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Search Structure
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Search Structure
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Search Structure

S: set of elements

Every element e identified by key(e).

Operations:

• S.insert(e: Element): S:=S∪{e}

• S.delete(k: Key):  S:=S\{e}, where e is the 

element with key(e)=k (note: now given key, 

not pointer to e!)

• S.search(k: Key): outputs eS with 
minimal key(e) so that key(e)≥k
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Static Search Structure

1. Store elements in sorted array.

search: via binary search (in O(log n) time)

1 3 10 14 195 28 31 58 60 82 89 94 9885

search(12)
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Binary Search

Input: number x and sorted array A[1],…,A[n]

Algorithm BinarySearch:

l:=1; r:=n

while l < r do

m:=(r+l) div 2

if A[m] = x then return m

if A[m] < x then l:=m+1

else r:=m

return l
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Dynamic Search Structure

insert und delete Operations:

Sorted array difficult to update!

Worst case: (n) time

1 3 10 145 19 28 31 58 60 82 85

15
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Search Structure

2. Sorted List (with an ∞-Element)

Problem: insert, delete and search take (n) time 
in the worst case (why for insert/delete?)

Observation: If search could be implemented 
efficiently, then also all other operations

31

…
19 ∞
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Search Structure

Idea: add navigation structure that allows 

search to run efficiently

31

…
19

navigation structure

∞
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Binary Search Tree (ideal)

1 3 10 14 195 28

1 5

3

14 28

19

10
search(12)

∞
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Binary Search Tree

Search tree invariant:

k

T1 T2

For all keys k´ in T1 and 
k´´ in T2: k´  k < k´´
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Binary Search Tree

Formally: for every tree node v let

• key(v) be the key stored at v

• d(v) the number of children (degree) of v

• Search tree invariant: (as above)

• Degree invariant:
All tree nodes have exactly two children 
(as long as the number of elements in the list is >0, recall 
presense of ∞ node)

• Key invariant:
For every element e in the list there is exactly one tree 
node v with key(v)=key(e).
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Binary Search Tree

• Search tree invariant: (as before)

• Degree invariant:
All tree nodes have exactly two children 
(as long as the number of elements is >0)

• Key invariant:
For every element e in the list there is exactly one tree node v
with key(v)=key(e).

From the search tree and key invariants 
it follows that for every left subtree T of 
a node v, the rightmost list element e
under T satisfies key(v)=key(e). 

(Why?)
T

1 e…

v



04.11.2018 Chapter 3 16

search(x) Operation

Search strategy:

• Start at the root, v, of the search tree

• while v is a tree node:

– if x  key(v) then let v be the left child of v,
otherwise let v be the right child of v

• Output (list node) v

k

T1 T2

For all keys k´ in T1 and 
k´´ in T2: k´  k < k´´
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search(x) Operation

Correctness of search strategy:

• For every left subtree T of a node
v, the rightmost list element e under
T satisfies key(v)=key(e).

• If search(x) enters T, since key(v)≥x, there is an 
element e in the list below T with key(e)≥x.

k

T1 T2

For all keys k´ in T1 and 
k´´ in T2: k´  k < k´´

T

1 e…

v
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Search(9)

1 3 10 14 195 28

1 5

3

14 28

19

10

∞
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Insert and Delete Operations

Strategy:

• insert(e):
First, execute search(key(e)) to obtain a list element e´. 
If key(e)=key(e´), replace e´ by e, otherwise insert e
between e´ and its predecessor in the list and add a new 
search tree leaf leading to e (left) and e´ (right) with key 
key(e).

• delete(k):
First, execute search(k) to obtain a list element e. If 
key(e)=k, then delete e from the list and the parent v of e
from the search tree, and relabel tree node w with 
key(w)=k as key(w):=key(v).
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Insert(5)

1 10 14 28

1

28

14

10

∞
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Insert(5)

1 10 14 28

1

28

14

10

5

5

∞
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Insert(12)

1 10 14 28

1

28

14

10

5

5

∞
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Insert(12)

1 10 12 28

1

28

14

10

5

5

14

12

∞
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Delete(1)

1 10 12 28

1
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∞
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Delete(1)

10 12 28
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∞
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Delete(14)

10 12 28
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∞
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Delete(14)

10 12 28

28

12

10

5

5

∞
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Binary Search Tree

Problem: binary tree can degenerate!

Example: numbers are inserted in sorted order

1 3 10 14 195 28

1

5
3

14

28

19

10

∞
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Pop quiz

Q1: What is the worst case runtime for binary 

search on a sorted array? 

O(logn).

Q2: What is the worst case runtime for searching 

in a binary search tree? 

O(n)! (see e.g. previous slide)
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Search Trees

Problem: binary tree can degenerate!

Solutions:

• Splay tree
(very effective heuristic)

• (a,b)-tree
(guaranteed well balanced)

• hashed Patricia trie
(loglog-search time)

Applications
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Splay Tree

Usually: Implementation as internal search 

tree (i.e., elements directly integrated into 

tree and not in an extra list)

Here: Implementation as external search 

tree (like for the binary search tree above)
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Why Splay Trees?

• Self-adjusting binary search tree

• Invented by Sleator and Tarjan (1985)

• Pros: 

– Recently accessed elements quick to access 

again. (Great for caches, garbage collection!)

– Low amortized costs

• Cons:

– Can still have highly unbalanced trees, hence 

worst-case linear time search.
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Splay Tree

1 3 10 14 195 28

1 5

3

14 28

19

10
search(19) Idea: add shortcut

pointer to list element
⇒accelerates search

∞
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Splay Tree

Ideas:

1. Add shortcut pointers in tree to list elements

2. For every search(k) operation, move 
pred(k) (the closest predecessor of k in T) 
to the root (why?)

Movement for (2): via Splay operation

For simplicity: we focus on search(k) for keys k
already in the search tree. 
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Splay Operation

Movement of key x to the root: 3 cases.

