
Fundamental Algorithms

Chapter 3:

Advanced Search Structures

Sevag Gharibian
(based on slides of Christian Scheideler)

WS 2018

04.11.2018 Chapter 3 2

Search Structure

4

8

18

11

3

20

04.11.2018 Chapter 3 3

Search Structure

4

8

18

11

3

20

insert(15)

15

04.11.2018 Chapter 3 4

Search Structure

4

8

18

11

3

20

delete(20)

15

04.11.2018 Chapter 3 5

Search Structure

4

8

18

11

3

search(7) gives 8 (closest successor)

15

04.11.2018 Chapter 3 6

Search Structure

S: set of elements

Every element e identified by key(e).

Operations:

• S.insert(e: Element): S:=S∪{e}

• S.delete(k: Key): S:=S\{e}, where e is the

element with key(e)=k (note: now given key,

not pointer to e!)

• S.search(k: Key): outputs eS with
minimal key(e) so that key(e)≥k

04.11.2018 Chapter 3 7

Static Search Structure

1. Store elements in sorted array.

search: via binary search (in O(log n) time)

1 3 10 14 195 28 31 58 60 82 89 94 9885

search(12)

04.11.2018 Chapter 3 8

Binary Search

Input: number x and sorted array A[1],…,A[n]

Algorithm BinarySearch:

l:=1; r:=n

while l < r do

m:=(r+l) div 2

if A[m] = x then return m

if A[m] < x then l:=m+1

else r:=m

return l

04.11.2018 Chapter 3 9

Dynamic Search Structure

insert und delete Operations:

Sorted array difficult to update!

Worst case: (n) time

1 3 10 145 19 28 31 58 60 82 85

15

04.11.2018 Chapter 3 10

Search Structure

2. Sorted List (with an ∞-Element)

Problem: insert, delete and search take (n) time
in the worst case (why for insert/delete?)

Observation: If search could be implemented
efficiently, then also all other operations

31

…
19 ∞

04.11.2018 Chapter 3 11

Search Structure

Idea: add navigation structure that allows

search to run efficiently

31

…
19

navigation structure

∞

04.11.2018 Chapter 3 12

Binary Search Tree (ideal)

1 3 10 14 195 28

1 5

3

14 28

19

10
search(12)

∞

04.11.2018 Chapter 3 13

Binary Search Tree

Search tree invariant:

k

T1 T2

For all keys k´ in T1 and
k´´ in T2: k´  k < k´´

04.11.2018 Chapter 3 14

Binary Search Tree

Formally: for every tree node v let

• key(v) be the key stored at v

• d(v) the number of children (degree) of v

• Search tree invariant: (as above)

• Degree invariant:
All tree nodes have exactly two children
(as long as the number of elements in the list is >0, recall
presense of ∞ node)

• Key invariant:
For every element e in the list there is exactly one tree
node v with key(v)=key(e).

04.11.2018 Chapter 3 15

Binary Search Tree

• Search tree invariant: (as before)

• Degree invariant:
All tree nodes have exactly two children
(as long as the number of elements is >0)

• Key invariant:
For every element e in the list there is exactly one tree node v
with key(v)=key(e).

From the search tree and key invariants
it follows that for every left subtree T of
a node v, the rightmost list element e
under T satisfies key(v)=key(e).

(Why?)
T

1 e…

v

04.11.2018 Chapter 3 16

search(x) Operation

Search strategy:

• Start at the root, v, of the search tree

• while v is a tree node:

– if x  key(v) then let v be the left child of v,
otherwise let v be the right child of v

• Output (list node) v

k

T1 T2

For all keys k´ in T1 and
k´´ in T2: k´  k < k´´

04.11.2018 Chapter 3 17

search(x) Operation

Correctness of search strategy:

• For every left subtree T of a node
v, the rightmost list element e under
T satisfies key(v)=key(e).

• If search(x) enters T, since key(v)≥x, there is an
element e in the list below T with key(e)≥x.

k

T1 T2

For all keys k´ in T1 and
k´´ in T2: k´  k < k´´

T

1 e…

v

04.11.2018 Chapter 3 18

Search(9)

1 3 10 14 195 28

1 5

3

14 28

19

10

∞

04.11.2018 Chapter 3 19

Insert and Delete Operations

Strategy:

• insert(e):
First, execute search(key(e)) to obtain a list element e´.
If key(e)=key(e´), replace e´ by e, otherwise insert e
between e´ and its predecessor in the list and add a new
search tree leaf leading to e (left) and e´ (right) with key
key(e).

