithm
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Example: Ford-Fulkerson Algorithm
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Example: Ford-Fulkerson Algorithm
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Example: Ford-Fulkerson Algorithm
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Example: Ford-Fulkerson Algorithm
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Example: Ford-Fulkerson Algorithm
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Example: Ford-Fulkerson Algorithm
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Example: Ford-Fulkerson Algorithm
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Correctness: How do we know that once no more augmenting paths exist, the flow 

we have is optimal, i.e. a maximum flow?

Definition 6.11: Let (G,s,t,c) be a flow network. For X, Y  V we define

• Flow across cut X/Y: 𝑓 𝑋, 𝑌 = σ𝑥∈𝑋σ𝑦∈𝑌 𝑓(𝑥, 𝑦)

• Capacity across cut X/Y: c 𝑋, 𝑌 = σ𝑥∈𝑋σ𝑦∈𝑌 𝑐(𝑥, 𝑦)
• Shorthand for 𝑣 ∈ 𝑉: 𝑋 − 𝑣 = 𝑋\ 𝑣

Lemma 6.12: Let (G,s,t,c) be a flow network and let f a network flow in G. 
Then it holds for all X, Y, Z ⊆ V:
a) f (X, X) = 0
b) f (X, Y) = -f (Y, X)
c) If X ∩ Y =  then

f (X ∪ Y, Z) = f (X, Z) + f (Y, Z) and f (Z, X ∪ Y) = f (Z, X) + f (Z, Y)

Proof: Exercise

X Y
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Definition 6.13: Let (G, s, t, c) be a flow network and f be a flow in G.

a) A cut (S, T) of G is a partition of V into S and T = V \ S so that 

s  S und t  T. 

b) The flow across a cut (S, T) is defined as f(S, T).

c) The capacity of a cut (S, T) is defined as c(S, T).  

Remark 6.14: 

a) The definition of a flow is consistent with the flows that were considered in the  previous

examples: flows from T to S are subtracted:

f (S, T) = Σ Σ f (x, y)    (where f (x, y) < 0 if f (y,x) > 0).

xS yT

b)   The definition of the capacity of a cut is consistent with the capacities that were 

considered in the previous examples: edges from T to S add no capacity to the cut:

c (S, T) = Σ Σ  c (x, y)     where c (x, y)  0.

xS yT

Cuts in Flow Networks

33



1/28/2019 Chapter 6

Lemma 6.15: Let (G, s, t, c) be a flow network and f be a flow in G. Let (S, T) be a 

cut of G. Then

f (S, T) = |f|. 

As a result,

|f| = f (s, V – s) = f (V – t, t). 

Proof: Exercise

Corollary 6.16:  Let (G, s, t, c) be a flow network. Then the flow value of any flow f

in G is upper bounded by the capacity of an arbitrary cut in G.

u x

v y
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Theorem 6.17: (Max-Flow Min-Cut Theorem)

Let (G,s,t,c) be a flow network and f be a flow in G. Then the following statements 

are equivalent.

a)   f is a maximum flow in G.

b) The residual network Gf of G w.r.t. f does not contain any augmenting path. 

c) |f| = c(S, T) for some cut (S, T) of G. 

Proof:
• a)⇒b): ¬b)⇒¬a) holds due to Corollary 6.10 and therefore also a)⇒b).

• b)⇒c): Let S be a set of nodes that are reachable from s in Gf. (Why is this not 

all of Gf?)Then (S,T) with T=V\S is a cut and f(S,T)=c(S,T) according to the 

definition of Gf (Why?). Also, according to Lemma 6.15, |f|=c(S,T).
• c)⇒a): Follows from Corollary 6.16. 

Corollary 6.18: Let (G, s, t, c) be a flow network with integer capacities c(u, v).

Then the Ford-Fulkerson Algorithm computes a maximum flow f in time 

O (|E|  |f|). (Why?)
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Remark 6.19:

a) The bound on the runtime of FORDFULKERSON is sharp:

Gf

u

v

ts

1.000.000

1.000.000

1.000.000

1.000.000

1

G=Gf

u

v

ts

999.999

1.000.000

1.000.000

999.999

1

Gf u

v

ts

999.999

999.999

999.999

999.999

1

b)  If the capacities are rational numbers, then they can be scaled to integer 

numbers, and FORDFULKERSON can be applied to the scaled network. 

c)  If the capacities are not rational numbers, then FORDFULKERSON may not 

terminate, and the flow f computed by FORDFULKERSON may not converge to 

the maximum flow. 

1

1
1 1

1 1
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Problems with irrational Capacities

c): Let f=(  5 – 1)/2 ≈ 0,618034 be chosen so that 1-f=f2. In order to 
show that the Ford-Fulkerson Algorithm gets stuck, consider the 
following graph (where X4):

• We start with an empty flow.

• After using the red path, the residual capacities of the horizontal 
edges are 1, 0 and f, or fk-1, 0 and fk for k=1.

• What is the residual network? (Draw it before going to next slide.)
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Problems with irrational Capacities

Suppose that the residual capacities of the horizontal edges are fk-1, 0 and fk

for some odd k∈ℕ.

1. Augment along B, which adds fk to the flow (why?). The residual 
capacities are now fk+1, fk and 0 (why?).

2. Augment along C, which adds fk to the flow. The residual capacities are 
now fk+1, 0 and fk.

3. Augment along B, which adds fk+1 to the flow. The residual capacities are 
now 0, fk+1 and fk+2.

4. Augment along A, which adds fk+1 to the flow. The residual capacities are 
now fk+1, 0 and fk+2.

1/28/2019 Chapter 6
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Problems with irrational Capacities

• That is, after 4n+1 augmentations we arrive at residual capacities 
f2n, 0 and f2n+1. 

• As the number of augmentations goes to , the value of the flow 
converges to (where does the factor 2 come from below?)