Case 1:

1a.  x is a left child of the root:

A B

C

x

y x

A

B C

y
zig
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Splay Operation

A B

C

y

xy

A

B C

x
zig

Movement of key x to the root: 3 cases

Case 1:

1b.  x is a right child of the root:
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Splay Operation

Case 2:

2a.  x has father and grand father to the right

A B

C

x

y y

B

C D

z
zig-zig

D

z x

A
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Splay Operation

zig-zig

A B

C

z

y

D

x

y

B

C D

x

z

A

Case 2:

2b.  x has father and grand father to the left
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Splay Operation

Case 3:

3a.  x: father left, grand father right

zig-zag

A B C

y

x

D

z

y

A

B C

x

z

D
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Splay Operation

zig-zag

A B C

z

x

D

y

B C

D

x

y

A

z

Case 3:

3b.  x: father right, grand father left
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Splay Operation

Example:

1 3 10 14 195 28

1 5

3

14 28

19

10

x

zig-zag operation (3a)

∞
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Splay Operation

1 3 10 14 195 28

1
14 28

19

10

5

3

∞
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Splay Operation

Examples:

zig-zig, zig-zag, zig-zag, zig zig-zig, zig-zag, zig-zig, zig

x x
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Splay Operation

Observation: Tree can still be highly 

imbalanced! But amortized costs are low.

1 3 10 14 195 28

1

5
3

14

28
19

10

∞
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Splay Operation

search(k)-operation:
• Move downwards from the root (as in standard 

binary tree) till pred(k) found in search tree (which 
can be checked via shortcut to the list) or the list is 
reached

• call splay(pred(k)), output next successor, succ(k)
(recall we assume k exists in tree for simplicity: 
pred(k)=succ(k)=k)

Amortized Analysis:
• Note: runtime of search(k) is O(runtime of 

splay(pred(k))).
• Our goal: bound runtime of m Splay operations on 

arbitrary binary search tree with n elements (m>n)
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Splay Operation

• Weight of node x: w(x)>0

• Tree weight of tree T with root x: 

tw(x)= yT w(y)

• Rank of node x: r(x) = log(tw(x))

• Potential of tree T: (T) = xT r(x)

Lemma 3.1: Let T be a Splay tree with root x and u

be a node in T. The amortized cost for splay(u,T)

is at most 1+3(r(x)-r(u)).



(Recall: Amortized cost AX(s) := TX(s) + ((s´) - (s))) 

Proof of Lemma 3.1:

Induction over the sequence of rotations.

• r and tw : rank and weight before the rotation

• r’ and tw’: rank and weight after the rotation

Case 1:

Amortized cost:
≤ 1+r’(u)+r’(v)-r(u)-r(v) ≤ 1+r’(u)-r(u) since r’(v)≤r(v)

≤ 1+3(r’(u)-r(u)) since r’(u)≥r(u)
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Splay Operation

A B

C

u
v u

A

B C

vzig

Runtime

(# rotations)

Change in 
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Splay Operation

Case 2:

Amortized cost:

≤ 2+r’(u)+r’(v)+r’(w)-r(u)-r(v)-r(w)

= 2+r’(v)+r’(w)-r(u)-r(v) since r’(u)=r(w)

≤ 2+r’(u)+r’(w)-2r(u) since r’(u)≥r’(v) and r(v)≥r(u)

A B

C

u

v v

B

C D

w
zig-zig

D

w u

A
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Splay Operation

Case 2:

Claim: It holds that

2+r’(u)+r’(w)-2r(u) ≤ 3(r’(u)-r(u))

i.e.

r(u)+r’(w) ≤ 2(r’(u)-1)

A B

C

u

v v

B

C D

w
zig-zig

D

w u

A
r(u)

r’(w)

r’(u)
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Splay Operation

Case 2:

Claim: It holds that

r(u)+r’(w) ≤ 2(r’(u)-1)

• Observe: There exist 0<x,y<1 and scaling factor c>0 with 
r(u)=log(cx), r’(w)=log(cy), and r’(u)log(c(x+y)).

• Hence, the claim holds if log(cx)+log(cy) ≤
2(log(c(x+y))-1) for all 0<x,y<1 and c>0.

A B

C

u

v v

B

C D

w
zig-zig

D

w u

A
r(u)

r’(w)

r’(u)
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Splay Operation

Case 2:

• For all 0<x,y<1 and c>0 holds: 

log(cx)+log(cy) ≤ 2(log(c(x+y))-1)

 log(x)+log(y) ≤ 2(log(x+y)-1)

• WLOG set c so that c(x+y)=1. Let x’=cx and y’=cy.

A B

C

u

v v

B

C D

w
zig-zig

D

w u

A
r(u)

r’(w)

r’(u)
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Splay Operation

Case 2:

• To show: for all 0<x’,y’1,with x’+y’=1:

log(x’)+log(y’) ≤ 2(log(1)-1) = -2

• Or more generally: show for f(x,y)=log(x)+log(y) that 

f(x,y)≤-2 for all x,y>0 with x+y≤1

A B

C

u

v v

B

C D

w
zig-zig

D

w u

A
r(u)

r’(w)

r’(u)
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Splay Operation

Lemma 3.2: In the area x,y>0 with x+y≤1, the function 
f(x,y)=log x + log y has its maximum at (½,½).

Proof:

• Reduce to univariate problem:

– log x is monotonically increasing. Hence, WLOG 
maximum satisfies x+y=1, x,y>0.

– Consider determining the maximum for
g(x) = log x + log (1-x)

• High school calculus: (note base of log WLOG is e)

– The only root of g’(x) = 1/x - 1/(1-x) is at x=1/2. 

– For g’’(x)= -(1/x2 + 1/(1-x)2)) it holds that g’’(1/2)<0.