• delete(k):
First, execute search(k) to obtain a list element e. If
key(e)=k, then delete e from the list and the parent v of e
from the search tree, and relabel tree node w with
key(w)=k as key(w):=key(v).

04.11.2018 Chapter 3 20

Insert(5)

1 10 14 28

1

28

14

10

∞

04.11.2018 Chapter 3 21

Insert(5)

1 10 14 28

1

28

14

10

5

5

∞

04.11.2018 Chapter 3 22

Insert(12)

1 10 14 28

1

28

14

10

5

5

∞

04.11.2018 Chapter 3 23

Insert(12)

1 10 12 28

1

28

14

10

5

5

14

12

∞

04.11.2018 Chapter 3 24

Delete(1)

1 10 12 28

1

28

14

10

5

5

14

12

∞

04.11.2018 Chapter 3 25

Delete(1)

10 12 28

28

14

10

5

5

14

12

∞

04.11.2018 Chapter 3 26

Delete(14)

10 12 28

28

14

10

5

5

14

12

∞

04.11.2018 Chapter 3 27

Delete(14)

10 12 28

28

12

10

5

5

∞

04.11.2018 Chapter 3 28

Binary Search Tree

Problem: binary tree can degenerate!

Example: numbers are inserted in sorted order

1 3 10 14 195 28

1

5
3

14

28

19

10

∞

04.11.2018 Chapter 3 29

Pop quiz

Q1: What is the worst case runtime for binary

search on a sorted array?

O(logn).

Q2: What is the worst case runtime for searching

in a binary search tree?

O(n)! (see e.g. previous slide)

04.11.2018 Chapter 3 30

Search Trees

Problem: binary tree can degenerate!

Solutions:

• Splay tree
(very effective heuristic)

• (a,b)-tree
(guaranteed well balanced)

• hashed Patricia trie
(loglog-search time)

Applications

04.11.2018 Chapter 3 31

Splay Tree

Usually: Implementation as internal search

tree (i.e., elements directly integrated into

tree and not in an extra list)

Here: Implementation as external search

tree (like for the binary search tree above)

04.11.2018 Chapter 3 32

Why Splay Trees?

• Self-adjusting binary search tree

• Invented by Sleator and Tarjan (1985)

• Pros:

– Recently accessed elements quick to access

again. (Great for caches, garbage collection!)

– Low amortized costs

• Cons:

– Can still have highly unbalanced trees, hence

worst-case linear time search.

04.11.2018 Chapter 3 33

Splay Tree

1 3 10 14 195 28

1 5

3

14 28

19

10
search(19) Idea: add shortcut

pointer to list element
⇒accelerates search

∞

04.11.2018 Chapter 3 34

Splay Tree

Ideas:

1. Add shortcut pointers in tree to list elements

2. For every search(k) operation, move
pred(k) (the closest predecessor of k in T)
to the root (why?)

Movement for (2): via Splay operation

For simplicity: we focus on search(k) for keys k
already in the search tree.

04.11.2018 Chapter 3 35

Splay Operation

Movement of key x to the root: 3 cases.

Case 1:

1a. x is a left child of the root:

A B

C

x

y x

A

B C

y
zig

04.11.2018 Chapter 3 36

Splay Operation

A B

C

y

xy

A

B C

x
zig

Movement of key x to the root: 3 cases

Case 1:

1b. x is a right child of the root:

04.11.2018 Chapter 3 37

Splay Operation

Case 2:

2a. x has father and grand father to the right

A B

C

x

y y

B

C D

z
zig-zig

D

z x

A

04.11.2018 Chapter 3 38

Splay Operation

zig-zig

A B

C

z

y

D

x

y

B

C D

x

z

A

Case 2:

2b. x has father and grand father to the left

04.11.2018 Chapter 3 39

Splay Operation

Case 3:

3a. x: father left, grand father right

zig-zag

A B C

y

x

D

z

y

A

B C

x

z

D

04.11.2018 Chapter 3 40

Splay Operation

zig-zag

A B C

z

x

D

y

B C

D

x

y

A

z

Case 3:

