
Fundamental Algorithms

Chapter 6: Network Flow

Sevag Gharibian
(based on slides of Christian Scheideler)

WS 2018

Outline

• What is a network flow? Definitions, etc.

• Ford-Fulkerson algorithm

• Karp-Edmonds algorithms

• Dinic’s algorithm

• Goldberg’s algorithm

• Variants on network flow

1/28/2019 Chapter 6 2

Foundations

Definition 6.1: A flow network (G,s,t,c) consists of a directed graph G=(V,E), a source
s V, a sink t V, and a capacity function c:VV → ℝ≥0, with c(u,v) = 0 if
(u,v) E.

In the following, we assume that s ↝G u ↝G t for all u V, where u ↝G v means

that there is a directed path from u to v in G. (Otherwise, we can remove u and all

of its edges from G, because a flow from s to t cannot be sent via u.)

Definition 6.2: Let (G,s,t,c) be a flow network.

a) A network flow in G is a function f:VV → ℝ with the property that

f(u, v) ≤ c(u, v) for all u, v V (capacity constraints)

f(u, v) = - f(v, u) for all u, v V (skew symmetry)

ΣvV f(u, v) = 0 for all u V \ {s, t} (flow conservation)

b) The value f of a network flow f is defined as
 f = ΣvV f (s, v).

1/28/2019 Chapter 6 3

Foundations

A network flow in G is a function f:VV → ℝ with the property that

f(u, v) ≤ c(u, v) for all u, v V (capacity constraints)

f(u, v) = - f(v, u) for all u, v V (skew symmetry)

ΣvV f(u, v) = 0 for all u V \ {s, t} (flow conservation)

Remark 6.3: Let f be a flow in a flow network (G,s,t,c). Then
a) f (v, v) = 0 for all v V (due to skew symmetry).

b) ΣuV f (u, v) = 0 for all v V \ {s, t} (flow conservation & skew symmetry).

c) For all u, v V with (u, v), (v, u) E it holds that f (u, v) = f (v, u) = 0.

d) For all vV \ {s, t},

Σ f (u, v) = - Σ f (u,v) (flow conserv., skew symmetry)

uV, f(u,v)>0 uV, f(u,v)<0

e) A function f with f (u, v) = 0 for all u, v V is a valid flow.

1/28/2019 Chapter 6 4

Foundations

Example of a valid flow:

• Only positive flows are shown (negative flows are implied by
skew symmetry).

• For example, f(v,u)=1, so f(u,v)=-1.

• This implies that flow cannot flow at the same time in both
directions for a pair {u,v}.

1/28/2019 Chapter 6

u x

v y

ts

1212
1520

44

77
49

14

1116

813

1114

10 f (u, v)|c(u, v), |f| = 19,

|10 means no flow

5

Foundations

Claim 6.4: For any network flow, the outgoing flow of s equal to the incoming
flow at t.

Proof:

• From skew symmetry, we know:

Sv∈V Sw∈V f(v,w) = S{v,w} (f(v,w)+f(w,v)) + Sv∈V f(v,v) = 0

• Moreover, it follows from flow conservation:

Sv∈V Sw∈V f(v,w) = Sw∈V f(s,w) + Sw∈V f(t,w) = |f| + Sw∈V f(t,w)

(Recall flow conservation: ΣvV f(u, v) = 0 if u V \ {s, t})
• Hence, due to skew symmetry:

|f| = Sw∈V f(w,t)

1/28/2019 Chapter 6 6

u x

v y

ts

1212
1520

44

77
49

14

1116

813

1114

Foundations

1/28/2019 Chapter 6

Alternative definition of network flows:

Definition 6.5: Let (G,s,t,c) be a flow network. A network flow in G is a
function f : E → ℝ≥0 with

• 0 ≤ f (u, v) ≤ c (u, v) for all (u, v) E (capacity constraints)

• ΣvV f (u, v) - ΣvV f (v, u) = 0 for all u V \ {s, t}
(flow conservation)

i.e., we drop the skew symmetry constraint.

Remarks:

• Definition 6.5 is more intuitive whereas Definition 6.2 is more

restrictive and sometimes simplifies the proofs.

• We will use the alternative Definition 6.5 in later parts of this

chapter.

7

1/28/2019 Chapter 6

MAXFLOW Problem:

Input: a flow network (G,s,t,c).

Output: a flow f in G with maximum value | f |.

Remark 6.6: A maxflow problem (G, s1, …, sp, t1, …tq, c) with multiple sources

s1, …, sp and multiple sinks t1, … tq with the goal to transfer as much flow as
possible from the sources to the sinks (i.e., find a flow f:VV → ℝ maximizing

Si=1
p (SvV f(si,v))) can be reduced to the original maxflow problem:

Construct Gˈ = (Vˈ, Eˈ) and cˈ as follows:
Vˈ = V ∪ {s, t}
Eˈ = E ∪ {(s, si) | 1 ≤ i ≤ p} ∪ {(ti, t)| 1 ≤ i ≤ q}

cˈ (u, v) = c (u, v) u, v V
 u = s or v = t

Then there is a flow f from s1, …, sp to

t1, …, tq of value in (G, s1, …, sp, t1, … tq, c)
if and only if there is a flow fˈ from s to t in
(Gˈ, s, t, cˈ) of value (see the figure).

G

tq

t

8
8

…

t1

s

8
8

…

sp

s1

G

8

f

Ford-Fulkerson Algorithm

1/28/2019 Chapter 6

How do we solve the maxflow problem?

Definition 6.7: Let (G,s,t,c) be a flow network and f be a flow in G.

a) For any u, v V, the residual capacity cf(u,v) is defined as

cf(u,v) = c (u,v) – f (u,v) >= 0

(how much capacity for flow is unused?)

b) The residual network Gf = (V,Ef) is defined as

Ef = { (u,v) VV | cf(u,v) > 0}

c) A simple path P from s to t in Gf is called an augmenting path.

The residual capacity (or „bottleneck“) cf (P) of P is defined as

cf(P) = min { cf(u,v) | (u,v)P }.

9

1/28/2019 Chapter 6

u x

v y

ts

1212
1520

44

77
49

14

1116

813

1114

Example: augmenting path and flow augmentation

Flow network:

G

10

Ford-Fulkerson Algorithm

10

1/28/2019 Chapter 6

Flow network:

G

u x

v y

ts

12

5

4
75

3

5

8

11

Gf

11 15

5

11

3

4

Residual network:

Example: augmenting path and flow augmentation

11

u x

v y

ts

1212

1520

44

7749
14

1116

813

1114

10

cf(u,v) = c (u,v) – f (u,v)

Residual network allows us to both increase or decrease

flow! (hence many edges are depicted in both directions)

1/28/2019 Chapter 6

u x

v y

ts

1212

1520

44

7749
14

1116

813

1114

Flow network:

G

10

u x

v y

ts

12

5

4
75

3

5

8

11

Gf

11 15

5

11

3

4

Residual network with augmenting path:

Example: augmenting path and flow augmentation

12

cf(P) = min { cf(u,v) | (u,v)P }

 residual capacity/bottleneck of

path P: 4

P

1/28/2019 Chapter 6

t

u x

v y

ts

1212

1520

44

7749
14

1116

813

1114

Flow network:

G

10

u x

v y

s

12

5

4
75

3

5

8

11

Gf

11 15

5

11

3

4

Residual network with augmenting path:

u x

v y

ts

1212

1920

44

77914

1116

1213

1114

G‘

10

Augmented flow:

Example: augmenting path and flow augmentation

13

Path P of residual

capacity 4 added to G:

P

1/28/2019 Chapter 6

t

u x

v y

ts

1212

1520

44

7749
14

1116

813

1114

G

10

u x

v y

s

12

5

4
75

3

5

8

11

Gf

11 15

5

11

3

4

u x

v y

ts

1212

1920

44

77914

1116

1213

1114

G‘

10

Augmented flow:

tt

u x

v y

ts

1212

1520

44

7749
14

1116

813

1114

Flow network:

G
u x

v y

s

12

5

4
75

3

5

8

11

Gf

11 15

5

11

3

4

u x

v y

ts

1212

1920

44

77914

1116

1213

1114

G‘

10

u x

v y

ts

12
1

4

793

5

12

11

G‘f

11

New residual network:

11

1

3

19

Residual network with augmenting path:

Example: augmenting path and flow augmentation

14

Let‘s formalize the idea of augmenting flows with augmenting paths. Need
2 lemmas – one says an augmenting path defines an „augmenting
flow“, and the other says we can safely add an „augmenting flow“ to our
current flow to get a new flow.