• Hence, f has its maximum at (½,½).



Case 2:

Hence, it holds that f(x,y)≤-2 for all x,y>0 with x+y≤1, which 
implies the claim that r(u)+r’(w) ≤ 2(r’(u)-1), which was 
equivalent to obtaining upper bound

3(r’(u)-r(u)).
04.11.2018 Chapter 3 54

Splay Operation

A B

C

u

v v

B

C D

w
zig-zig

D

w u

A
r(u)

r’(w)

r’(u)



04.11.2018 Chapter 3 55

Splay Operation

Case 3:

Amortized cost:

≤ 2+r’(u)+r’(v)+r’(w)-r(u)-r(v)-r(w)

≤ 2+r’(v)+r’(w)-2r(u) since r’(u)=r(w) and r(u)≤r(v)

≤ 2(r’(u)-r(u)) because…

zig-zag

A B C

v

u

D

w

v

A

B C

u

w

D
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Splay Operation

Case 3:

…it holds that:

2+r’(v)+r’(w)-2r(u) ≤ 2(r’(u)-r(u))

⇔ 2r’(u)-r’(v)-r’(w) ≥ 2

⇔ r’(v)+r’(w) ≤ 2(r’(u)-1), which can be 
shown to hold

zig-zag

A B C

v

u

D

w

v

A

B C

u

w

D
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Splay Operation

Proof of Lemma 3.1: (Follow-up)

Induction over the sequence of rotations.

• r and tw : rank and weight before the rotation

• r’ und tw’: rank and weight after the rotation

• For every rotation (i.e. zig, zig-zig, or zig-zag), the 

amortized cost is <= 1+3(r’(u)-r(u)) (case 1) resp. 3(r’(u)-

r(u)) (cases 2 and 3)

• Summation of the costs gives at most (x: root)

1 + Rotations 3(r’(u)-r(u)) = 1+3(r(x)-r(u))

– 1. Why do we only add 1 before the summation?

– 2. Why do we get a telescoping series above?
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Splay Operation

• Tree weight of tree T with root x: 
tw(x)= yT w(y)

• Rank of node x: r(x) = log(tw(x))

• Potential of tree T: (T) = xT r(x)

Lemma 3.1: Let T be a Splay tree with root x and u be a 
node in T. The amortized cost for splay(u,T) is at most 
1+3(r(x)-r(u)) = 1+3log(tw(x)/tw(u)).

Corollary 3.3: Let W=x w(x) and wi be the weight of key ki

in the i-th search call (recall we assume ki is in tree). For 
m search operations, the amortized cost is O(m + i=1

m

log (W/wi)).
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Splay Tree

Theorem 3.4: The runtime for m successful search 
operations in a Splay tree T with n elements is at most

O(m+(m+n)log n).

Proof:

• Let w(x) = 1 for all nodes x in T. 

• Then W=n and r(x) ≤ log W = log n for all x in T.

• For sequence F of operations, total runtime satisfies T(F) 
≤ A(F) + (s0) for any amortized cost function A and any 
initial state s0 (Recall: AX(s) := TX(s) + ((s´) - (s)))

• (s0) = xT r0(x) ≤ n log n

• Hence, Corollary 3.3 implies Theorem 3.4.
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Splay Tree

Suppose we have a probability distribution for the search 

requests, where each key in tree is searched for at least once.

• p(x) : probability of searching for key x

• H(p) = x p(x)log(1/p(x)) : entropy of p

Theorem 3.5: The expected runtime for m successful search 
operations in a Splay tree T with n elements is at most

O(m(1+H(p))).

Proof: Follows from proof of Theorem 3.4 with w(x) = p(x) for all 
x, and assuming each item x is searched for mp(x) times.

Note: This proof requires us to relax our requirement that the 
potential function  is non-negative. Why?
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Splay Tree

Something amazing:

For a fixed optimal Binary Search Tree where each key x in 
tree is searched for with probability p(x), one can show 
expected cost of a successful search is 

Ω(H(p)) (entropy bound).

Our Theorem 3.5 says Splay Trees are almost optimal, in 
that the cost per search scales as O(1+H(p))!

Note: 0<=H(p)<=logn

Question: How does this O(1+H(p)) support the idea that 
Splay trees would be good for applications like caching?
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Splay Tree

So far, we assumed all searches were successful, i.e. the 
key we were searching for was in the tree.

Q1: Where in our analysis did this assumption play a role?

Q2: What if we consider the more general case of allowing 
unsuccessful searches?



Splay Tree – Unsuccessful 

Searches
• Instead of just successful searches, the Splay tree T

should also support the search for the closest 

successor.
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search(23):

1 3 10 14 285 19

1 5

3

14 28

19

10

∞

23[19,28):

• output 28

• splay(19)

23[10,14), 23>10



Splay Tree – Unsuccessful 

Searches
• To obtain a low amortized time bound, we 

associate with a key x in T the search range [x,x+)
(including x but excluding x+), where x+ is closest 
successor of x in T.

• Each search range [x,x+) is associated with a 
weight w([x,x+)). Using that, we can revise 
Corollary 3.3 to:

Corollary 3.3’: Let W=x w(x) and wi be the weight of 
the range [x,x+) containing the i-th search key. For 
m search operations, the amortized cost is 

O(m + i=1
m log (W/wi)).