1+2Si≥0 f
i = 1+2/(1-f) = 4 +   5  < 7

although the maximum flow value is 2X+1 (why?).
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Edmonds-Karp Algorithms

Problem: the Ford-Fulkerson Algorithm gives 
too much freedom to the choice of augmen-
ting paths.

In 1972, Edmonds and Karp proposed two 
heuristics in order to compute maximum 
flows more efficiently.

Heuristic 1: Choose the augmenting path of 
largest value/bottleneck.

Heuristic 2: Choose the shortest augmenting 
path.
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Edmonds-Karp Algorithms

Theorem 6.20: Let (G, s, t, c) be a flow network with integer capacities 
c(u, v). Then heuristic 1 computes a maximum flow f* in time 

O(|E|2  log |E|  log |f*|). 

Proof:

• Let f* be a maximum flow in G.

• Let f be an arbitrary flow in G and f´ be a maximum flow in the 
residual network Gf. (Initially, f is empty and therefore |f´|=|f*|.)

• Let e be the bottleneck edge in the augmenting path chosen by 
heuristic 1. (Recall path chosen greedily to maximize cf(e).)

• S⊆V: set of nodes that can be reached from s along edges in Gf
with residual capacity >cf(e).

• T=V\S: is not empty due to heuristic 1 and the choice of e. (Why?)

• It holds: |f´|≤cf(S,T)≤cf(e)|E| (why?). So cf(e)≥|f´|/|E|.

• Since |f*|=|f|+|f´| (intuition?), the value of f increases at least by a 
factor of (1+1/|E|) if |f*|>=2|f| (why?).
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Edmonds-Karp Algorithms

Theorem 6.20: Let (G, s, t, c) be a flow network with integer capacities 
c(u, v). Then heuristic 1 computes a maximum flow f* in time 

O(|E|2  log |E|  log |f*|). 

Proof (continued):

• The value of f increases by a factor of at least (1+1/|E|) each round if 
|f*|>=2|f|.

• But (1+1/|E|)k≥|f*|/2 if k≥|E| ln |f*|.

• Therefore, at most |E| ln |f*| augmenting paths suffice to obtain a 
flow of value at least |f*|/2.

• Refining this argument, it takes at most |E| further augmenting paths 
to increase the flow value from ≥(1-1/2k)|f*| to ≥(1-1/2k+1)|f*| for all k.

• Once k=⌊log |f*|⌋+1, we have reached a flow value of |f*| since we 
are only dealing with integer values.

• Time to compute an augmenting path with maximal flow value: 
O(|E| log |E|). (This is an exercise.)

• Thus, the total runtime is O(|E|2  log |E|  log |f*|).
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Edmonds-Karp Algorithms

Analysis of Heuristic 2:

• Gi: residual network after i augmenting 

steps, i.e., G0=G.

• For a node v let disti(v) be the distance 

(i.e., the number of edges along a shortest 

directed path) of v from s in Gi.

• No directed path from s to v: disti(v)=.
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Edmonds-Karp Algorithms

We begin by proving three lemmas:

Lemma 6.21: For every node v with disti(v)=, also
disti+1(v)=.

Lemma 6.22: For every node vV it holds that 
disti+1(v)≥disti(v).

Lemma 6.23: During the execution of Heuristic 2, 
every edge (u,v) can disappear at most |V|/2 times 
from the residual graph.

1/28/2019 Chapter 6 44



Edmonds-Karp Algorithms

Lemma 6.21: For every node v with disti(v)=, also
disti+1(v)=.

Proof:

• Consider an arbitrary node vV with disti(v)=.

• U: set of nodes that have a directed path to v in Gi.

• Then for all nodes uU, disti(u)=.

• Suppose that disti+1(v)≠. Then an augmenting path 
must have been chosen in round i that goes through a 
node in U. (Why?)

• In this case, there must have been a directed path in 
Gi from s to a node in U, which contradicts the 
definition of U!
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Edmonds-Karp Algorithms

Lemma 6.22: For every node vV it holds that disti+1(v)≥disti(v).

Proof:

• v=s: trivial since disti(s)=0 for all i.
• v≠s: induction on the distance from s.

• p=(s,…,u,v): shortest path from s to v in Gi+1. (No such path, 
then we are done according to Lemma 6.21.)

• Since this is a shortest path, disti+1(u)=disti+1(v)-1.
• According to the induction hypothesis, disti+1(u)≥disti(u).

• Case 1: (u,v) was an edge in Gi. Then disti(v)≤disti(u)+1.
Hence, disti+1(v)=disti+1(u)+1≥ disti(u)+1≥ disti(v).

• Case 2: (u,v) was not an edge in Gi. Then (v,u) belongs to the 
i-th augmenting path. In this case, (v,u) is on a shortest path 
from s to t in Gi and therefore, disti(v)≤disti(u)-1 ≤disti(u)+1, 
as in Case 1.
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Edmonds-Karp Algorithms

Lemma 6.23: During the execution of Heuristic 2, every edge 
(u,v) can disappear at most |V|/2 times from the residual 
graph.

Proof:

• Suppose that (u,v) is in the residual graphs Gi and Gj+1 but not 
in the residual graphs Gi+1,…,Gj.

• Then (u,v) must be in the i-th augmenting path, and therefore, 
disti(v)=disti(u)+1.

• Moreover, (v,u) must be in the j-th augmenting path, and 
therefore, distj(u)=distj(v)+1.

• Together with Lemma 6.22 it follows that
distj(u) = distj(v)+1 ≥ disti(v)+1 = disti(u)+2

• Since |V|-1 is an upper bound on the largest finite distance of 
a node, (u,v) can disappear at most |V|/2 times. 
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Edmonds-Karp Algorithms

Now we are ready to prove a runtime bound for Heuristic 2.