Lemma 6.8: Let (G, s, t, c) be a flow network and f be a flow in G. Let Gf be
the residual network of G induced by f, and let fˈ be a flow in Gf. Then

(f + fˈ)(u, v) = f (u, v) + fˈ (u, v)

is a valid flow in G with value |f + fˈ| = |f| + |fˈ|.

Proof:

• Capacity constraints:
f(u,v) ≤ c(u,v) and fˈ(u,v) ≤ cf(u,v) = c(u,v)-f(u,v) for all u,vV.
Hence, (f + fˈ)(u, v) ≤ f(u,v) + c(u,v)-f(u,v) ≤ c(u,v).

• Skew symmetry:
f(u,v) = -f(v,u) and fˈ(u,v) = -fˈ(v,u) for all u,vV.
Hence, (f + fˈ)(u, v) = - (f + fˈ)(v, u) for all u,vV.

• Flow conservation:
Sv f(u,v) = 0 and Sv fˈ(u,v) = 0 for all uV\{s,t}.
Hence, Sv (f + fˈ)(u,v) = 0 for all uV\{s,t}.

1/28/2019 Chapter 6

Ford-Fulkerson Algorithm

15

1/28/2019 Chapter 6

How to define a flow for an augmenting path in Gf?

Lemma 6.9: Let (G, s, t, c) be a flow network and f be a flow in G. Let Gf be the

residual network of G induced by f and let P be an augmenting path in Gf. Then
fP : V V ℝ with

cf (P) if (u,v) belongs to P

fP (u,v) = -cf (P) if (v,u) belongs to P

0 otherwise

is a valid flow in Gf with value |fP| = cf (P) > 0.

Proof:

Check capacity constraints, skew symmetry and flow conservation.

Corollary 6.10: Let (G, s, t, c) be a flow network and f be a flow in G. Let Gf be the

residual network of G induced by f and let P be an augmenting path in Gf. Let fP be

defined as in Lemma 6.9. Then fˈ = f + fP is a valid flow in G with value

|f ˈ| = |f + fP| = |f| + |fP| > |f|.

Ford-Fulkerson Algorithm

16

1/28/2019 Chapter 6

Ford-Fulkerson Algorithm

Idea: Start with empty flow. Repeatedly find augmenting paths to improve flow.

FORDFULKERSON (Flow network G = (V, E), s, t, c))

{

for each edge (u, v) E

{ f [u, v] := 0; f [v, u] := 0; } // initially empty flow

Gf := residual network of G w.r.t. f;
while (Ǝ a path P from s to t in Gf) // P is an augmenting path

{ // compute maximal flow („bottleneck“) along P

cf (P) := min {cf (u, v) | (u, v) P)}; // cf (u, v) = c (u, v) – f (u, v)

for each edge (u, v) P // update flow along P

{ f [u, v] := f [u, v] + cf (P); f [v, u] := - f [u, v]; }

Gf := residual network of G w.r.t. f;

}

output f

}

17

1/28/2019 Chapter 6

u x

v y

ts

12

20

4

7
9

4

16

13

14

Flow network:

G

10

Example: Ford-Fulkerson Algorithm

18

1/28/2019 Chapter 6

Example: Ford-Fulkerson Algorithm

u x

v y

ts

12
20

4

79
4

16

13

14

Flow network:

G

10

u x

v y

ts

12

20

4

79

4

16

13

14

Gf

10

Residual network with augmenting path:

19

1/28/2019 Chapter 6

Example: Ford-Fulkerson Algorithm

u x

v y

ts

12
20

4

79
4

16

13

14

Flow network:

G

10

u x

v y

ts

12

20

4

79

4

16

13

14

Gf

10

Residual network with augmenting path:

u x

v y

ts

4|12
|20

4|4

|74|9
|4

4|16

|13

4|14

G

|10

Augmented flow:

20

1/28/2019 Chapter 6

Example: Ford-Fulkerson Algorithm

u x

v y

ts

12
20

4

79
4

16

13

14

Flow network (only red numbers since

no flow initially):
G

10

u x

v y

ts

12

20

4

79

4

16

13

14

Gf

10

Residual network with augmenting path:

u x

v y

ts

4|12
|20

4|4

|74|9
|4

4|16

|13

4|14

G

|10

Augmented flow:

u x

v y

ts

8

20

4

754

12

13

10

Gf

10

New residual network with augmenting path:

4

4

4

4

21

1/28/2019 Chapter 6

u x

v y

ts

4|12
|20

4|4

|74|9
|4

4|16

|13

4|14

|10

u x

v y

ts

8

20

4

75
4

12

13

10

Gf

10

Flow network:

G

Residual network with augmenting path:

Example: Ford-Fulkerson Algorithm

4 4

4

4

22

1/28/2019 Chapter 6

Example: Ford-Fulkerson Algorithm

u x

v y

ts

4|12
|20

4|4

|74|9
|4

4|16

|13

4|14

G

|10

u x

v y

ts

20

4

75

4

12

13

10

Gf

10

u x

v y

ts

4|12
7|20

4|4

7|74|9
|4

11|16

|13

11|14

G

7|10

4

8

4

4

4

Flow network: Residual network with augmenting path:

Augmented flow:

23

1/28/2019 Chapter 6

Example: Ford-Fulkerson Algorithm

u x

v y

ts

4|12
|20

4|4

|74|9
|4

4|16

|13

4|14

G

|10

u x

v y

ts

20

4

75

4

12

13

10

Gf

10

u x

v y

ts

4|12
7|20

4|4

7|74|9
|4

11|16

|13

11|14

G

7|10

4

8

4

4

4

u x

v y

ts

8
13

4

75
4

5

13

3

3
711

11

4

11

Gf

Flow network: Residual network with augmenting path:

Augmented flow: New residual network with augmenting path:

24

1/28/2019 Chapter 6

Example: Ford-Fulkerson Algorithm

u x

v y

ts

4|12
7|20

4|4

7|74|9
|4

11|16

|13

11|14

Flow network:

G

7|10

u x

v y

ts

13

4

75
11

5

13

3

Gf

3

Residual network with augmenting path:

11

8

4

4

11

7

25

1/28/2019 Chapter 6

Example: Ford-Fulkerson Algorithm

u x

v y

ts

4|12
7|20

4|4

7|74|9
|4

11|16

|13

11|14

G

7|10

u x

v y

ts

13

4

75
11

5

13

3

Gf

311

8

4

4

11

7

u x

v y

ts

12|12
15|20

4|4

7|74|9
1|4

11|16

8|13

11|14

G

|10

Flow network: Residual network with augmenting path:

Augmented flow:

26

1/28/2019 Chapter 6

Example: Ford-Fulkerson Algorithm

u x

v y

ts

4|12
7|20

4|4

7|74|9
|4

11|16

|13

11|14

G

7|10

u x

v y

ts

13

4

75
11

5

13

3

Gf

311

8

4

4

11

7

u x

v y

ts

12|12
15|20

4|4

7|74|9
1|4

11|16

8|13

11|14

G

|10

u x

v y

ts

5

4

75
3

5

5

3

Gf

1111

12

4

11

15

8

Flow network: Residual network with augmenting path:

Augmented flow: New residual network with augmenting path:

27

1/28/2019 Chapter 6

Example: Ford-Fulkerson Algorithm

u x

v y

ts

12|12
15|20

4|4

7|74|9
1|4

11|16

8|13

11|14

Flow network:

G

|10

u x

v y

ts

5

4

75
3

5

5

3

Gf

11

Residual network with augmenting path:

11

12

4

11

15

8

28

1/28/2019 Chapter 6

Example: Ford-Fulkerson Algorithm

u x

v y

ts

12|12
15|20

4|4

7|74|9
1|4

11|16

8|13

11|14

G

|10

u x

v y

ts

5

4

75
3

5

5

3

Gf

1111

12

4

11

15

8

u x

v y

ts

12|12
19|20

4|4

7|7|9
1|4

11|16

12|13

11|14

G

|10

Flow network: Residual network with augmenting path:

Augmented flow:

29

1/28/2019 Chapter 6

Example: Ford-Fulkerson Algorithm

u x

v y

ts

12|12
15|20

4|4

7|74|9
1|4

11|16

8|13

11|14

G

|10

u x

v y

ts

5

4

75
3

5

5

3

Gf

1111

12

4

11

15

8

u x

v y

ts

12|12
19|20

4|4

7|7|9
1|4

11|16

12|13

11|14

G

|10

u x

v y

ts

12
1

4

79
3

5

1

3

11
11

12

11

19

Flow network: Residual network with augmenting path:

Augmented flow: New residual network with no augmenting path:

Gf

30

1/28/2019 Chapter 6

Example: Ford-Fulkerson Algorithm

u x

v y

ts

12|12
19|20

4|4

7|7|9
1|4

11|16

12|13

11|14

Cuts versus flows: Coincidence?