04.11.2018 Chapter 3 64
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Splay Tree Operations

Let T1 and T2 be two Splay trees with 

key(x)<key(y) for all xT1 und yT2.

merge(T1,T2):

T1 T2 T’1 T2 T’1 T2

Take max. element x<∞ in T1 and splay it up to root

x x

∞
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Splay Tree Operations

split(k,T): returns two trees as follows

T
T1 T2 T1 T2

k (or pred(k))

search(k):

causes splay(k)

or splay(pred(k))

>k

∞
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Splay Tree Operations

insert(e):

• insert like in binary search tree

• Splay operation to move key(e) to the root

delete(k):

• execute search(k) (splays k to the root)

• remove root and execute merge(T1,T2) of 
the two resulting subtrees
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Splay Operations

• k-: closest predecessor k in T

• k+: closest successor >k in T

Theorem 3.6: The amortized cost of the following 
operations in the Splay tree are:

• search(k): O(1+log(W/w([k-,k+))))

• insert(e): O(1+log(W/w([key(e),key(e)+))))

• delete(k): O(1+log(W/w([k,k+))) +
log((W-w([k,k+)))/w([k-,k))) )
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Search Trees

Problem: binary tree can degenerate!

Solutions:

• Splay tree
(very effective heuristic)

• (a,b)-tree
(guaranteed well balanced)

• hashed Patricia trie
(loglog-search time)

Applications
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(a,b)-Trees

Problem: how to maintain balanced search 
tree

Idea:

• All nodes v (except for the root) have 
degree d(v) with a≤d(v)≤b, where a≥2
and b≥2a-1 (otherwise this cannot be 
enforced)

• All leaves have the same depth
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(a,b)-Trees

Formally: for a tree node v let

• d(v) be the number of children of v

• t(v) be the depth of v (root has depth 0)

• Form Invariant:
For all leaves v,w: t(v)=t(w)

• Degree Invariant:
For all inner nodes v
except for root: d(v)[a,b],
for root r: d(r)[2,b] 
(as long as #elements >1)
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(a,b)-Trees

Lemma 3.10: An (a,b)-tree with n elements 
has depth at most 1+⌊loga (n/2)⌋

Proof:

• The root has degree ≥2 and every other 

inner node has degree ≥a.

• At depth t there are at least 2at-1 nodes

• n≥2at-1⇔ t≤1+⌊loga(n/2)⌋
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(a,b)-Trees

(a,b)-Tree-Rule:

Then search operation easy to implement.

s1, s2,…,sd-1

T1 T2 Td

. . . .

For all keys k in Ti and 

k´ in Ti+1: k  si < k´
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Search(9)

1 3 10 14 195 28 ∞

1   3   5 14 28

10  19
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Insert(e) Operation

Strategy:

• First search(key(e)) until some e´ found in 

the list. If key(e´)>key(e), insert e in front 

of e´, otherwise replace e´ by e.  

e´ ∞. . . . . .
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Insert(e) Operation

e´e ∞. . . . . .

Strategy:

• First search(key(e)) until some e´ found in 

the list. If key(e´)>key(e), insert e in front 

of e´, otherwise replace e´ by e.  
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Insert(e) Operation

• Add key(e) and pointer to e in tree node v

which is parent of e´. If we still have 

d(v)[a,b] after-wards, then we are done.

x zy. . . . . . x zy. . . . . .

… x   z … … x  y z …
v v

e e’ e e’
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Insert(e) Operation

• If d(v)>b, then cut v into two nodes.

(Example: a=2, b=4)

x u‘u

x  u  u‘  y
v

… b  z …
w

y z x u u‘ y z

x u‘  y

… b  u  z …

e e’ e e’

split
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Insert(e) Operation

• If after splitting v, d(w)>b, then cut w into two 

nodes (and so on, until all nodes have degree 
≤b or we reached the root)

a b u  z
w

… r  s …

a u  z

… r  b  s …

split
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Insert(e) Operation

• If for the root v of T, d(v)>b, then cut v into two 

nodes and create a new root node.

a b c  d
v

a c d

b

split
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Insert(8)

1 3 10 14 195 28 ∞

1   3   5 14 28

10  19

a=2, b=4
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Insert(8)

1 3 10 14 195 28 ∞

1   3   5   8 14 28

10  19

a=2, b=4

8
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Insert(8)

1 3 10 14 195 28 ∞

14 28

3  10  19

a=2, b=4

8

1 5   8
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Insert(6)

1 3 10 14 195 28 ∞

14 28

3  10  19

a=2, b=4

8

1 5   8



04.11.2018 Chapter 3 85

Insert(6)

1 3 10 14 195

14

3  10  19

a=2, b=4

8

1 5   6   8

6

. . .
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Insert(7)

1 3 10 14 195

14

3  10  19

a=2, b=4

8

1 5   6   8

6

. . .
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Insert(7)

1 3 10 14 195

14

3  10  19

a=2, b=4

8

1 5   6   7   8

6

. . .

7



04.11.2018 Chapter 3 88

Insert(7)

1 3 10 14 195

14

3  6  10  19

a=2, b=4

8

1

6

. . .

7

5 7   8
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Insert(7)

1 3 10 14 195

14

a=2, b=4

8

1

6

. . .

7

5 7   8

3 10  19

6
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Insert Operation

• Form Invariant:
For all leaves v,w: t(v)=t(w)
Satisfied by Insert!

• Degree Invariant:
For all inner nodes v except for the root: 
d(v)[a,b], for root r: d(r)[2,b] 

1) Insert splits nodes of degree b+1 into nodes 
of degree ⌊(b+1)/2⌋ and ⌈(b+1)/2⌉. If b≥2a-1, 
then both values are at least a.

2) If root has reached degree b+1, then a new
root of degree 2 is created.  
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Delete(k) Operation

Strategy:

• First search(k) until some element e is 

reached in the list. If key(e)=k, remove e

from the list, otherwise we are done.  

e´ e ∞e´´. . . . . .
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Delete(k) Operation

e´ ∞e´´. . . . . .

Strategy:

• First search(k) until some element e is 

reached in the list. If key(e)=k, remove e

from the list, otherwise we are done.  



04.11.2018 Chapter 3 93

Delete(k) Operation

• Remove pointer to e and key k from the leaf 

node v above e. (e rightmost child: perform key 

exchange like in binary tree!) If afterwards we 
still have d(v)≥a, we are done.

x yk. . . . . . x y. . . . . .