• Since every edge can disappear at most |V|/2 times from the 
residual network, there are at most |E||V|/2 events in which 
an edge disappears.

• But at least one edge disappears in each iteration, which 
implies that Heuristic 2 runs for at most |E||V|/2 iterations.

• Since a shortest augmenting path can be computed in time 
O(|E|) (using breadth first search), we get:

Theorem 6.24: Let (G, s, t, c) be a flow network with integer 
capacities c(u, v). Then Heuristic 2 computes a maximal flow 
in time O(|E|2|V|). 
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Dinic´s Algorithm

• The runtime of Heuristic 2 does not depend any 
more on the value of the maximum flow, but it is 
still too large. 

• In the following we will present Dinic´s Algorithm, 
which only needs O(|V|2 |E|) time.

Definition  6.25: A flow f in a flow network (G, s, t, c) 
is called blocking if every path from s to t contains 
at least one saturated edge. An edge e is called 
saturated if f(e)=c(e). 

Remark: Not every blocking flow is also maximum, 
but every maximum flow is blocking. (Exercise!)
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Dinic´s Algorithm

Definition 6.26: 

• The level of a node v is defined as 
level(v)=df(s,v) (the number of edges along a 
shortest path in Gf from s to v).

• The level graph Lf is a subgraph of Gf that 
contains all edges (u,v) with (u,v)∈Gf and 
level(u)=level(v)-1.

Lemma 6.27: Lf contains all shortest 
augmenting paths and can be constructed in 
O(m) time (e.g., when using BFS).
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Dinic´s Algorithm

Dinic´s Algorithm:
start with an empty flow f
repeat

find a blocking flow f´ in level graph Lf
set f:=f+f´

until sink t is not reachable in Lf

Note: Unlike previous algorithms, we do not look for an 
(augmenting) path, but a (blocking) flow.

Lemma 6.28: Dinic´s Algorithm stops after at most n-
1 iterations of the repeat-loop.
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Dinic´s Algorithm

Lemma 6.28: Dinic´s Algorithm stops after at most n-1 iterations of the repeat-
loop.

Proof:

• Consider some fixed iteration i and let
– f and level denote the flow and levels at the beginning and

– f´ and level´ denote the flow and levels at the end of the iteration.

• An edge (v,w) in Gf´ is either
– an edge in Gf (if the edge has not been saturated in iteration i) or

– a reverse edge in Lf (if it was not in Gf, so (w,v) used in iteration i).

• Thus, for every edge (v,w)∈Gf´,  level(w)≤level(v)+1. (*) (Why?)
(Note same statement with level´(w)≤level´(v)+1 would be trivial.)

• Consider now a shortest s-t path in Lf´:

• By (*), level´(t)≥level(t). (Why?)

• If we could strengthen this to level´(t)>level(t), our claim is shown...
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Dinic´s Algorithm
Lemma 6.28: Dinic´s Algorithm stops after at most n-1 iterations of the repeat-

loop.

Proof (continued):

• Suppose that level´(t)=level(t). Let p be any shortest path from s to t in Gf´. 

• For every edge (v,w)∈p we know by (*) that level(w)≤level(v)+1. So it must 
hold that level(w)=level(v)+1 (**) since otherwise level´(t)>level(t).

• If (v,w) was not an edge in Gf, then (w,v) used by blocking flow in interation 
i, implying level(w)=level(v)-1. Contradiction with (**).

• Therefore, all edges (v,w) in p were also edges in Gf. By (**), p was a 
shortest s-t path in Gf . 

• Every edge in p is therefore in Lf, and none of these was saturated 
(otherwise they would not be in Gf´!). 

• But this contradicts fact that we chose a blocking flow in Lf in iteration i.

• Therefore, in each iteration of the repeat-loop, the distance between s and t
in Gf increases by at least 1.

• Since a shortest path from s to t cannot be longer than n-1 (if such a path 
exists), the lemma follows.
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Dinic´s Algorithm

In unit networks, fewer iterations are needed.

Definition 6.29: A unit network is a flow network (G,s,t,c)
with integer capacities in which for any node v∈V\{s,t}, 
precisely one of the following holds:

• v has exactly 1 incoming edge, and it has capacity 1.

• v has exactly 1 outgoing edge, and it has capacity 1.

Remark: If a node has exactly one incoming edge of 
capacity 1, it can still have many outgoing edges (and 
vice versa).
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Dinic´s Algorithm

Example of a unit network:

1/28/2019 Chapter 6
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Dinic´s Algorithm

Lemma 6.30: Suppose we use Def. 6.5‘s notion of a 

network flow. Then, in a unit network, Dinic´s 

Algorithm stops after at most 2 𝑛 − 2 iterations.

Definition 6.5: Let (G,s,t,c) be a flow network. A 
network flow in G is a function f : E → ℝ≥0 with

• 0 ≤ f (u, v) ≤ c (u, v) for all (u, v)E  

(capacity constraints)

• ΣvV  f(u,v)-ΣvV f(v, u)=0 for all uV\{s, t} 

(flow conservation)
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Dinic´s Algorithm
Lemma 6.30: Suppose we use Def. 6.5‘s notion of a network flow. Then, in a 

unit network, Dinic´s Algorithm stops after at most 2   n-2 iterations.

Proof:

• Let us consider a fixed iteration.

• Let f be the current flow and f* be a maximum flow. (Both have integer flow 
values.)

• Then f*-f is a flow of integer value in Gf.

• Since G is a unit network, f*(e)-f(e) ∈ {-1,0,1} at every edge e.

• We partition edges e with f*(e)-f(e)=1 into a collection of paths from s to t.

• There are exactly |f*|-|f| paths from s to t. (proof: exercise)

• These paths are node-disjoint (except for s and t).

• Hence, shortest augmenting path has at most (n-2)/(|f*|-|f|)+1 nodes.