G

|10

u x

v y

ts

19|20

4|4

7|7|9
1|4

G

|10

12|12

u x

v y

ts

12|12
19|20

4|4

7|7|9
1|4

11|16

12|13

11|14

Augmented flow:

G

|10

u x

v y

ts

19|20

4|4

7|7|9
1|4

12|13

|10

23|29

11|16

12|13

11|14

23|52

23|34

12|12

11|16

11|14

23|23

G

31

1/28/2019 Chapter 6

Correctness: How do we know that once no more augmenting paths exist, the flow

we have is optimal, i.e. a maximum flow?

Definition 6.11: Let (G,s,t,c) be a flow network. For X, Y V we define

• Flow across cut X/Y: 𝑓 𝑋, 𝑌 = σ𝑥∈𝑋σ𝑦∈𝑌 𝑓(𝑥, 𝑦)

• Capacity across cut X/Y: c 𝑋, 𝑌 = σ𝑥∈𝑋σ𝑦∈𝑌 𝑐(𝑥, 𝑦)
• Shorthand for 𝑣 ∈ 𝑉: 𝑋 − 𝑣 = 𝑋\ 𝑣

Lemma 6.12: Let (G,s,t,c) be a flow network and let f a network flow in G.
Then it holds for all X, Y, Z ⊆ V:
a) f (X, X) = 0
b) f (X, Y) = -f (Y, X)
c) If X ∩ Y = then

f (X ∪ Y, Z) = f (X, Z) + f (Y, Z) and f (Z, X ∪ Y) = f (Z, X) + f (Z, Y)

Proof: Exercise

X Y

32

1/28/2019 Chapter 6

Definition 6.13: Let (G, s, t, c) be a flow network and f be a flow in G.

a) A cut (S, T) of G is a partition of V into S and T = V \ S so that

s S und t T.

b) The flow across a cut (S, T) is defined as f(S, T).

c) The capacity of a cut (S, T) is defined as c(S, T).

Remark 6.14:

a) The definition of a flow is consistent with the flows that were considered in the previous

examples: flows from T to S are subtracted:

f (S, T) = Σ Σ f (x, y) (where f (x, y) < 0 if f (y,x) > 0).

xS yT

b) The definition of the capacity of a cut is consistent with the capacities that were

considered in the previous examples: edges from T to S add no capacity to the cut:

c (S, T) = Σ Σ c (x, y) where c (x, y) 0.

xS yT

Cuts in Flow Networks

33

1/28/2019 Chapter 6

Lemma 6.15: Let (G, s, t, c) be a flow network and f be a flow in G. Let (S, T) be a

cut of G. Then

f (S, T) = |f|.

As a result,

|f| = f (s, V – s) = f (V – t, t).

Proof: Exercise

Corollary 6.16: Let (G, s, t, c) be a flow network. Then the flow value of any flow f

in G is upper bounded by the capacity of an arbitrary cut in G.

u x

v y

ts

12|12
19|20

4|4

7|7|9
1|4

11|16

12|13

11|14

G

|10

u x

v y

ts

19|20

4|4

7|7|9
1|4

Gf

|10

12|12
11|16

12|13

11|14

23|52

23|34

34

Cuts in Flow Networks

1/28/2019 Chapter 6

Theorem 6.17: (Max-Flow Min-Cut Theorem)

Let (G,s,t,c) be a flow network and f be a flow in G. Then the following statements

are equivalent.

a) f is a maximum flow in G.

b) The residual network Gf of G w.r.t. f does not contain any augmenting path.

c) |f| = c(S, T) for some cut (S, T) of G.

Proof:
• a)⇒b): ¬b)⇒¬a) holds due to Corollary 6.10 and therefore also a)⇒b).

• b)⇒c): Let S be a set of nodes that are reachable from s in Gf. (Why is this not

all of Gf?)Then (S,T) with T=V\S is a cut and f(S,T)=c(S,T) according to the

definition of Gf (Why?). Also, according to Lemma 6.15, |f|=c(S,T).
• c)⇒a): Follows from Corollary 6.16.

Corollary 6.18: Let (G, s, t, c) be a flow network with integer capacities c(u, v).

Then the Ford-Fulkerson Algorithm computes a maximum flow f in time

O (|E| |f|). (Why?)

35

Cuts in Flow Networks

1/28/2019 Chapter 6

Remark 6.19:

a) The bound on the runtime of FORDFULKERSON is sharp:

Gf

u

v

ts

1.000.000

1.000.000

1.000.000

1.000.000

1

G=Gf

u

v

ts

999.999

1.000.000

1.000.000

999.999

1

Gf u

v

ts

999.999

999.999

999.999

999.999

1

b) If the capacities are rational numbers, then they can be scaled to integer

numbers, and FORDFULKERSON can be applied to the scaled network.

c) If the capacities are not rational numbers, then FORDFULKERSON may not

terminate, and the flow f computed by FORDFULKERSON may not converge to

the maximum flow.

1

1
1 1

1 1

36

Problems with irrational Capacities

c): Let f=(5 – 1)/2 ≈ 0,618034 be chosen so that 1-f=f2. In order to
show that the Ford-Fulkerson Algorithm gets stuck, consider the
following graph (where X4):

• We start with an empty flow.

• After using the red path, the residual capacities of the horizontal
edges are 1, 0 and f, or fk-1, 0 and fk for k=1.

• What is the residual network? (Draw it before going to next slide.)

1/28/2019 Chapter 6

s

t

1

X X

X
X

X

1 f

X

37

Problems with irrational Capacities

Suppose that the residual capacities of the horizontal edges are fk-1, 0 and fk

for some odd k∈ℕ.

1. Augment along B, which adds fk to the flow (why?). The residual
capacities are now fk+1, fk and 0 (why?).

2. Augment along C, which adds fk to the flow. The residual capacities are
now fk+1, 0 and fk.

3. Augment along B, which adds fk+1 to the flow. The residual capacities are
now 0, fk+1 and fk+2.

4. Augment along A, which adds fk+1 to the flow. The residual capacities are
now fk+1, 0 and fk+2.

1/28/2019 Chapter 6

A B C

38

Problems with irrational Capacities

• That is, after 4n+1 augmentations we arrive at residual capacities
f2n, 0 and f2n+1.

• As the number of augmentations goes to , the value of the flow
converges to (where does the factor 2 come from below?)

1+2Si≥0 f
i = 1+2/(1-f) = 4 + 5 < 7

although the maximum flow value is 2X+1 (why?).

1/28/2019 Chapter 6

s

t

1

X X

X
X

X

1 f

X

39

Edmonds-Karp Algorithms

Problem: the Ford-Fulkerson Algorithm gives
too much freedom to the choice of augmen-
ting paths.

In 1972, Edmonds and Karp proposed two
heuristics in order to compute maximum
flows more efficiently.

Heuristic 1: Choose the augmenting path of
largest value/bottleneck.

Heuristic 2: Choose the shortest augmenting
path.

1/28/2019 Chapter 6 40

Edmonds-Karp Algorithms

Theorem 6.20: Let (G, s, t, c) be a flow network with integer capacities
c(u, v). Then heuristic 1 computes a maximum flow f* in time

O(|E|2 log |E| log |f*|).

Proof:

• Let f* be a maximum flow in G.

• Let f be an arbitrary flow in G and f´ be a maximum flow in the
residual network Gf. (Initially, f is empty and therefore |f´|=|f*|.)