… x  k y … … x  y …
v v

e



04.11.2018 Chapter 3 94

Delete(k) Operation

• Remove pointer to e and key k from the leaf 

node v above e. (e rightmost child: perform key 

exchange like in binary tree!) If afterwards we 
still have d(v)≥a, we are done.

x y k. . . . . . x y. . . . . .

… x y … x 
v v

e

… k … … y …
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Delete(k) Operation

• If d(v)<a and the preceding or succeeding sibling

of v has degree >a, steal an edge from that 

sibling. (Example: a=2, b=4)

x ry

v

s t x y r s t

u   y   t

y   r   s

u  x  t

x r    s
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Delete(k) Operation

• If d(v)<a and the preceding and succeeding 

siblings of v have degree a, merge v with one of 

these. (Example: a=3, b=5)

x ry

v

s t x y r s t

u   t

x  y   r   sx r   s

u  y  t

merge
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Delete(k) Operation

• Perform changes upwards until all inner 

nodes (except for the root) have degree 
≥a. If root has degree <2: remove root.

x   y   z x   y   z
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Delete(10)

1 3 10 14 195 28 ∞

1   3   5 14 28

10  19

a=2, b=4
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Delete(10)

1 3 14 195 28 ∞

14 28

5  19

a=2, b=4

1   3
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Delete(14)

1 3 14 195 28 ∞

14 28

5  19

a=2, b=4

1   3
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Delete(14)

1 3 195 28 ∞

28

5  19

a=2, b=4

1   3
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Delete(14)

1 3 195 28 ∞

5 28

3  19

a=2, b=4

1
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Delete(3)

1 3 195 28 ∞

5 28

3  19

a=2, b=4

1
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Delete(3)

1 195 28 ∞

5 28

3  19

a=2, b=4

1
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Delete(3)

1 195 28 ∞

5 28

1   19

a=2, b=4
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Delete(3)

1 195 28 ∞

28

19

a=2, b=4

1   5
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Delete(1)

1 195 28 ∞

28

19

a=2, b=4

1   5
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Delete(1)

195 28 ∞

28

19

a=2, b=4

5
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Delete(19)

195 28 ∞

28

19

a=2, b=4

5
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Delete(19)

5 28 ∞

5

a=2, b=4

28
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Delete(19)

5 28 ∞

a=2, b=4

5  28
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Delete(19)

5 28 ∞

a=2, b=4

5  28
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Delete Operation

• Form Invariant:
For all leaves v,w: t(v)=t(w)
Satisfied by Delete!

• Degree Invariant:
For all inner nodes v except for the root: d(v)[a,b], for 
root r: d(r)[2,b] 

1) Delete merges node of degree a-1 with node of
degree a. Since b2a-1, the resulting node has degree
at most b.

2) Delete moves edge from a node of degree >a to a 
node of degree a-1.  Also OK.

3) Root deleted: children have been merged, degree of
the remaining child is ≥a (and also ≤b), so also OK.



04.11.2018 Chapter 3 114

More Operations

• min/max Operation:

Pointers to both ends of list: time O(1).

• Range queries:

To obtain all elements in the range [x,y], 

perform search(x) and go through the list 

till an element >y is found. 

Time O(log n + size of output).
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n Update Operations

Theorem 3.11: There is a sequence of n

insert and delete operations in a (2,3)-tree 

that require (n log n) many split and 

merge Operations.

Proof: Exercise
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n Update Operations

Theorem 3.12: Consider an (a,b)-tree with 
b≥2a that is initially empty. For any 

sequence of n insert and delete opera-

tions, only O(n) split and merge operations 

are needed.

Proof:

Amortized analysis
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External (a,b)-Tree

Internal memory (RAM)

External memory (harddisk)

block size B

size M

(a,b)-trees well suited for large amounts of data
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External (a,b)-Tree

Problem: minimize number of block transfers between 
internal and external memory

Solution: 

• use b=B (block size) and a=b/2

• keep highest (1/2)loga(M/b) levels of (a,b)-tree in internal 
memory (storage needed ≤ M)

• Lemma 3.10: depth of (a,b)-tree ≤1+⌊loga (n/2)⌋

• How many levels are not in internal memory?
loga[n/2] - (1/2)loga(M/b) ≤ loga[n/(2  M )] + O(1) (a, b are O(1))

• Cost for insert, delete and search operations: 
O(logB(n/  M )) block transfers
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External (a,b)-Tree

Problem: minimize number of block transfers between 
internal and external memory

A better analysis can show (exercise): 

• Cost for insert, delete and search operations: 
~2logB/2(n/M)+1 block transfers (+1: list access)

Example:

• n = 100,000,000,000,000 keys

• M =  16 Gbyte (~4,000,000,000 keys)

• B = 256 Kbyte (~64,000 keys)

• 2logB/2(n/M)+13
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Search Trees

Problem: binary tree can degenerate!

Solutions:

• Splay tree
(very effective heuristic)

• (a,b)-tree
(guaranteed well balanced)

• hashed Patricia trie
(loglog-search time)

Applications
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Longest Prefix Search

• All keys are encoded as binary sequence {0,1}W

• Prefix of a key x∈{0,1}W: arbitrary subsequence 
of x that starts with the first bit of x
(example: 101 is a prefix of 10110100)

Problem: given a key x∈{0,1}W, find a key y∈S
with longest common prefix

Solution: Trie Hashing
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Trie

A trie is a search tree over some alphabet  that has the

following properties:

• Every edge is associated with a symbol c∈

• Every key x∈k that has been inserted into the trie can 
be reached from the root of the trie by following the 
unique path of length k whose edge labels result in x.

For simplicity: all keys from {0,1}W for some W∈ℕ.