3b. x: father right, grand father left

04.11.2018 Chapter 3 41

Splay Operation

Example:

1 3 10 14 195 28

1 5

3

14 28

19

10

x

zig-zag operation (3a)

∞

04.11.2018 Chapter 3 42

Splay Operation

1 3 10 14 195 28

1
14 28

19

10

5

3

∞

04.11.2018 Chapter 3 43

Splay Operation

Examples:

zig-zig, zig-zag, zig-zag, zig zig-zig, zig-zag, zig-zig, zig

x x

04.11.2018 Chapter 3 44

Splay Operation

Observation: Tree can still be highly

imbalanced! But amortized costs are low.

1 3 10 14 195 28

1

5
3

14

28
19

10

∞

04.11.2018 Chapter 3 45

Splay Operation

search(k)-operation:
• Move downwards from the root (as in standard

binary tree) till pred(k) found in search tree (which
can be checked via shortcut to the list) or the list is
reached

• call splay(pred(k)), output next successor, succ(k)
(recall we assume k exists in tree for simplicity:
pred(k)=succ(k)=k)

Amortized Analysis:
• Note: runtime of search(k) is O(runtime of

splay(pred(k))).
• Our goal: bound runtime of m Splay operations on

arbitrary binary search tree with n elements (m>n)

04.11.2018 Chapter 3 46

Splay Operation

• Weight of node x: w(x)>0

• Tree weight of tree T with root x:

tw(x)= yT w(y)

• Rank of node x: r(x) = log(tw(x))

• Potential of tree T: (T) = xT r(x)

Lemma 3.1: Let T be a Splay tree with root x and u

be a node in T. The amortized cost for splay(u,T)

is at most 1+3(r(x)-r(u)).

(Recall: Amortized cost AX(s) := TX(s) + ((s´) - (s)))

Proof of Lemma 3.1:

Induction over the sequence of rotations.

• r and tw : rank and weight before the rotation

• r’ and tw’: rank and weight after the rotation

Case 1:

Amortized cost:
≤ 1+r’(u)+r’(v)-r(u)-r(v) ≤ 1+r’(u)-r(u) since r’(v)≤r(v)

≤ 1+3(r’(u)-r(u)) since r’(u)≥r(u)

04.11.2018 Chapter 3 47

Splay Operation

A B

C

u
v u

A

B C

vzig

Runtime

(# rotations)

Change in 

04.11.2018 Chapter 3 48

Splay Operation

Case 2:

Amortized cost:

≤ 2+r’(u)+r’(v)+r’(w)-r(u)-r(v)-r(w)

= 2+r’(v)+r’(w)-r(u)-r(v) since r’(u)=r(w)

≤ 2+r’(u)+r’(w)-2r(u) since r’(u)≥r’(v) and r(v)≥r(u)

A B

C

u

v v

B

C D

w
zig-zig

D

w u

A

04.11.2018 Chapter 3 49

Splay Operation

Case 2:

Claim: It holds that

2+r’(u)+r’(w)-2r(u) ≤ 3(r’(u)-r(u))

i.e.

r(u)+r’(w) ≤ 2(r’(u)-1)

A B

C

u

v v

B

C D

w
zig-zig

D

w u

A
r(u)

r’(w)

r’(u)

04.11.2018 Chapter 3 50

Splay Operation

Case 2:

Claim: It holds that

r(u)+r’(w) ≤ 2(r’(u)-1)

• Observe: There exist 0<x,y<1 and scaling factor c>0 with
r(u)=log(cx), r’(w)=log(cy), and r’(u)log(c(x+y)).

• Hence, the claim holds if log(cx)+log(cy) ≤
2(log(c(x+y))-1) for all 0<x,y<1 and c>0.

A B

C

u

v v

B

C D

w
zig-zig

D

w u

A
r(u)

r’(w)

r’(u)

04.11.2018 Chapter 3 51

Splay Operation

Case 2:

• For all 0<x,y<1 and c>0 holds:

log(cx)+log(cy) ≤ 2(log(c(x+y))-1)

 log(x)+log(y) ≤ 2(log(x+y)-1)

• WLOG set c so that c(x+y)=1. Let x’=cx and y’=cy.