• Let e be the bottleneck edge in the augmenting path chosen by
heuristic 1. (Recall path chosen greedily to maximize cf(e).)

• S⊆V: set of nodes that can be reached from s along edges in Gf
with residual capacity >cf(e).

• T=V\S: is not empty due to heuristic 1 and the choice of e. (Why?)

• It holds: |f´|≤cf(S,T)≤cf(e)|E| (why?). So cf(e)≥|f´|/|E|.

• Since |f*|=|f|+|f´| (intuition?), the value of f increases at least by a
factor of (1+1/|E|) if |f*|>=2|f| (why?).

1/28/2019 Chapter 6 41

Edmonds-Karp Algorithms

Theorem 6.20: Let (G, s, t, c) be a flow network with integer capacities
c(u, v). Then heuristic 1 computes a maximum flow f* in time

O(|E|2 log |E| log |f*|).

Proof (continued):

• The value of f increases by a factor of at least (1+1/|E|) each round if
|f*|>=2|f|.

• But (1+1/|E|)k≥|f*|/2 if k≥|E| ln |f*|.

• Therefore, at most |E| ln |f*| augmenting paths suffice to obtain a
flow of value at least |f*|/2.

• Refining this argument, it takes at most |E| further augmenting paths
to increase the flow value from ≥(1-1/2k)|f*| to ≥(1-1/2k+1)|f*| for all k.

• Once k=⌊log |f*|⌋+1, we have reached a flow value of |f*| since we
are only dealing with integer values.

• Time to compute an augmenting path with maximal flow value:
O(|E| log |E|). (This is an exercise.)

• Thus, the total runtime is O(|E|2 log |E| log |f*|).

1/28/2019 Chapter 6 42

Edmonds-Karp Algorithms

Analysis of Heuristic 2:

• Gi: residual network after i augmenting

steps, i.e., G0=G.

• For a node v let disti(v) be the distance

(i.e., the number of edges along a shortest

directed path) of v from s in Gi.

• No directed path from s to v: disti(v)=.

1/28/2019 Chapter 6 43

Edmonds-Karp Algorithms

We begin by proving three lemmas:

Lemma 6.21: For every node v with disti(v)=, also
disti+1(v)=.

Lemma 6.22: For every node vV it holds that
disti+1(v)≥disti(v).

Lemma 6.23: During the execution of Heuristic 2,
every edge (u,v) can disappear at most |V|/2 times
from the residual graph.

1/28/2019 Chapter 6 44

Edmonds-Karp Algorithms

Lemma 6.21: For every node v with disti(v)=, also
disti+1(v)=.

Proof:

• Consider an arbitrary node vV with disti(v)=.

• U: set of nodes that have a directed path to v in Gi.

• Then for all nodes uU, disti(u)=.

• Suppose that disti+1(v)≠. Then an augmenting path
must have been chosen in round i that goes through a
node in U. (Why?)

• In this case, there must have been a directed path in
Gi from s to a node in U, which contradicts the
definition of U!

1/28/2019 Chapter 6 45

Edmonds-Karp Algorithms

Lemma 6.22: For every node vV it holds that disti+1(v)≥disti(v).

Proof:

• v=s: trivial since disti(s)=0 for all i.
• v≠s: induction on the distance from s.

• p=(s,…,u,v): shortest path from s to v in Gi+1. (No such path,
then we are done according to Lemma 6.21.)

• Since this is a shortest path, disti+1(u)=disti+1(v)-1.
• According to the induction hypothesis, disti+1(u)≥disti(u).

• Case 1: (u,v) was an edge in Gi. Then disti(v)≤disti(u)+1.
Hence, disti+1(v)=disti+1(u)+1≥ disti(u)+1≥ disti(v).

• Case 2: (u,v) was not an edge in Gi. Then (v,u) belongs to the
i-th augmenting path. In this case, (v,u) is on a shortest path
from s to t in Gi and therefore, disti(v)≤disti(u)-1 ≤disti(u)+1,
as in Case 1.

1/28/2019 Chapter 6 46

Edmonds-Karp Algorithms

Lemma 6.23: During the execution of Heuristic 2, every edge
(u,v) can disappear at most |V|/2 times from the residual
graph.

Proof:

• Suppose that (u,v) is in the residual graphs Gi and Gj+1 but not
in the residual graphs Gi+1,…,Gj.

• Then (u,v) must be in the i-th augmenting path, and therefore,
disti(v)=disti(u)+1.

• Moreover, (v,u) must be in the j-th augmenting path, and
therefore, distj(u)=distj(v)+1.

• Together with Lemma 6.22 it follows that
distj(u) = distj(v)+1 ≥ disti(v)+1 = disti(u)+2

• Since |V|-1 is an upper bound on the largest finite distance of
a node, (u,v) can disappear at most |V|/2 times.

1/28/2019 Chapter 6 47

Edmonds-Karp Algorithms

Now we are ready to prove a runtime bound for Heuristic 2.

• Since every edge can disappear at most |V|/2 times from the
residual network, there are at most |E||V|/2 events in which
an edge disappears.

• But at least one edge disappears in each iteration, which
implies that Heuristic 2 runs for at most |E||V|/2 iterations.

• Since a shortest augmenting path can be computed in time
O(|E|) (using breadth first search), we get:

Theorem 6.24: Let (G, s, t, c) be a flow network with integer
capacities c(u, v). Then Heuristic 2 computes a maximal flow
in time O(|E|2|V|).

1/28/2019 Chapter 6 48

Dinic´s Algorithm

• The runtime of Heuristic 2 does not depend any
more on the value of the maximum flow, but it is
still too large.

• In the following we will present Dinic´s Algorithm,
which only needs O(|V|2 |E|) time.

Definition 6.25: A flow f in a flow network (G, s, t, c)
is called blocking if every path from s to t contains
at least one saturated edge. An edge e is called
saturated if f(e)=c(e).

Remark: Not every blocking flow is also maximum,
but every maximum flow is blocking. (Exercise!)

1/28/2019 Chapter 6 49

Dinic´s Algorithm

Definition 6.26:

• The level of a node v is defined as
level(v)=df(s,v) (the number of edges along a
shortest path in Gf from s to v).

• The level graph Lf is a subgraph of Gf that
contains all edges (u,v) with (u,v)∈Gf and
level(u)=level(v)-1.

Lemma 6.27: Lf contains all shortest
augmenting paths and can be constructed in
O(m) time (e.g., when using BFS).

1/28/2019 Chapter 6 50

Dinic´s Algorithm

Dinic´s Algorithm:
start with an empty flow f
repeat

find a blocking flow f´ in level graph Lf
set f:=f+f´

until sink t is not reachable in Lf

Note: Unlike previous algorithms, we do not look for an
(augmenting) path, but a (blocking) flow.

Lemma 6.28: Dinic´s Algorithm stops after at most n-
1 iterations of the repeat-loop.

1/28/2019 Chapter 6 51

Dinic´s Algorithm

Lemma 6.28: Dinic´s Algorithm stops after at most n-1 iterations of the repeat-
loop.

Proof:

• Consider some fixed iteration i and let
– f and level denote the flow and levels at the beginning and

– f´ and level´ denote the flow and levels at the end of the iteration.

• An edge (v,w) in Gf´ is either
– an edge in Gf (if the edge has not been saturated in iteration i) or

– a reverse edge in Lf (if it was not in Gf, so (w,v) used in iteration i).

• Thus, for every edge (v,w)∈Gf´, level(w)≤level(v)+1. (*) (Why?)
(Note same statement with level´(w)≤level´(v)+1 would be trivial.)

• Consider now a shortest s-t path in Lf´:

• By (*), level´(t)≥level(t). (Why?)

• If we could strengthen this to level´(t)>level(t), our claim is shown...

1/28/2019 Chapter 6

s v w t

52

Dinic´s Algorithm
Lemma 6.28: Dinic´s Algorithm stops after at most n-1 iterations of the repeat-

loop.

Proof (continued):

• Suppose that level´(t)=level(t). Let p be any shortest path from s to t in Gf´.

• For every edge (v,w)∈p we know by (*) that level(w)≤level(v)+1. So it must
hold that level(w)=level(v)+1 (**) since otherwise level´(t)>level(t).

• If (v,w) was not an edge in Gf, then (w,v) used by blocking flow in interation
i, implying level(w)=level(v)-1. Contradiction with (**).