Example:

(0,2,3,5,6) with W=3 results in (000,010,011,101,110)
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Trie

Example: (without list at bottom)

0

1

1

0

0

0

10 1

1

0

000 010 011 101 110
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Trie

search(4) (4 corresponds to 100):

0

1

1

0

0

0

10 1

1

0

000 010 011 101 110

Output: 5 (longest common prefix)
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Trie

In general: a search(x) request follows the edges in the trie

as long as their labels form a prefix of x. Once no edge is 

available any more to follow the bits in x, the request 

may be forwarded to any leaf y in the subtrie below since 

all of them have the same longest prefix match with x.

x

y
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Trie

insert(1)  (1 corresponds to 001):

0

1

1

0

0

0

10 1

1

0

000 010 011 101 110

1

001
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Trie

In general: an insert(x) request follows the edges in the trie

as long as their labels form a prefix of x. Once no edge is 

available any more to follow the bits in x, a new path (of 

length the remaining bits in x) is created that leads to the 

new leaf x. 

x
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Trie

delete(5):

0

1

1

0

0

0

10 1

1

0

000 010 011 101 110

1

001
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Trie

In general: a delete(x) request follows the edges in the trie

down to the leaf x. If x does not exist, the delete 

operation terminates. Otherwise, x as well as the chain 

of nodes upwards till the first node with at least two 

children is deleted.

x
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Patricia Trie

Problem: 
• Longest common prefix search for some x∈{0,1}W

can take (W) time.

• Insert and delete may require (W) structural 
changes in the trie.

Improvement: use Patricia trie

A Patricia trie is a compressed trie in which all chains 
(i.e., maximal sequences of nodes of degree 1) are 
merged into a single edge whose label is equal to 
the concatenation of the labels of the merged trie
edges.
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Trie

Example 1:

0

1

1

0

0

0

10 1

1

0

000 010 011 101 110
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Patricia Trie

Example 1:

00

1

1

0

01

0 1

10

000 010 011 101 110
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Trie

Example 2:

0 1

0

0

0 1

000 010 011
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Patricia Trie

Example 2:

00

1

0 1

000 010 011

root stores prefix 0
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Patricia Trie

search(4):

00

1

1

0

01

0 1

10

000 010 011 101 110
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Patricia Trie
In general: a search(x) request follows the edges in the 

Patricia trie as long as their labels form a prefix of x. 

Once no edge is available any more to follow the bits in 

x, choose the current child c with longest common prefix. 

Then, the request may be forwarded to any leaf y in the 

subtrie rooted c at below since all of them have the same 

longest prefix match with x.

x

y

c



04.11.2018 Chapter 3 137

Patricia Trie

insert(1):

00

1

1

0

01

0 1

10

000 010 011 101 110

0

0 1

001
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Patricia Trie

Insert(5):

00

1

0 1

000 010 011 101

0

101

0
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Patricia Trie

In general: an insert(x) request follows the edges in the 

Patricia trie as long as their labels form a prefix of x. 

Once an edge e is reached whose label l(e) does not 

follow the bits in x, a new tree node is created in the 

middle of e. 

x

e

e´

x

e

x

e´´
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Patricia Trie

In general: an insert(x) request follows the edges in the 

Patricia trie as long as their labels form a prefix of x. 

Once an edge e is reached whose label l(e) does not 

follow the bits in x, a new tree node is created in the 

middle of e. 

Example: l(e)=10010, x=…10110100

e´

x

e

x

e´´

l(e´)=10

l(e´´)=010

l(e´´´)=110100
e´´´
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Patricia Trie

In general: an insert(x) request follows the edges in the 

Patricia trie as long as their labels form a prefix of x. 

Once an edge e is reached whose label l(e) does not 

follow the bits in x, a new tree node is created in the 

middle of e. 

Special case:

x

old root

e

x

old root

new roote
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Patricia Trie

delete(5):

1

1

0

01

0 1

10

000 010 011 101 110

0

0 1

001

110
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Patricia Trie

delete(6):

1

0

0 1

000 010 011 110

0

0 1

001

110

0
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Patricia Trie

In general: a delete(x) request follows the edges in the 

Patricia trie down to the leaf x. If x does not exist, the 

delete operation terminates. Otherwise, x as well as its 

parent are deleted. 

Example: l(e´)=10, l(e´´)=010, l(e´´´)=110100, 

x=…10110100

e´

x

e

e´´

l(e)=10010 

e´´´
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Patricia Trie

• Search, insert, and delete like in an 

ordinary binary tree, with the difference 

that we have labels at the edges.

• Search time still O(W) in the worst case, 

but just O(1) structural changes.
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Patricia Trie

• History:
– Invented independently by D. R. Morrison (1968) and 

G. Gwehenberger (1968).

– Morrison called them „Patricia trees“, where 
PATRICIA stands for Practical Algorithm To Retrieve 
Information Coded in Alphanumeric.

– Patricia trees are also referred to as radix trees (with 
radix 2).

Idea (Kniesburges and Scheideler, 2011):

• To improve search time in Patricia trie, we hash 
the Patricia trie to some hash table.



Patricia Trie

Hashing to some hash table:

• Idea: Work over nodes rather than edges.

• Add labels to nodes: concatenation of edge labels from root

• Every node is hashed according to its node label.

• Then every Patricia node can directly be accessed via a HT-lookup 
if its label is known.
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0

10

010

g(010)

Hash table



Patricia Trie

Observation: 

If one calls Search(x) when x is already in the 
tree (i.e. there exists a node with label x in 
tree), then a single lookup to the hashtable 
suffices to solve Search(x). Easy!

But what if x is not in the tree? Need to find a 
string in tree with largest matching prefix with 
x. We henceforth assume this case.
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Patricia Trie

Hashing to some hash table:

• Idea: Work over nodes rather than edges.