• But after    n-2 iterations, a shortest augmenting path contains at least          
n-2 +1 nodes (according to Lemma 6.28, the distance of t from s increases 
by one with each iteration).

• It holds that    n-2 + 1 ≤ (n-2)/(|f*|-|f|)+1   ⇔ |f*|-|f| ≤ n-2.

• Hence, after at most    n-2 further iterations we obtain a maximum flow.
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Dinic´s Algorithm

How can we find a blocking flow?

Repeatedly use DFS:

repeat
find a path p from s to t in Lf via DFS and send a flow 
value of cf(p) along p

until there is no augmenting path left in Lf

Lemma 6.31: The time needed to compute a blocking 
flow is O(nm). (Exercise)

Theorem 6.32: The runtime of Dinic´s Algorithm is 

O(n2m).
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Dinic´s Algorithm

Theorem 6.33: The runtime of Dinic´s algorithm 
on unit networks is O(  n  m).

Proof:

• When searching for a blocking flow, every 
edge of the unit network has to be visited at 
most once since it can only lie on at most one 
augmenting path.

• Thus, a blocking flow can be found in O(m)
time.

• Together with Lemma 6.30 we obtain the 
runtime bound in the theorem.
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Dinic´s Algorithm

Application of Dinic´s Algorithm: maximum matching in bipartite 
graphs.

Theorem 6.34: Dinic´s Algorithm on bipartite graphs G=(V,E) 
extended by a source s and sink t computes a maximum flow 
f in time O(   n  m), so that |f| is the size of a maximum 
matching in G.
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Dinic´s Algorithm

Proof:

|f|≥|M|:

• Let M be a maximum matching in G.

• Then the flow f´ that uses M and all edges of 
s and t to M, is a legal flow of value |f´|=|M| 
and therefore, |f|≥|M|.
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Dinic´s Algorithm

Proof:

|M|≥|f|:

• Let f be a maximum flow in G extended by s and t.

• Then the set of edges M´ that f traverses in G is a 
matching of size |M´|=|f| and therefore, |M|≥|f|.
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Intuition: 

• A flow network can be seen as a network

of liquids: 

edges correspond to pipes and nodes 

correspond to pipe connections.

• Every node has a reservoir that can 

collect an arbitrary amount of liquid.

• Every node, its reservoir, and all of its pipes 

are arranged on a platform whose height may increase during the execution

of the algorithm.

Goldberg´s Algorithm
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Intuition: 

• The node heights determine how the flow is moved through 

the network: flow always flows downhill.

• Initially, the source s pumps as much flow as

possible into the network (= c(s, V – s)). 

• If the flow reaches some intermediate node,

it is collected in its reservoir. From there it will

be sent downhill later.

• If all non-saturated pipes that leave a node

u lead to nodes v that are above u, then the

height of u will be increased, i. e., we lift u. 

• If the total flow that can flow to a sink, reaches it, then the excess flow in the reservoirs 

is sent back to the source by lifting the heights of the intermediate nodes beyond the

height of the source. 

Goldberg´s Algorithm
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Goldberg´s Algorithm

Definition 6.35: Let (G,s,t,c) be a flow network. A preflow is a function f:VVℝ
satisfying the following properties:

• f (u, v)  c (u, v) for all u, v  V (capacity constraints)
• f (u, v) = - f (v, u) for all u, v  V (skew symmetry)
• f (V, u)  0 for all u  V \ {s} (preflow condition)

(How does the last condition contrast with flow conservation? Why does this 
support the intuition from the previous slide? Hint: Think about reservoirs.)

• The excess flow of a node u is defined as ef(u)=f(V,u). A node u≠t is called 
active if ef(u)>0.

• Goldberg's Algorithm assigns to each node v a height h(v)∈ℕ0. The height 
function is called legal if h(s)=|V|, h(t)=0, and for all edges (v,w) in the 
residual network Gf, h(v)≤h(w)+1.
(I.e., for all (v,w)∈E with h(v)>h(w)+1, (v,w)∉Ef.)

• An edge (v,w) in Gf is called admissible if h(v)>h(w). 
(Together with the previous condition it follows that h(v)=h(w)+1.)
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Goldberg´s Algorithm

Basic Operations:

• Push(u,v): push as much flow as possible from u to v

• Lift(u): lift u as much as possible without violating the legality of the 
height function.

In pseudocode:

Push(u,v):
d:=min{ef(u),cf(u,v)}
f(u,v):=f(u,v)+d
cf(u,v):=cf(u,v)-d
cf(v,u):=cf(v,u)+d
ef(u):=ef(u)-d
ef(v):=ef(v)+d

Lift(u):
h(u):=min{ h(v)+1 | (u,v)∈Ef }
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Goldberg´s Algorithm

Goldberg´s Algorithm works as follows:

Preflow-Push Algorithm:
for each u∈V\{s} do h(u):=0; ef(u):=0
for each (u,v)∈E do f(u,v):=0; f(v,u):=0
h(s):=|V|
for each (s,u)∈E do

f(s,u):=c(s,u); f(u,s):=-f(s,u); ef(u):=c(s,u)
while (there are active nodes) do

Pick an active node u //u has excess flow
if (there is an admissible edge (u,v) )    //(u,v) has downward slope

then Push(u,v)
else Lift(u) //create admissible edge

Question: Why is the initial height function (ie after the for loop finishes 
executing) legal?
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Example:

Capacities are marked in red
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Example:

Nach der Initialisierungsphase:

• s is lifted to height 7.  The heights

of all other nodes are set to 0. 

• Every edge from s is saturated. 

All other edges have a flow of 0. 

No PUSH-operation can currently

be executed. 

Operations that can be executed are 

LIFT(u), LIFT(v) or LIFT(w). 

After initialization:
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Nach der Initialisierungsphase:

The height h(v) is set to

1 + min {h [u] | (v, u)  Ef}

= 1 + 0 = 1.