• Therefore, all edges (v,w) in p were also edges in Gf. By (**), p was a
shortest s-t path in Gf .

• Every edge in p is therefore in Lf, and none of these was saturated
(otherwise they would not be in Gf´!).

• But this contradicts fact that we chose a blocking flow in Lf in iteration i.

• Therefore, in each iteration of the repeat-loop, the distance between s and t
in Gf increases by at least 1.

• Since a shortest path from s to t cannot be longer than n-1 (if such a path
exists), the lemma follows.

1/28/2019 Chapter 6 53

Dinic´s Algorithm

In unit networks, fewer iterations are needed.

Definition 6.29: A unit network is a flow network (G,s,t,c)
with integer capacities in which for any node v∈V\{s,t},
precisely one of the following holds:

• v has exactly 1 incoming edge, and it has capacity 1.

• v has exactly 1 outgoing edge, and it has capacity 1.

Remark: If a node has exactly one incoming edge of
capacity 1, it can still have many outgoing edges (and
vice versa).

1/28/2019 Chapter 6 54

Dinic´s Algorithm

Example of a unit network:

1/28/2019 Chapter 6

s t

: capacity 1 : arbitrary integer capacity

55

Dinic´s Algorithm

Lemma 6.30: Suppose we use Def. 6.5‘s notion of a

network flow. Then, in a unit network, Dinic´s

Algorithm stops after at most 2 𝑛 − 2 iterations.

Definition 6.5: Let (G,s,t,c) be a flow network. A
network flow in G is a function f : E → ℝ≥0 with

• 0 ≤ f (u, v) ≤ c (u, v) for all (u, v)E

(capacity constraints)

• ΣvV f(u,v)-ΣvV f(v, u)=0 for all uV\{s, t}

(flow conservation)

1/28/2019 Chapter 6 56

Dinic´s Algorithm
Lemma 6.30: Suppose we use Def. 6.5‘s notion of a network flow. Then, in a

unit network, Dinic´s Algorithm stops after at most 2 n-2 iterations.

Proof:

• Let us consider a fixed iteration.

• Let f be the current flow and f* be a maximum flow. (Both have integer flow
values.)

• Then f*-f is a flow of integer value in Gf.

• Since G is a unit network, f*(e)-f(e) ∈ {-1,0,1} at every edge e.

• We partition edges e with f*(e)-f(e)=1 into a collection of paths from s to t.

• There are exactly |f*|-|f| paths from s to t. (proof: exercise)

• These paths are node-disjoint (except for s and t).

• Hence, shortest augmenting path has at most (n-2)/(|f*|-|f|)+1 nodes.

• But after n-2 iterations, a shortest augmenting path contains at least
n-2 +1 nodes (according to Lemma 6.28, the distance of t from s increases
by one with each iteration).

• It holds that n-2 + 1 ≤ (n-2)/(|f*|-|f|)+1 ⇔ |f*|-|f| ≤ n-2.

• Hence, after at most n-2 further iterations we obtain a maximum flow.

1/28/2019 Chapter 6 57

Dinic´s Algorithm

How can we find a blocking flow?

Repeatedly use DFS:

repeat
find a path p from s to t in Lf via DFS and send a flow
value of cf(p) along p

until there is no augmenting path left in Lf

Lemma 6.31: The time needed to compute a blocking
flow is O(nm). (Exercise)

Theorem 6.32: The runtime of Dinic´s Algorithm is

O(n2m).

1/28/2019 Chapter 6 58

Dinic´s Algorithm

Theorem 6.33: The runtime of Dinic´s algorithm
on unit networks is O(n m).

Proof:

• When searching for a blocking flow, every
edge of the unit network has to be visited at
most once since it can only lie on at most one
augmenting path.

• Thus, a blocking flow can be found in O(m)
time.

• Together with Lemma 6.30 we obtain the
runtime bound in the theorem.

1/28/2019 Chapter 6 59

Dinic´s Algorithm

Application of Dinic´s Algorithm: maximum matching in bipartite
graphs.

Theorem 6.34: Dinic´s Algorithm on bipartite graphs G=(V,E)
extended by a source s and sink t computes a maximum flow
f in time O(n m), so that |f| is the size of a maximum
matching in G.

1/28/2019 Chapter 6

s t

60

Dinic´s Algorithm

Proof:

|f|≥|M|:

• Let M be a maximum matching in G.

• Then the flow f´ that uses M and all edges of
s and t to M, is a legal flow of value |f´|=|M|
and therefore, |f|≥|M|.

1/28/2019 Chapter 6

s t

61

Dinic´s Algorithm

Proof:

|M|≥|f|:

• Let f be a maximum flow in G extended by s and t.

• Then the set of edges M´ that f traverses in G is a
matching of size |M´|=|f| and therefore, |M|≥|f|.

1/28/2019 Chapter 6

s t

62

1/28/2019 Chapter 6

Intuition:

• A flow network can be seen as a network

of liquids:

edges correspond to pipes and nodes

correspond to pipe connections.

• Every node has a reservoir that can

collect an arbitrary amount of liquid.

• Every node, its reservoir, and all of its pipes

are arranged on a platform whose height may increase during the execution

of the algorithm.

Goldberg´s Algorithm

63

1/28/2019 Chapter 6

Intuition:

• The node heights determine how the flow is moved through

the network: flow always flows downhill.

• Initially, the source s pumps as much flow as

possible into the network (= c(s, V – s)).

• If the flow reaches some intermediate node,

it is collected in its reservoir. From there it will

be sent downhill later.

• If all non-saturated pipes that leave a node

u lead to nodes v that are above u, then the

height of u will be increased, i. e., we lift u.

• If the total flow that can flow to a sink, reaches it, then the excess flow in the reservoirs

is sent back to the source by lifting the heights of the intermediate nodes beyond the

height of the source.

Goldberg´s Algorithm

64

Goldberg´s Algorithm

Definition 6.35: Let (G,s,t,c) be a flow network. A preflow is a function f:VVℝ
satisfying the following properties:

• f (u, v) c (u, v) for all u, v V (capacity constraints)
• f (u, v) = - f (v, u) for all u, v V (skew symmetry)
• f (V, u) 0 for all u V \ {s} (preflow condition)

(How does the last condition contrast with flow conservation? Why does this
support the intuition from the previous slide? Hint: Think about reservoirs.)

• The excess flow of a node u is defined as ef(u)=f(V,u). A node u≠t is called
active if ef(u)>0.

• Goldberg's Algorithm assigns to each node v a height h(v)∈ℕ0. The height
function is called legal if h(s)=|V|, h(t)=0, and for all edges (v,w) in the
residual network Gf, h(v)≤h(w)+1.
(I.e., for all (v,w)∈E with h(v)>h(w)+1, (v,w)∉Ef.)

• An edge (v,w) in Gf is called admissible if h(v)>h(w).
(Together with the previous condition it follows that h(v)=h(w)+1.)

1/28/2019 Chapter 6 65

Goldberg´s Algorithm

Basic Operations:

• Push(u,v): push as much flow as possible from u to v

• Lift(u): lift u as much as possible without violating the legality of the
height function.

In pseudocode:

Push(u,v):
d:=min{ef(u),cf(u,v)}
f(u,v):=f(u,v)+d
cf(u,v):=cf(u,v)-d
cf(v,u):=cf(v,u)+d
ef(u):=ef(u)-d
ef(v):=ef(v)+d

Lift(u):
h(u):=min{ h(v)+1 | (u,v)∈Ef }

1/28/2019 Chapter 6 66

u

v

u

v

u

Goldberg´s Algorithm

Goldberg´s Algorithm works as follows:

Preflow-Push Algorithm:
for each u∈V\{s} do h(u):=0; ef(u):=0
for each (u,v)∈E do f(u,v):=0; f(v,u):=0
h(s):=|V|
for each (s,u)∈E do

f(s,u):=c(s,u); f(u,s):=-f(s,u); ef(u):=c(s,u)
while (there are active nodes) do

Pick an active node u //u has excess flow
if (there is an admissible edge (u,v)) //(u,v) has downward slope

then Push(u,v)
else Lift(u) //create admissible edge

Question: Why is the initial height function (ie after the for loop finishes
executing) legal?