• Add labels to nodes: concatenation of edge labels from root

• Every node is hashed according to its node label.

Next idea: Use binary search over node labels via HT-lookups to find the 
desired maximum prefix. This would run in time O(log W) instead of O(W)! 

Problem: Max prefix is not necessarily attained at a node! (Why?)
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Hash table



Patricia Trie
Hashing to some hash table:

• Idea: Work over nodes rather than edges.

• Add labels to nodes: concatenation of edge labels from root

• Every node is hashed according to its node label.

Solution: add extra „intermediate“ nodes, called msd-nodes.
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Hash table



Solution: add msd-node (    ) for each edge.
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Patricia Trie Hashing
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Patricia Trie Hashing

• |x|: length of a bit sequence x.

• b(v): label of node v.

• Recall: msd(f,f´) for two bit sequences f and f´ is most 
significant bit (starting with position 0 from right) in which
f and f´ differ.

• Consider a bit sequence b with (xk,…,x0) being the 
binary representation of |b|. Let b’ be a prefix of b. 
The msd-sequence m(b’,b) of b’ and b is the prefix of b
of length l(|b|,j)=i=j

k xi 2i with j=msd(|b|,|b’|).

(Note: read the definition above carefully, noting the use 
of parameters b’, b’, |b|, and |b’|.)
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Patricia Trie Hashing

• |x|: length of a bit sequence x.

• b(v): label of node v.

• Recall: msd(f,f´) for two bit sequences f and f´ is most 
significant bit (starting with position 0 from right) in which f
and f´ differ.

• Consider a bit sequence b with (xk,…,x0) being the binary 
representation of |b|. Let b’ be a prefix of b. 
The msd-sequence m(b’,b) of b’ and b is the prefix of b of 
length l(|b|,j)=i=j

k xi 2i with j=msd(|b|,|b’|).

Example: Consider b=01101001010 and b’=011010. 
Then |b|=10112, and |b’|=1102, i.e., msd(|b|,|b’|)=3. Hence,
l(|b|,j)=8 and m(b’,b)= 01101001.

Q: Why is msd used on |b| and |b‘|, instead of b and b‘?



Patricia Trie Hashing
Example: Consider b=01101001010 and b’=011010. 

Then |b|=10112, and |b’|=1102, i.e., msd(|b|,|b’|)=3. Hence, 
l(|b|,j)=8 and m(b’,b)= 01101001.

Since we will binary search over label lengths, the new msd 
node is chosen to be of the „right length“ so as to help our binary 
search find it as we go down the tree.
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b´=011010

b=01101001010

m(b’,b) = 01101001

|b´| =       1 1 0

|b| =   1  0 1 1

j=msd(|b|,|b´|)

l(|b|,j) =   1  0 0 0 = 8

bit positions <j set 

to 0, rest as in |b|



Patricia Trie Hashing

Another example:
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b´: prefix of b, |b´|=36

b: string of length |b|=43 

m(b’,b) is first 40 bits of b

|b´| =   1 0  0  1 0 0

|b| =   1 0  1  0 1 1

j=msd(|b|,|b´|)

l(|b|,j) =   1 0  1  0 0 0  = 40

bit positions <j set 

to 0, rest as in |b|



04.11.2018 Chapter 3 156

Patricia Trie Hashing

Approach: We replace every edge e={v,w} in the 

Patricia trie by two edges {v,u} and {u,w} with

b(u)=m(b(v),b(w)) and hash the labels on each 

node to the hash table.

p

v

w

v

w

p1

p2

msd-node

of v and w

p1 ∘ p2 = p
u
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Patricia Trie Hashing

Motivation for inserting msd-nodes: msd-node 

placed at the position where binary search on 

the node label length will look for the first time 

for a node label of length between |b(v)| and 

|b(w)|.

p

v

w

v

w

p1

p2

msd-node

of v and w

p1 ∘ p2 = p
u



Hash table
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Patricia Trie Hashing

v

g(b(v))

p’

p

p p’
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Patricia Trie Hashing

Data structure for longest prefix search:

Every hash entry of a tree node v stores:
1. Label b(v) of v  (always e for the root!)
2. Key key(v) of an element e below the subtree of v, 

if v is an original Patricia trie node. (As in splay tree, 
allows us to directly jump to an element e in O(1) time.)

3. Labels px(v) of edges to children, x∈{0,1}
4. Label p-(v) of edge to parent (root: p-(v)=prefix to root)

Every hash entry of a list element e stores:
1. Key of e
2. Label p-(v) of edge to parent
3. Label of tree node storing key(e)
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Patricia Trie Hashing

Example:

u

w

v

p0(u)=0010 p1(u)=10

p-(u)=101

b(u)=10110101key(u)=101101010010011

p1(v)=0

b(w)=1011010100100

b(v)=101101010010
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Patricia Trie Hashing

k2

k1 k2 k3 k4 

Requirement: every tree node stores key of 

exactly one element (possible with ).

k1

k3

k4
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Patricia Trie Hashing

k2

k1 k2 k3 k4 

Invariant: the label of a tree node is a prefix of

the key stored in it.

k1

k3

k4
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Patricia Trie Hashing

k2

k1 k2 k3 k4 

We first illustrate the structural changes for

insert and delete.

k1

k3

k4
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Patricia Trie Hashing

k2

k1 k2 k3 k4 

Insert(e), key(e)=k5: like in binary search tree

k3

k4

k5

k5

k1
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Patricia Trie Hashing

k2

k1 k2 k3 k4 

Delete(k3): like in binary search tree

k1

k3

k4

k2
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Patricia Trie Hashing
Search(x): (W: power of two)

Phase 1: binary search on length of longest 

matching prefix of x via msd-nodes to find „good 

starting point“ for a brute force search (Phase 2)
0

W

W/2

3W/4

x y
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Patricia Trie Hashing

Search(x): (W: power of two)