Now, operations that can be executed

are LIFT(u), LIFT(w) or 

PUSH(v, u), PUSH(v, w),

PUSH(v, x), PUSH(v, y),

PUSH(v, t). 

Example:

After LIFT(v):
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Nach der Initialisierungsphase:

Operatons that can be executed are

LIFT(u), LIFT(w), LIFT(y) or

PUSH(v, u), PUSH(v, w),

PUSH(v, x), PUSH(v, t). 

After PUSH(v, y):

Example:
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Example:

Nach der Initialisierungsphase:

After LIFT(y):

The height h(y) is set to

1 + min{h[u] | (y, u)  Ef}

= 1 + 0 = 1. 

Operations that can be executed  

are LIFT(u), LIFT(w) or

PUSH(v, u), PUSH(v, w),

PUSH(v, x), PUSH(v, t),

PUSH(y, t).
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Example:

Nach der Initialisierungsphase:

After PUSH(y, t):

Operations that can be executed

are LIFT(u), LIFT(w) or

PUSH(v, u), PUSH(v, w),

PUSH(v, x), PUSH(v, t).

The algorithm continues to run

until no PUSH or LIFT operation

can be executed.
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Goldberg´s Algorithm

Let‘s prove some lemmas!

1) Which invariants hold during the 

execution of the algorithm?

2) How do we know when an optimal flow is 

found?

3) What is the runtime of the algorithm?
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Goldberg´s Algorithm

Lemma 6.36: At any point in time during the execution, ef(s)≤0 
and for all nodes v∈V\{s}, ef(v)≥0.

Proof:

• We perform a complete induction over the number of 
executed Push and Lift operations.

• Initially, the lemma is obviously true.

• Thus we assume that it is true for some point in time.
• Then a Push operation maintains the property that ef(v)≥0 for 

all v∈V\{s} due to the choice of d.
A Lift operation does not change any ef(v).

• Therefore, Su∈V\{s} f(V,u) ≥ 0. (by definition of ef(v))

• Moreover, we know that for f it holds

Su∈V f(V,u) = 0.
• Hence, ef(s)=f(V,s)≤0.
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Lemma 6.37: Every Lift(u) call preserves the 
legality of the height function and increases 
h(u) by at least 1.

Proof:

• A Lift operation is only executed for some 
node u if there is no admissible edge (u,v) 
and therefore h(u)≤h(v) for all (u,v)Ef.

• Since the new height is h´(u)=min{h(v)+1 | 
(u,v)Ef}, it follows that h´(u)>h(u) and 
h´(u)≤h(v)+1 for all (u,v)Ef.
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Let‘s prove some lemmas!

1) Which invariants hold during the 

execution of the algorithm?

2) How do we know when an optimal flow is 

found?

3) What is the runtime of the algorithm?
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Lemma 6.38 (Superoptimality): For every legal preflow f and every legal 
height function h there is no augmenting path in Gf.

Proof:

• Suppose that there is an augmenting path (s=v1,v2,…,vl=t) in Gf.

• Since the heights of the nodes can only increase over time (see 
Lemma 6.37), it holds that h(s)≥n, and since t can never be active, 
h(t)=0.

• Hence,
n ≤ h(s) ≤ h(v2)+1 ≤ h(v3)+2 ≤ … ≤ h(t)+l-1 = l-1 ≤ n-1
since the augmenting path is simple and can therefore contain at 
most  n nodes.

• Thus, we obtain a contradiction. QED.

Question: Why are we not done in our optimality analysis? (Hint: Is a 
legal preflow also a legal flow?)
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Lemma 6.39 (Optimality): If there is no active node in 
Gf, then the preflow is a maximum flow.

Proof:

• By definition of active node, there is no node 
u∈V\{s,t} with ef(u)>0. Then, it holds for all nodes 
u∈V\{s,t} according to Lemma 6.36 that ef(u)=0. 
Hence, the preflow is a legal flow. 

• The maximality of the flow follows from Lemma 
6.38 and the Maxflow-Mincut Theorem.
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Let‘s prove some lemmas!

1) Which invariants hold during the 

execution of the algorithm?

2) How do we know when an optimal flow is 

found?

3) What is the runtime of the algorithm? 

(And does it even terminate?)
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Lemma 6.40: For every active node u there is a path in Gf from u to s.

Proof:

• Let U be the set of nodes that are reachable from u in Gf.

• Recall Lemma 6.36 says all nodes other than s have non-negative excess 
flow. So if s∉U, then all nodes in U have non-negative excess flow.

• The flow into U is 0 since if there is edge (v,w)∈E with v∉U, w∈U, f(v,w)>0, 
then cf(w,v)≥f(v,w)>0. (If there is flow going into U, it can be cancelled in the 
opposite direction, so Gf has an edge leaving U, contradiction.)

• Hence,

0 = SvV\U f(v,U) ≥ SvV\U f(v,U) - SvU f(v,V\U) (by preflow condition)

= SvV\U f(v,U) - SvU f(v,V\U) + SvU f(v,U) - SvU f(v,U) 

= SvU ( f(V,v) – f(v,V) )  (note SvV\U f(v,U) + SvU f(v,U) = SvU ( f(V,v) ))

= SvU\{u} ( f(V,v) – f(v,V) ) + 2ef(u) > 0 (skew symmetry/preflow condition)

• Thus, we arrive at a contradiction, and therefore sU.
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Lemma 6.41: For every active node v∈V, h(v)≤ 2n-1.

Proof:

• Since s can never be active due to Lemma 6.36 and t can 
never be active by definition, h(s)=n and h(t)=0 at any time.

• Consider an arbitrary active node u∈V\{s,t}. 

• According to Lemma 6.40, s is reachable from u in Gf.

• Let p=(u=v1,v2,…,vl=s) be a simple path from u to s.
• We know that h(s)=n. Moreover, h(vi) ≤ h(vi+1)+1 for all 

i∈{1,...,l-1}.