1/28/2019 Chapter 6 67

1/28/2019 Chapter 6

Example:

Capacities are marked in red

68

1/28/2019 Chapter 6

Example:

Nach der Initialisierungsphase:

• s is lifted to height 7. The heights

of all other nodes are set to 0.

• Every edge from s is saturated.

All other edges have a flow of 0.

No PUSH-operation can currently

be executed.

Operations that can be executed are

LIFT(u), LIFT(v) or LIFT(w).

After initialization:

69

1/28/2019 Chapter 6

Nach der Initialisierungsphase:

The height h(v) is set to

1 + min {h [u] | (v, u) Ef}

= 1 + 0 = 1.

Now, operations that can be executed

are LIFT(u), LIFT(w) or

PUSH(v, u), PUSH(v, w),

PUSH(v, x), PUSH(v, y),

PUSH(v, t).

Example:

After LIFT(v):

70

1/28/2019 Chapter 6

Nach der Initialisierungsphase:

Operatons that can be executed are

LIFT(u), LIFT(w), LIFT(y) or

PUSH(v, u), PUSH(v, w),

PUSH(v, x), PUSH(v, t).

After PUSH(v, y):

Example:

71

1/28/2019 Chapter 6

Example:

Nach der Initialisierungsphase:

After LIFT(y):

The height h(y) is set to

1 + min{h[u] | (y, u) Ef}

= 1 + 0 = 1.

Operations that can be executed

are LIFT(u), LIFT(w) or

PUSH(v, u), PUSH(v, w),

PUSH(v, x), PUSH(v, t),

PUSH(y, t).

72

1/28/2019 Chapter 6

Example:

Nach der Initialisierungsphase:

After PUSH(y, t):

Operations that can be executed

are LIFT(u), LIFT(w) or

PUSH(v, u), PUSH(v, w),

PUSH(v, x), PUSH(v, t).

The algorithm continues to run

until no PUSH or LIFT operation

can be executed.

73

Goldberg´s Algorithm

Let‘s prove some lemmas!

1) Which invariants hold during the

execution of the algorithm?

2) How do we know when an optimal flow is

found?

3) What is the runtime of the algorithm?

1/28/2019 Chapter 6 74

Goldberg´s Algorithm

Lemma 6.36: At any point in time during the execution, ef(s)≤0
and for all nodes v∈V\{s}, ef(v)≥0.

Proof:

• We perform a complete induction over the number of
executed Push and Lift operations.

• Initially, the lemma is obviously true.

• Thus we assume that it is true for some point in time.
• Then a Push operation maintains the property that ef(v)≥0 for

all v∈V\{s} due to the choice of d.
A Lift operation does not change any ef(v).

• Therefore, Su∈V\{s} f(V,u) ≥ 0. (by definition of ef(v))

• Moreover, we know that for f it holds

Su∈V f(V,u) = 0.
• Hence, ef(s)=f(V,s)≤0.

1/28/2019 Chapter 6 75

Goldberg´s Algorithm

Lemma 6.37: Every Lift(u) call preserves the
legality of the height function and increases
h(u) by at least 1.

Proof:

• A Lift operation is only executed for some
node u if there is no admissible edge (u,v)
and therefore h(u)≤h(v) for all (u,v)Ef.

• Since the new height is h´(u)=min{h(v)+1 |
(u,v)Ef}, it follows that h´(u)>h(u) and
h´(u)≤h(v)+1 for all (u,v)Ef.

1/28/2019 Chapter 6 76

Goldberg´s Algorithm

Let‘s prove some lemmas!

1) Which invariants hold during the

execution of the algorithm?

2) How do we know when an optimal flow is

found?

3) What is the runtime of the algorithm?

1/28/2019 Chapter 6 77

Goldberg´s Algorithm

Lemma 6.38 (Superoptimality): For every legal preflow f and every legal
height function h there is no augmenting path in Gf.

Proof:

• Suppose that there is an augmenting path (s=v1,v2,…,vl=t) in Gf.

• Since the heights of the nodes can only increase over time (see
Lemma 6.37), it holds that h(s)≥n, and since t can never be active,
h(t)=0.

• Hence,
n ≤ h(s) ≤ h(v2)+1 ≤ h(v3)+2 ≤ … ≤ h(t)+l-1 = l-1 ≤ n-1
since the augmenting path is simple and can therefore contain at
most n nodes.

• Thus, we obtain a contradiction. QED.

Question: Why are we not done in our optimality analysis? (Hint: Is a
legal preflow also a legal flow?)

1/28/2019 Chapter 6 78

Goldberg´s Algorithm

Lemma 6.39 (Optimality): If there is no active node in
Gf, then the preflow is a maximum flow.

Proof:

• By definition of active node, there is no node
u∈V\{s,t} with ef(u)>0. Then, it holds for all nodes
u∈V\{s,t} according to Lemma 6.36 that ef(u)=0.
Hence, the preflow is a legal flow.

• The maximality of the flow follows from Lemma
6.38 and the Maxflow-Mincut Theorem.

1/28/2019 Chapter 6 79

Goldberg´s Algorithm

Let‘s prove some lemmas!

1) Which invariants hold during the

execution of the algorithm?

2) How do we know when an optimal flow is

found?

3) What is the runtime of the algorithm?

(And does it even terminate?)

1/28/2019 Chapter 6 80

Goldberg´s Algorithm

Lemma 6.40: For every active node u there is a path in Gf from u to s.

Proof:

• Let U be the set of nodes that are reachable from u in Gf.

• Recall Lemma 6.36 says all nodes other than s have non-negative excess
flow. So if s∉U, then all nodes in U have non-negative excess flow.

• The flow into U is 0 since if there is edge (v,w)∈E with v∉U, w∈U, f(v,w)>0,
then cf(w,v)≥f(v,w)>0. (If there is flow going into U, it can be cancelled in the
opposite direction, so Gf has an edge leaving U, contradiction.)

• Hence,

0 = SvV\U f(v,U) ≥ SvV\U f(v,U) - SvU f(v,V\U) (by preflow condition)

= SvV\U f(v,U) - SvU f(v,V\U) + SvU f(v,U) - SvU f(v,U)

= SvU (f(V,v) – f(v,V)) (note SvV\U f(v,U) + SvU f(v,U) = SvU (f(V,v)))

= SvU\{u} (f(V,v) – f(v,V)) + 2ef(u) > 0 (skew symmetry/preflow condition)

• Thus, we arrive at a contradiction, and therefore sU.

1/28/2019 Chapter 6 81

Goldberg´s Algorithm

Lemma 6.41: For every active node v∈V, h(v)≤ 2n-1.

Proof:

• Since s can never be active due to Lemma 6.36 and t can
never be active by definition, h(s)=n and h(t)=0 at any time.

• Consider an arbitrary active node u∈V\{s,t}.

• According to Lemma 6.40, s is reachable from u in Gf.

• Let p=(u=v1,v2,…,vl=s) be a simple path from u to s.
• We know that h(s)=n. Moreover, h(vi) ≤ h(vi+1)+1 for all

i∈{1,...,l-1}.

• Hence, h(u) ≤ n+l ≤ 2n-1 because the path cannot contain t
and therefore l ≤ n-1. QED.

Now we are ready to determine the runtime of the Lift and Push
operations.

1/28/2019 Chapter 6 82

Goldberg´s Algorithm

LIFT OPERATIONS

Lemma 6.42: The total number of Lift operations executed by the
algorithm is O(n2) and their total runtime is O(nm).

Proof:

• Due to Lemmas 6.37 and 6.41 at most 2n-1 Lift operations
can be applied to any node. Hence, altogether at most O(n2)
Lift operations are executed by the algorithm.

• The cost of a Lift(v) operation is equal to the outgoing degree
of a node v in Gf because we have to check all nodes
reachable from v.

• Thus, the total runtime of the Lift operations is at most

Sv∈V (2n-1)deg(v) = O(nm)

where deg(v) denotes the (outgoing) degree of a node v.

1/28/2019 Chapter 6 83

Goldberg´s Algorithm

PUSH OPERATIONS (2 cases)

A Push operation is saturating if d=cf(u,v), and otherwise non-
saturating. (Recall d:=min{ef(u),cf(u,v)}.)

Lemma 6.43: The total number of saturating Push operations is O(nm).

Proof:

• After a saturating Push on (u,v), we cannot pump again flow from u
to v unless v has performed a Push operation on (v,u).