Phase 2: Do brute force traversal downward

y

x z

Output: y

z

y

Case 1:

(Stop at msd

Node)

End of Phase 1
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Patricia Trie Hashing

Search(x): (W: power of two)

Phase 2: Do brute force traversal downward

y

x z

Output: z

z

y

Case 2:

(Stop at an

“original” 

node)

End of Phase 1
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Patricia Trie Hashing

• Let x∈{0,1}W be represented by (x1,…,xW)

• Hash function: h:U→[0,1), Hash table: T

search(x):
// Easy case: x is already in tree
if key(T[h(x)])=x then return T[h(x)]
// Phase 1: binary search for x
s:=⌊log W⌋; k:=0; v:=T[h(e)]; p:=p-(v) ∘ px1

(v)  // v: root of Patricia trie
while s >= 0 do

// is there node with label (x1,…,xk+2
s) ?

if (x1,…,xk+2
s) = b(T[h(x1,…,xk+2

s)]) // yes
then k:=k+2s; v:=T[h(x1,…,xk)]; p:= (x1,…,xk) ∘ pxk+1

(v) 
else if (x1,…,xk+2

s) is prefix of p  
// edge from v covers (x1,…,xk+2

s)
then k:=k+2s

s:=s-1
// end while – end of Phase 1 – continues next slide
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Patricia Trie Hashing

search(x): (continued from previous slide)
// Phase 1 stops at deepest node v with b(v) 
being a prefix of (x1,…,xW)
// Phase 2: brute force to find correct max prefix
if pxk+1

(v) exists then

v:=T[h(b(v) ∘ pxk+1
(v))]

else

v:=T[h(b(v) ∘ pxk+1
(v))]

if v is msd-node then //jump to next original node

v:=T[h(b(v) ∘ p)] for bit sequence p out of v

return key(v)
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Patricia Trie Hashing

Correctness of phase 1:

• Let p be largest common prefix of x and an 
element y∈S and let |p|=(zk,…,z0)2.

• Patricia trie contains a route for prefix p

• Let v be last node on route till p

• Case 1: v is Patricia node

|p|0

v

Binary representation of |b(v)| has ones

at positions i1,i2,… (i1: maximal position)



04.11.2018 Chapter 3 172

Patricia Trie Hashing

Correctness of phase 1:

• Let p be largest common prefix of x and an 
element y∈S and let |p|=(zk,…,z0)2.

• Patricia trie contains a route for prefix p

• Let v be last node on route till p

• Case 1: v is Patricia node

|p|0

v

msd-node must exist at 2i1,

will be found by binary search

|b(w)|<2i1

w
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Patricia Trie Hashing

Correctness of phase 1:

• Let p be largest common prefix of x and an 
element y∈S and let |p|=(zk,…,z0)2.

• Patricia trie contains a route for prefix p

• Let v be last node on route till p

• Case 1: v is Patricia node

|p|2i1

v

a) no msd-node at 2i1+2i2 : only if no
Patricia node u with 2i1<|b(u)|≤2i1+2i2,

but this can be recognized via pw

2i1+2i2

w pw u
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Patricia Trie Hashing

Correctness of phase 1:

• Let p be largest common prefix of x and an 
element y∈S and let |p|=(zk,…,z0)2.

• Patricia trie contains a route for prefix p

• Let v be last node on route till p

• Case 1: v is Patricia node

|p|2i1

v

b) msd-node at 2i1+2i2: is found by

binary search

<2i1+2i2
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Patricia Trie Hashing

Correctness of phase 1:

• Let p be largest common prefix of x and an 
element y∈S and let |p|=(zk,…,z0)2.

• Patricia trie contains a route for prefix p

• Let v be last node on route till p

• Case 1: v is Patricia node

|p|

v

j 2ij

and so on, till node v is found as the

last node of the binary search
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Patricia Trie Hashing

Correctness of phase 1:

• Let p be largest common prefix of x and an 
element y∈S and let |p|=(zk,…,z0)2.

• Patricia trie contains a route for prefix p

• Let v be last node on route till p

• Case 2: v is msd-node

|p|0

v

v will also be the last node of binary search 

if it is an msd-node (argue like in case 1)
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Patricia Trie Hashing

Number of HT accesses for longest prefix search:

• O(log W) HT-lookups, where W is key length

Number of HT accesses for insert:

• O(log W) HT-lookups

• O(1) HT-updates

Number of HT accesses for delete: 

• O(1) HT-lookups (why not O(log W)?)

• O(1) HT-updates



Patricia Trie Hashing

Application: distributed storage system

Goal: minimize number of accesses to

servers for longest prefix match
04.11.2018 Chapter 3 178

1 3 5 14 1910
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Distributed Storage System

Standard approach for exact search: 

distributed hash table (DHT)

1 3 5 14 1910

hash function h
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Consistent Hashing

0 1

Data

Servers

g:U→[0,1)

h:V→[0,1)

Choose two random hash functions h, g

Region that server v is responsible for

v

d



Chapter 5 181

Consistent Hashing

• V: current set of servers

• succ(v): closest successor of v in V w.r.t. hash function h
(where [0,1) is viewed as a cycle)

• pred(v): closest predecessor of v in V w.r.t. h

Assignment rules:

• One copy per data item: server v stores all items d with 
g(d)∈I(v), where I(v)=[h(v), h(succ(v))).

• k>1 copies per data item: d is stored in the above server 
v and its k-1 closest successors w.r.t. h



Distributed Patricia Trie Hashing
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v

g(b(v))

p’

p

0 1
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Distributed Patricia Trie Hashing

Number of DHT accesses for longest prefix search:

• O(log W), where W is key length

Number of DHT accesses for insert:

• O(log W) for lookups

• O(1) for updates

Number of DHT accesses for delete: 

• O(1) for lookups

• O(1) for updates