A B

C

u

v v

B

C D

w
zig-zig

D

w u

A
r(u)

r’(w)

r’(u)

04.11.2018 Chapter 3 52

Splay Operation

Case 2:

• To show: for all 0<x’,y’1,with x’+y’=1:

log(x’)+log(y’) ≤ 2(log(1)-1) = -2

• Or more generally: show for f(x,y)=log(x)+log(y) that

f(x,y)≤-2 for all x,y>0 with x+y≤1

A B

C

u

v v

B

C D

w
zig-zig

D

w u

A
r(u)

r’(w)

r’(u)

04.11.2018 Chapter 3 53

Splay Operation

Lemma 3.2: In the area x,y>0 with x+y≤1, the function
f(x,y)=log x + log y has its maximum at (½,½).

Proof:

• Reduce to univariate problem:

– log x is monotonically increasing. Hence, WLOG
maximum satisfies x+y=1, x,y>0.

– Consider determining the maximum for
g(x) = log x + log (1-x)

• High school calculus: (note base of log WLOG is e)

– The only root of g’(x) = 1/x - 1/(1-x) is at x=1/2.

– For g’’(x)= -(1/x2 + 1/(1-x)2)) it holds that g’’(1/2)<0.

• Hence, f has its maximum at (½,½).

Case 2:

Hence, it holds that f(x,y)≤-2 for all x,y>0 with x+y≤1, which
implies the claim that r(u)+r’(w) ≤ 2(r’(u)-1), which was
equivalent to obtaining upper bound

3(r’(u)-r(u)).
04.11.2018 Chapter 3 54

Splay Operation

A B

C

u

v v

B

C D

w
zig-zig

D

w u

A
r(u)

r’(w)

r’(u)

04.11.2018 Chapter 3 55

Splay Operation

Case 3:

Amortized cost:

≤ 2+r’(u)+r’(v)+r’(w)-r(u)-r(v)-r(w)

≤ 2+r’(v)+r’(w)-2r(u) since r’(u)=r(w) and r(u)≤r(v)

≤ 2(r’(u)-r(u)) because…

zig-zag

A B C

v

u

D

w

v

A

B C

u

w

D

04.11.2018 Chapter 3 56

Splay Operation

Case 3:

…it holds that:

2+r’(v)+r’(w)-2r(u) ≤ 2(r’(u)-r(u))

⇔ 2r’(u)-r’(v)-r’(w) ≥ 2

⇔ r’(v)+r’(w) ≤ 2(r’(u)-1), which can be
shown to hold

zig-zag

A B C

v

u

D

w

v

A

B C

u

w

D

04.11.2018 Chapter 3 57

Splay Operation

Proof of Lemma 3.1: (Follow-up)

Induction over the sequence of rotations.

• r and tw : rank and weight before the rotation

• r’ und tw’: rank and weight after the rotation

• For every rotation (i.e. zig, zig-zig, or zig-zag), the

amortized cost is <= 1+3(r’(u)-r(u)) (case 1) resp. 3(r’(u)-

r(u)) (cases 2 and 3)

• Summation of the costs gives at most (x: root)

1 + Rotations 3(r’(u)-r(u)) = 1+3(r(x)-r(u))

– 1. Why do we only add 1 before the summation?

– 2. Why do we get a telescoping series above?

04.11.2018 Chapter 3 58

Splay Operation

• Tree weight of tree T with root x:
tw(x)= yT w(y)

• Rank of node x: r(x) = log(tw(x))

• Potential of tree T: (T) = xT r(x)

Lemma 3.1: Let T be a Splay tree with root x and u be a
node in T. The amortized cost for splay(u,T) is at most
1+3(r(x)-r(u)) = 1+3log(tw(x)/tw(u)).

Corollary 3.3: Let W=x w(x) and wi be the weight of key ki

in the i-th search call (recall we assume ki is in tree). For
m search operations, the amortized cost is O(m + i=1

m

log (W/wi)).

04.11.2018 Chapter 3 59

Splay Tree

Theorem 3.4: The runtime for m successful search
operations in a Splay tree T with n elements is at most

O(m+(m+n)log n).

Proof:

• Let w(x) = 1 for all nodes x in T.

• Then W=n and r(x) ≤ log W = log n for all x in T.