• Since it must hold that h(u)>=h(v)+1 at Push(u,v) and h(v)>=h(u)+1
at Push(v,u) and the heights of the nodes are monotonically
increasing, the height of u must have increased by at least 2 for
another saturating Push along (u,v).

• Hence, there can be at most (2n-1)/2 saturating Push operations via
(u,v), which results in a total number of at most O(nm) saturating
Push operations.

1/28/2019 Chapter 6 84

Goldberg´s Algorithm
Lemma 6.44: The total number of non-saturating Push operations is O(n2m).

Proof:

• We use the potential function F=Sactive v∈V h(v).

• Initially, F=0 since all heights of active nodes are equal to 0. We distinguish
between three types of operations that can change F:

– Non-saturating Push along edge (v,w): Then node v becomes inactive
and F is reduced by h(v). On the other hand, w can now become active,
which can increase F by h(w). But since h(v)>=h(w)+1, F is always
decreased by at least 1.

– Saturating Push along edge (v,w): This can increase F by at most 2n-1
since in the worst case v remains active while w becomes active and
h(w)≤2n-1.

– Lift operation: Altogether, the Lift operations increase F by at most
(2n-1)n.

• Since there are only O(nm) saturating Push operations, F can be increased
by at most O(n2m) due to these.

• Moreover, F can be increased by at most O(n2) due to Lift operations.

• Altogether, F can be increased by at most O(n2m). Since F≥0 at any time,
the number of non-saturating Push operations is at most O(n2m).

1/28/2019 Chapter 6 85

Goldberg´s Algorithm

• Since a Push operation only takes constant time:
– Lemma 6.42: Lift operations O(nm).

– Lemma 6.43: Saturating push operations O(nm).

– Lemma 6.44: Non-saturating push operations O(n2m).

• So total runtime of O(n2m) for Goldberg´s Algorithm.

• With an improved selection of Push and Lift Operations, this runtime
can be improved.

Rules for the choice of active nodes:

• FIFO: The active nodes are organized in a FIFO queue, i.e., new
active nodes are added to the back of the queue and active nodes to
be processed are taken from the front. With this rule, a runtime of
O(n3) can be reached.

• Highest-Label-First: Always take the active node of largest height. In
this case, one can reach a runtime of O(m n2).

1/28/2019 Chapter 6 86

Other Variants

• Goldberg, 1985: FIFO PPA: O(|V|3).

• Goldberg, Tarjan, 1986:

Improved FIFO PPA: O(|V| |E| log (|V|2 |E|)).

• Goldberg, Tarjan, 1986, Cheriyan, Maheshwari 1989:
Highest Label PPA: O(|V|2 |E|).

• King, Rao, Tarjan, 1994:

O(|V| |E| log|E|/(|V| log |V|) |V|).

• Orlin, 2013:

O(|V| |E|).

• Randomized Variants

1/28/2019 Chapter 6 87

1/28/2019 Chapter 6

History of maximum flow algorithms:

G = (V, E) with |V| = n, |E| = m, U: value of maximum flow.

88

1/28/2019 Chapter 6

… node capacities

Variants of the Maxflow Problem

… undirected graphs

or make use of skew symmetry to ensure flow in only one direction

c

u1 u2
u1 u3 u2c

c

c c

c c

u

c

u1 u2

is locally

replaced by

is locally

replaced by

89

1/28/2019 Chapter 6

From now on we assume the use of flows following Definition 6.5.

Definition 6.5: Let (G,s,t,c) be a flow network. A network flow in G is a function f
: E → ℝ≥0 with

• 0 ≤ f (u, v) ≤ c (u, v) for all (u, v) E (capacity constraints)

• ΣvV f (u, v) - ΣvV f (v, u) = 0 for all u V \ {s, t}
(flow conservation)

Minimal Cut with minimal Number of Edges

90

1/28/2019 Chapter 6

From now on we assume the use of flows following Definition 6.5.

Problem MINCUTMINEDGES:

Input: flow network (G, s, t, c) with integer edge capacities

Output: minimal cut of (G, s, t, c) with minimal number of edges

(among all minimal cuts)

Transform (G, s, t, c) into a flow network (G, s, t, c´) with c´(u, v) =

M c(u, v) + 1, where M |E| + 1 is a sufficiently large constant.

A solution of the MAXFLOW problem in (G, s, t, c´) yields a minimal cut (S, T)

with

c´(S, T) = M c(S, T) + |{e E | e S T}|

Question: Why does this yield the minimum number of edges?

minimal cut in G number of edges

crossing the cut

Minimal Cut with minimal Number of Edges

91

1/28/2019 Chapter 6

Definition 6.45:

a) A circulation network is a triple (G, b, c), where G = (V, E) is a directed graph and b, c :
E ℝ are capacity functions with b(e) c (e) for all e E.

b) A circulation f is a flow without a source or sink. Formally, f : E ℝ with

1. b(e) f (e) c (e) for all e E (capacity constraints)

2. S(u, v) E f(u, v) = S(v, w) E f(v, w) for all v V (flow conservation)

Problem CIRCULATE:

Input: circulation network (G, b, c)

Output: circulation f for (G, b, c)

Redefine the residual network Gf = (V, Ef) with Ef = {(u, v) V V | cf (u, v) > 0)} and

if f(u, v) < b(u, v)

cf(u,v) = c(u, v) - f(u, v) + max{f(v, u) – b(v, u), 0} if f(u, v) b(u, v)

c(u, v) – f(u, v)

residual capacity

as before

maximal flow that can

be removed in opp. direction

Circulation

92

increases net flow from u to v!

1/28/2019 Chapter 6

Algorithm CIRCULATE (circulation network (G, b, c)) {

f(e) = 0 for all e E; /* initialize to trivial non-feasible (why?) flow */

while (e E : f(e) < b(e)) {

choose (u, v) E with f(u, v) < b(u, v); /* flow on edge (u, v) is too small*/

if (path P from v to u in Gf) { /* notice the new definition of Gf ! */

C = (P, (u, v)) is a cycle with (u, v) C; /* find cycle along which to push

more flow */

send d = mineC cf (e) flow along cycle C;

} else return(NULL); /* there is no circulation */

} /* while */

return(f);

} /* CIRCULATE */

Algorithm CIRCULATE terminates. Whenever it outputs a function f, then f is a feasible circulation for

(G, b, c). Whenever the algorithm outputs NULL, there is no feasible circulation for (G, b, c).

Lemma 6.46: (G, b, c) with G = (V, E) has a feasible circulation ⇔ for every subset U V

S b(u, v) S c(v, u)
(u, v) (U, Ū) (v, u) (Ū, U)

Circulation

93

Lemma 6.46: (G, b, c) with G = (V, E) has a feasible
circulation ⇔ for every subset U⊆V

S b(u, v) S c(v, u)

Proof:

⇒: Let f be a circulation for (G,b,c).

• Then it holds for all v∈V

S(u,v)∈E f(u,v) = S(v,w)∈E f(v,w)
• Therefore, it holds for all U⊆V:

S(u,v)∈(U,Ū) b(u,v) ≤ S(u,v)∈(U,Ū) f(u,v)

= S(v,w)∈(Ū,U) f(v,w)

≤ S(v,w)∈(Ū,U) c(v,w)

1/28/2019 Chapter 6

(u, v) (U,Ū) (u, v) (Ū,U)

Circulation

94

Circulation

Proof (continued):
⇐: suppose there is no circulation f for (G,b,c).

• Then algorithm CIRCULATE outputs NULL.
• That is, there is an edge e=(u,v)∈E with f(e)<b(e) so that

there is no path in Gf from v to u.
• Define U={w∈V | v⇝w in Gf}.

• Then v∈U and u∈Ū and for all (x,y)∈(U,Ū): cf(x,y)=0.

• Hence, f(e)=c(e) for all e∈(U,Ū) and f(e)≤b(e) for all
e∈(Ū,U).

• Therefore,

S(u,v)∈(Ū,U) b(u,v) > S(u,v)∈(Ū,U) f(u,v)

= S(v,w)∈(U,Ū) f(v,w)

= S(v,w)∈(U,Ū) c(v,w)

1/28/2019 Chapter 6 95

1/28/2019 Chapter 6

Definition 6.47:

a) A constrained flow network is a tuple (G, s, t, b, c), where (G, s, t, c) is a flow
network and b : E ℝ is a function with b (e) c (e) for all e E.

b) A constrained flow f for (G, s, t, b, c) is a feasible flow for (G, s, t, c) with

b (e) f (e) for all e E.