• Hence, h(u) ≤ n+l ≤ 2n-1 because the path cannot contain t
and therefore l ≤ n-1. QED.

Now we are ready to determine the runtime of the Lift and Push 
operations.
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LIFT OPERATIONS

Lemma 6.42: The total number of Lift operations executed by the 
algorithm is O(n2) and their total runtime is O(nm).

Proof:

• Due to Lemmas 6.37 and 6.41 at most 2n-1 Lift operations 
can be applied to any node. Hence, altogether at most O(n2)
Lift operations are executed by the algorithm.

• The cost of a Lift(v) operation is equal to the outgoing degree 
of a node v in Gf because we have to check all nodes 
reachable from v.

• Thus, the total runtime of the Lift operations is at most

Sv∈V (2n-1)deg(v) = O(nm)

where deg(v) denotes the (outgoing) degree of a node v. 
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PUSH OPERATIONS (2 cases)

A Push operation is saturating if d=cf(u,v), and otherwise non-
saturating. (Recall d:=min{ef(u),cf(u,v)}.)

Lemma 6.43: The total number of saturating Push operations is O(nm).

Proof:

• After a saturating Push on (u,v), we cannot pump again flow from u
to v unless v has performed a Push operation on (v,u).

• Since it must hold that h(u)>=h(v)+1 at Push(u,v) and h(v)>=h(u)+1 
at Push(v,u) and the heights of the nodes are monotonically 
increasing, the height of u must have increased by at least 2 for 
another saturating Push along (u,v).

• Hence, there can be at most (2n-1)/2 saturating Push operations via  
(u,v), which results in a total number of at most O(nm) saturating 
Push operations.
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Lemma 6.44: The total number of non-saturating Push operations is O(n2m).

Proof:

• We use the potential function F=Sactive v∈V h(v).

• Initially, F=0 since all heights of active nodes are equal to 0. We distinguish 
between three types of operations that can change F:

– Non-saturating Push along edge (v,w): Then node v becomes inactive 
and F is reduced by h(v). On the other hand, w can now become active, 
which can increase F by h(w). But since h(v)>=h(w)+1, F is always 
decreased by at least 1.

– Saturating Push along edge (v,w): This can increase F by at most 2n-1
since in the worst case v remains active while w becomes active and 
h(w)≤2n-1.

– Lift operation: Altogether, the Lift operations increase F by at most
(2n-1)n.

• Since there are only O(nm) saturating Push operations, F can be increased 
by at most O(n2m) due to these.

• Moreover, F can be increased by at most O(n2) due to Lift operations.

• Altogether, F can be increased by at most O(n2m). Since F≥0 at any time, 
the number of non-saturating Push operations is at most O(n2m).
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• Since a Push operation only takes constant time:
– Lemma 6.42: Lift operations O(nm).

– Lemma 6.43: Saturating push operations O(nm).

– Lemma 6.44: Non-saturating push operations O(n2m).

• So total runtime of O(n2m) for Goldberg´s Algorithm.

• With an improved selection of Push and Lift Operations, this runtime 
can be improved.

Rules for the choice of active nodes:

• FIFO: The active nodes are organized in a FIFO queue, i.e., new 
active nodes are added to the back of the queue and active nodes to 
be processed are taken from the front. With this rule, a runtime of 
O(n3) can be reached.

• Highest-Label-First: Always take the active node of largest height. In 
this case, one can reach a runtime of O(  m n2).
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Other Variants

• Goldberg, 1985: FIFO PPA: O(|V|3).

• Goldberg, Tarjan, 1986:

Improved FIFO PPA: O(|V|  |E|  log (|V|2  |E|)).

• Goldberg, Tarjan, 1986, Cheriyan, Maheshwari 1989:
Highest Label PPA: O(|V|2  |E|). 

• King, Rao, Tarjan, 1994:

O(|V|  |E| log|E|/(|V| log |V|) |V|).

• Orlin, 2013:

O(|V|  |E|).

• Randomized Variants 
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History of maximum flow algorithms:

G = (V, E) with |V| = n, |E| = m, U: value of maximum flow.
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… node capacities

Variants of the Maxflow Problem

… undirected graphs

or make use of skew symmetry to ensure flow in only one direction

c

u1 u2
u1 u3 u2c

c

c c

c c

u

c

u1 u2

is locally

replaced by

is locally

replaced by
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From now on we assume the use of flows following Definition 6.5.

Definition 6.5: Let (G,s,t,c) be a flow network. A network flow in G is a function f 
: E → ℝ≥0 with

• 0 ≤ f (u, v) ≤ c (u, v) for all (u, v)  E  (capacity constraints)

• ΣvV  f (u, v) - ΣvV  f (v, u) = 0 for all u  V \ {s, t} 
(flow conservation)

Minimal Cut with minimal Number of Edges

90



1/28/2019 Chapter 6

From now on we assume the use of flows following Definition 6.5.

Problem MINCUTMINEDGES:

Input: flow network (G, s, t, c) with integer edge capacities

Output: minimal cut of (G, s, t, c) with minimal number of edges 

(among all minimal cuts) 

Transform (G, s, t, c) into a flow network (G, s, t, c´) with c´(u, v) = 

M  c(u, v) + 1, where M  |E| + 1 is a sufficiently large constant. 