Problem LOWERBOUNDEDFLOW:

Input: constrained flow network (G, s, t, b, c)

Output: constrained flow f for (G, s, t, b, c) of maximal value |f|

Lower Bounds for Edge Flows

96

1/28/2019 Chapter 6

Algorithm BOUNDEDFLOW (constrained flow network (G, s, t, b, c)){

construct circulation network (G, b, c) with

G = G + (t, s);

b(e) = b(e); c(e) = c(e) for all e E;

b(t, s) = 0; c(t, s) = ;

f = CIRCULATE(G, b, c);

if (f = NULL) return (NULL);

f = feasible flow for (G, s, t, b, c) resulting from f by deleting edge (t, s) and its flow;

solve the MAXFLOW problem for (G, s, t, c) with

f as initial flow and

residual capacities c (u, v) = c(u, v) – f(u, v) + max{f(v, u) – b(v, u), 0} for all (u, v) E

let g be the maximum flow obtained for (G, s, t, c);

return(g);

} /* BOUNDEDFLOW */

If Algorithm BOUNDEDFLOW outputs NULL, then there is no constrained flow for (G, s, t, b, c).

Otherwise, Algorithm BOUNDEDFLOW outputs a solution f for the LOWERBOUNDEDFLOW

problem.

f

as before max. flow to be deleted

Lower Bounds for Edge Flows

97

1/28/2019 Chapter 6

Problem MINFLOW:

Input: constrained flow network (G, s, t, b, c)

Output: constrained flow f for (G, s, t, b, c) with minimal value |f|

Algorithm MINIMUMFLOW (constrained flow network (G, s, t, b, c)) {

h = BOUNDEDFLOW(G, s, t, b, c);

if (h = NULL) return(NULL);

construct flow network (GR, sR, tR, cR) with

GR = (V, ER), ER = {(v, u)| (u, v) E};

sR = t; tR = s;

cR(u, v) = cf(u, v) for all (u, v) ER,

where cf() represents the redefined residual capacitites;

solve the MAXFLOW problem for (GR, sR, tR, cR) and let

g be the maximal flow for (GR, sR, tR, cR);

f = h – g;

return(f);

} /* MINIMUMFLOW */

If Algorithm MINIMUMFLOW outputs NULL, then there is no feasible constrained flow for

(G, s, t, b, c). Otherwise, Algorithm MINIMUMFLOW outputs a solution f for the MINFLOW

problem.

Minimal Flow Problem

98

Flows of minimal Cost

a)A flow network with edge costs is tuple (G, s, t, c,) where G = (V, E)
is a directed graph, c : E ℕ0 defines edge capacities, and : E
ℕ0 defines edge costs, i.e., (e) is the cost of sending one unit of flow
across e.

b) The cost of a flow f from s to t in G is defined as

(f) := SeE (e) f(e).

Problem MINCOSTMAXFLOW:

Input: flow network (G, s, t, c,)

Output: maximum flow f with minimal cost (f).

W.lo.g. we assume that G=(V,E) is a directed graph with at most one
edge for each pair of nodes, i.e., there is no pair of nodes u,v∈V
with (u,v),(v,u)∈E.

1/28/2019 Chapter 6 99

Flows of minimal Cost

Let f be a flow.

• cost of augmenting path p for f (now not necessarily from s to t):

(p) = S(u,v)∈p:(u,v)∈E cf(p)(u,v) – S(u,v)∈p:(v,u)∈E cf(p)(v,u)

• augmenting cycle w.r.t. f: an augmenting path whose startpoint and
endpoint are identical (by definition s and t cannot be on such a
cycle; why?).

Lemma 6.49: For every augmenting cycle p for a flow f there is a flow f´
with |f´|=|f| and

(f´)=(f) + (p) .

Proof:

• Let f´=f+p. Then f´ is still a feasible flow. Also, since p does not go
through s, it cannot change flow value, i.e. |f´|=|f|.

• Furthermore, the cost of f´ satisfies:

(f´) = (f) + S(u,v)∈p:(u,v)∈E cf(p)(u,v) – S(u,v)∈p:(v,u)∈E cf(p)(v,u)

= (f) + (p)

1/28/2019 Chapter 6 100

Flows of minimal Cost

Theorem 6.50: A flow f has minimal cost among all flows of value
|f| if and only if there is no augmenting cycle of negative cost
for f.

Proof:
⇒: Follows from Lemma 6.49.

⇐: Let f be a flow that does not have a minimal cost. Let g be a
flow of minimal cost and |g|=|f|.

• Consider network Gg-f = (V,Eg-f) with Eg-f = E+
g-f ∪ E-

g-f, where

E+
g-f = {(u,v) | g(u,v) > f(u,v) } and

E-
g-f = {(v,u) | g(u,v) < f(u,v) } (note: no equality allowed!)

• Let the edge capacities be defined as cg-f=|g(e)-f(e)|.
• Then one can show that for all nodes v∈V that

Su∈V cg-f(u,v) – Sw∈V cg-f(v,w) = 0 (*) „flow conservation“

1/28/2019 Chapter 6 101

Flows of minimal Cost

Proof (continued):
• Let cmin = min{cg-f(u,v) | (u,v)∈Eg-f}. (Recall cg-f=|g(e)-f(e)|, and

by definition of Eg-f = E+
g-f ∪ E-

g-f, cmin>0.)

• If we start at any v∈V with at least one neighbor in Gg-f, then
there is always an edge (v,w) with cg-f(v,w)≥cmin, and every
node not visited „can be left“ due to „flow conservation“ (*).

• Since the number of nodes is limited by |V|, there must be an
augmenting cycle in Gg-f.

• When removing this cycle, the flow conservation and capacity
constraints are still satisfied.

• Thus, Gg-f can be decomposed into a set of augmenting
cycles. When applying these cycles to f, we obtain g.

• Since (g) < (f), at least one of these cycles must have
negative cost.

1/28/2019 Chapter 6 102

Flows of minimal Cost
ALGORITHM: If have integer edge capacities and edge costs bounded by

constant C, can use the following polynomial time algorithm to compute a
maximum flow with minimal cost:

• Use Ford-Fulkerson to compute a maximum flow. Runtime: O(Cnm).
(Recall Ford-Fulkerson requires O(|E| |f|) time, for f an optimal flow.)

• Search for augmenting cycles of negative cost in Gf until no such cycles can
be found. A negative augmenting cycle can be found via Bellman-Ford in
O(nm) time (why?). Every such cycle has an integer capacity of >0 and
integer cost <0. I.e., the cost of the maximal flow reduces by at least 1 for
each such augmenting cycle. The total runtime for this part is therefore
O((C2m)(nm))=O(C2nm2). (Q: Why is C2m an upper bound on max cost
for any flow? Recall cost of a flow is (f) := SeE (e) f(e).)

More advanced techniques can also compute a maximal flow of minimal cost
for arbitrary capacities and cost values (see, e.g., the book by Ahuja, Magnanti
und Orlin: Network Flows).

1/28/2019 Chapter 6 103

1/28/2019 Chapter 6

Definition 6.48:

a) A flow network with edge costs is a tuple (G, c, , d) where G = (V, E) is a directed graph, c : E ℕ0

defines the edge capacities, d : V ℤ defines the node demands, SvV d(v) = 0, and : E ℕ0

defines the edge costs, i.e., (e) is the cost to send one unit of flow across e.

Note that d(v) > 0 means a node that consumes flow while d(v) < 0 means a node that produces flow.

b) A flow f of minimal cost for (G, c, , d) is a function f : E ℕ0 with

1. f(e) c(e) for all e E (capacity constraints)

2. S(u,v)E f(u, v) - S(v,w)E f(v, w) = d(v) for all v V, (flow conservation)

which minimizes the cost (f) := SeE (e) f(e).

Problem MINCOSTFLOW:

Input: flow network with edge costs (G, c, , d)

Output: flow f of minimal cost for (G, c, , d)

Solution possible by combining LOWERBOUNDEDFLOW problems with the MINCOSTMAXFLOW

problem.

Flows of minimal Cost

104