A solution of the MAXFLOW problem in (G, s, t, c´) yields a minimal cut (S, T) 

with

c´(S, T) = M  c(S, T) + |{e  E | e  S  T}|

Question: Why does this yield the minimum number of edges?

minimal cut in G number of edges

crossing the cut

Minimal Cut with minimal Number of Edges
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Definition 6.45:

a) A circulation network is a triple (G, b, c), where G = (V, E) is a directed graph and b, c : 
E  ℝ are capacity functions with b(e)  c (e) for all e  E.

b) A circulation f is a flow without a source or sink. Formally,  f : E  ℝ with 

1. b(e)  f (e)  c (e) for all e  E (capacity constraints)

2.  S(u, v)  E f(u, v) = S(v, w)  E f(v, w) for all v  V        (flow conservation)

Problem CIRCULATE:

Input: circulation network (G, b, c)

Output: circulation f for (G, b, c)

Redefine the residual network Gf = (V, Ef) with Ef = {(u, v)  V  V | cf (u, v) > 0)} and

if f(u, v) < b(u, v)

cf(u,v)  =    c(u, v) - f(u, v)  +  max{f(v, u) – b(v, u), 0}    if f(u, v)  b(u, v)

c(u, v) – f(u, v)

residual capacity 

as before

maximal flow that can 

be removed in opp. direction

Circulation
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Algorithm CIRCULATE (circulation network (G, b, c)) {

f(e) = 0 for all e  E; /* initialize to trivial non-feasible (why?) flow */

while (e  E : f(e) < b(e)) {

choose (u, v)  E with f(u, v) < b(u, v); /* flow on edge (u, v) is too small*/

if ( path P from v to u in Gf) { /* notice the new definition of Gf ! */

C = (P, (u, v)) is a cycle with (u, v)  C;                           /* find cycle along which to push 

more flow */

send d = mineC cf (e) flow along cycle C;

} else return(NULL); /* there is no circulation */

} /* while */

return(f);

} /* CIRCULATE */

Algorithm CIRCULATE terminates. Whenever it outputs a function f, then f is a feasible circulation for 

(G, b, c). Whenever the algorithm outputs NULL, there is no feasible circulation for (G, b, c). 

Lemma 6.46: (G, b, c) with G = (V, E) has a feasible circulation ⇔ for every subset U  V

S b(u, v)   S c(v, u)
(u, v)  (U, Ū) (v, u)  (Ū, U)

Circulation
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Lemma 6.46: (G, b, c) with G = (V, E) has a feasible
circulation ⇔ for every subset U⊆V

S b(u, v)   S c(v, u)

Proof:

⇒: Let f be a circulation for (G,b,c).

• Then it holds for all v∈V

S(u,v)∈E f(u,v) = S(v,w)∈E f(v,w)
• Therefore, it holds for all U⊆V:

S(u,v)∈(U,Ū) b(u,v) ≤ S(u,v)∈(U,Ū) f(u,v)

= S(v,w)∈(Ū,U) f(v,w)

≤ S(v,w)∈(Ū,U) c(v,w)

1/28/2019 Chapter 6

(u, v)  (U,Ū) (u, v)  (Ū,U)

Circulation
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Proof (continued):
⇐: suppose there is no circulation  f for (G,b,c).

• Then algorithm CIRCULATE outputs NULL.
• That is, there is an edge e=(u,v)∈E with f(e)<b(e) so that 

there is no path in Gf from v to u.
• Define U={w∈V | v⇝w in Gf}.

• Then v∈U and u∈Ū and for all (x,y)∈(U,Ū): cf(x,y)=0.

• Hence,  f(e)=c(e) for all e∈(U,Ū) and f(e)≤b(e) for all 
e∈(Ū,U).

• Therefore,

S(u,v)∈(Ū,U) b(u,v) > S(u,v)∈(Ū,U) f(u,v) 

= S(v,w)∈(U,Ū) f(v,w) 

= S(v,w)∈(U,Ū) c(v,w)
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Definition 6.47:

a) A constrained flow network is a tuple (G, s, t, b, c), where (G, s, t, c) is a flow 
network and  b : E  ℝ is a function with b (e)  c (e) for all e  E.

b) A constrained flow f for (G, s, t, b, c) is a feasible flow for (G, s, t, c) with 

b (e)  f (e) for all e  E. 

Problem LOWERBOUNDEDFLOW:

Input: constrained flow network (G, s, t, b, c)

Output: constrained flow f for (G, s, t, b, c) of maximal value |f|

Lower Bounds for Edge Flows
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Algorithm BOUNDEDFLOW (constrained flow network (G, s, t, b, c)){

construct circulation network (G, b, c) with

G = G + (t, s);

b(e) = b(e); c(e) = c(e) for all e  E;

b(t, s) = 0; c(t, s) = ;

f = CIRCULATE(G, b, c);

if (f = NULL) return (NULL);

f = feasible flow for (G, s, t, b, c) resulting from f by deleting edge (t, s) and its flow;

solve the MAXFLOW problem for (G, s, t, c) with

f as initial flow and

residual capacities    c  (u, v) = c(u, v) – f(u, v) + max{f(v, u) – b(v, u), 0}  for all (u, v)  E

let g be the maximum flow obtained for (G, s, t, c);

return(g);

} /* BOUNDEDFLOW */

If Algorithm BOUNDEDFLOW outputs NULL, then there is no constrained flow for (G, s, t, b, c).

Otherwise, Algorithm BOUNDEDFLOW outputs a solution f for the LOWERBOUNDEDFLOW

problem.

f


as before max. flow to be deleted

Lower Bounds for Edge Flows
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Problem MINFLOW:

Input: constrained flow network (G, s, t, b, c)

Output: constrained flow f for (G, s, t, b, c) with minimal value |f|

Algorithm MINIMUMFLOW (constrained flow network (G, s, t, b, c)) {

h = BOUNDEDFLOW(G, s, t, b, c);

if (h = NULL) return(NULL);

construct flow network (GR, sR, tR, cR) with

GR = (V, ER), ER = {(v, u)| (u, v)  E};

sR = t; tR = s;

cR(u, v) = cf(u, v) for all (u, v)  ER,

where cf() represents the redefined residual capacitites;

solve the MAXFLOW problem for (GR, sR, tR, cR) and let

g be the maximal flow for (GR, sR, tR, cR);

f = h – g;

return(f);

} /* MINIMUMFLOW */

If Algorithm MINIMUMFLOW outputs  NULL, then there is no feasible constrained flow for 

(G, s, t, b, c).  Otherwise, Algorithm MINIMUMFLOW outputs a solution f for the MINFLOW 

problem. 

Minimal Flow Problem
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Flows of minimal Cost

a)A flow network with edge costs is tuple (G, s, t, c, ) where G = (V, E)
is a directed graph, c : E  ℕ0 defines edge capacities, and  : E 
ℕ0 defines edge costs, i.e., (e) is the cost of sending one unit of flow
across e. 

b) The cost of a flow f from s to t in G is defined as

(f) := SeE (e) f(e).

Problem MINCOSTMAXFLOW:

Input: flow network (G, s, t, c, )

Output: maximum flow f with minimal cost (f).

W.lo.g. we assume that G=(V,E) is a directed graph with at most one 
edge for each pair of nodes, i.e., there is no pair of nodes u,v∈V
with (u,v),(v,u)∈E.
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Let f be a flow. 

• cost of augmenting path p for f (now not necessarily from s to t):

(p) = S(u,v)∈p:(u,v)∈E cf(p)(u,v) – S(u,v)∈p:(v,u)∈E cf(p)(v,u)

• augmenting cycle w.r.t. f: an augmenting path whose startpoint and 
endpoint are identical (by definition s and t cannot be on such a 
cycle; why?).

Lemma 6.49: For every augmenting cycle p for a flow f there is a flow f´
with |f´|=|f| and 

(f´)=(f) + (p) .

Proof:

• Let f´=f+p. Then f´ is still a feasible flow. Also, since p does not go 
through s, it cannot change flow value, i.e. |f´|=|f|.

• Furthermore, the cost of f´ satisfies:

(f´) = (f) + S(u,v)∈p:(u,v)∈E cf(p)(u,v) – S(u,v)∈p:(v,u)∈E cf(p)(v,u)

= (f) + (p)
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Theorem 6.50: A flow f has minimal cost among all flows of value 
|f| if and only if there is no augmenting cycle of negative cost 
for f.

Proof:
⇒: Follows from Lemma 6.49.

⇐: Let f be a flow that does not have a minimal cost. Let g be a 
flow of minimal cost and |g|=|f|.

• Consider network Gg-f = (V,Eg-f) with Eg-f = E+
g-f ∪ E-

g-f, where

E+
g-f = {(u,v) | g(u,v) > f(u,v) } and

E-
g-f = {(v,u) | g(u,v) < f(u,v) }  (note: no equality allowed!)

• Let the edge capacities be defined as cg-f=|g(e)-f(e)|.
• Then one can show that for all nodes v∈V that

Su∈V cg-f(u,v) – Sw∈V cg-f(v,w) = 0 (*) „flow conservation“
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Proof (continued):
• Let cmin = min{cg-f(u,v) | (u,v)∈Eg-f}. (Recall cg-f=|g(e)-f(e)|, and 

by definition of Eg-f = E+
g-f ∪ E-

g-f, cmin>0.)

• If we start at any v∈V with at least one neighbor in Gg-f, then 
there is always an edge (v,w) with cg-f(v,w)≥cmin, and every 
node not visited „can be left“ due to „flow conservation“ (*).

• Since the number of nodes is limited by |V|, there must be an 
augmenting cycle in Gg-f.

• When removing this cycle, the flow conservation and capacity 
constraints are still satisfied.

• Thus, Gg-f can be decomposed into a set of augmenting 
cycles. When applying these cycles to f, we obtain g.

• Since (g) < (f), at least one of these cycles must have 
negative cost.
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ALGORITHM: If have integer edge capacities and edge costs bounded by 

constant C, can use the following polynomial time algorithm to compute a 
maximum flow with minimal cost:

• Use Ford-Fulkerson to compute a maximum flow. Runtime: O(Cnm).
(Recall Ford-Fulkerson requires O(|E|  |f|) time, for f an optimal flow.)

• Search for augmenting cycles of negative cost in Gf until no such cycles can 
be found. A negative augmenting cycle can be found via Bellman-Ford in 
O(nm) time (why?). Every such cycle has an integer capacity of >0 and 
integer cost <0. I.e., the cost of the maximal flow reduces by at least 1 for 
each such augmenting cycle. The total runtime for this part is therefore 
O((C2m)(nm))=O(C2nm2). (Q: Why is C2m an upper bound on max cost 
for any flow? Recall cost of a flow is (f) := SeE (e) f(e).)

More advanced techniques can also compute a maximal flow of minimal cost 
for arbitrary capacities and cost values (see, e.g., the book by Ahuja, Magnanti 
und Orlin: Network Flows).
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Definition 6.48:

a) A flow network with edge costs is a tuple (G, c, , d) where G = (V, E) is a directed graph, c : E  ℕ0 

defines the edge capacities, d : V  ℤ defines the node demands, SvV d(v) = 0, and  : E  ℕ0 

defines the edge costs, i.e., (e) is the cost to send one unit of flow across e. 

Note that d(v) > 0 means a node that consumes flow while d(v) < 0 means a node that produces flow. 

b)  A flow f of minimal cost for (G, c, , d) is a function f : E  ℕ0 with  

1. f(e)  c(e) for all e  E (capacity constraints)

2. S(u,v)E f(u, v) - S(v,w)E f(v, w) = d(v) for all v  V, (flow conservation)

which minimizes the cost (f) := SeE (e) f(e).

Problem MINCOSTFLOW:

Input: flow network with edge costs (G, c, , d)

Output: flow f of minimal cost for (G, c, , d)

Solution possible by combining LOWERBOUNDEDFLOW problems with the MINCOSTMAXFLOW 

problem.

Flows of minimal Cost
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