• For sequence F of operations, total runtime satisfies T(F)
≤ A(F) + (s0) for any amortized cost function A and any
initial state s0 (Recall: AX(s) := TX(s) + ((s´) - (s)))

• (s0) = xT r0(x) ≤ n log n

• Hence, Corollary 3.3 implies Theorem 3.4.

04.11.2018 Chapter 3 60

Splay Tree

Suppose we have a probability distribution for the search

requests, where each key in tree is searched for at least once.

• p(x) : probability of searching for key x

• H(p) = x p(x)log(1/p(x)) : entropy of p

Theorem 3.5: The expected runtime for m successful search
operations in a Splay tree T with n elements is at most

O(m(1+H(p))).

Proof: Follows from proof of Theorem 3.4 with w(x) = p(x) for all
x, and assuming each item x is searched for mp(x) times.

Note: This proof requires us to relax our requirement that the
potential function  is non-negative. Why?

04.11.2018 Chapter 3 61

Splay Tree

Something amazing:

For a fixed optimal Binary Search Tree where each key x in
tree is searched for with probability p(x), one can show
expected cost of a successful search is

Ω(H(p)) (entropy bound).

Our Theorem 3.5 says Splay Trees are almost optimal, in
that the cost per search scales as O(1+H(p))!

Note: 0<=H(p)<=logn

Question: How does this O(1+H(p)) support the idea that
Splay trees would be good for applications like caching?

04.11.2018 Chapter 3 62

Splay Tree

So far, we assumed all searches were successful, i.e. the
key we were searching for was in the tree.

Q1: Where in our analysis did this assumption play a role?

Q2: What if we consider the more general case of allowing
unsuccessful searches?

Splay Tree – Unsuccessful

Searches
• Instead of just successful searches, the Splay tree T

should also support the search for the closest

successor.

04.11.2018 Chapter 3 63

search(23):

1 3 10 14 285 19

1 5

3

14 28

19

10

∞

23[19,28):

• output 28

• splay(19)

23[10,14), 23>10

Splay Tree – Unsuccessful

Searches
• To obtain a low amortized time bound, we

associate with a key x in T the search range [x,x+)
(including x but excluding x+), where x+ is closest
successor of x in T.

• Each search range [x,x+) is associated with a
weight w([x,x+)). Using that, we can revise
Corollary 3.3 to:

Corollary 3.3’: Let W=x w(x) and wi be the weight of
the range [x,x+) containing the i-th search key. For
m search operations, the amortized cost is

O(m + i=1
m log (W/wi)).

04.11.2018 Chapter 3 64

04.11.2018 Chapter 3 65

Splay Tree Operations

Let T1 and T2 be two Splay trees with

key(x)<key(y) for all xT1 und yT2.

merge(T1,T2):

T1 T2 T’1 T2 T’1 T2

Take max. element x<∞ in T1 and splay it up to root

x x

∞

04.11.2018 Chapter 3 66

Splay Tree Operations

split(k,T): returns two trees as follows

T
T1 T2 T1 T2

k (or pred(k))

search(k):

causes splay(k)

or splay(pred(k))

>k

∞

04.11.2018 Chapter 3 67

Splay Tree Operations

insert(e):

• insert like in binary search tree

• Splay operation to move key(e) to the root

delete(k):

• execute search(k) (splays k to the root)

• remove root and execute merge(T1,T2) of
the two resulting subtrees

04.11.2018 Chapter 3 68

Splay Operations

• k-: closest predecessor k in T

• k+: closest successor >k in T

Theorem 3.6: The amortized cost of the following
operations in the Splay tree are:

• search(k): O(1+log(W/w([k-,k+))))

• insert(e): O(1+log(W/w([key(e),key(e)+))))

• delete(k): O(1+log(W/w([k,k+))) +
log((W-w([k,k+)))/w([k-,k))))

04.11.2018 Chapter 3 69

Search Trees

Problem: binary tree can degenerate!

Solutions:

• Splay tree
(very effective heuristic)

• (a,b)-tree
(guaranteed well balanced)

• hashed Patricia trie
(loglog-search time)

Applications

04.11.2018 Chapter 3 70

(a,b)-Trees

Problem: how to maintain balanced search
tree

Idea:

• All nodes v (except for the root) have
degree d(v) with a≤d(v)≤b, where a≥2
and b≥2a-1 (otherwise this cannot be
enforced)

• All leaves have the same depth

04.11.2018 Chapter 3 71

(a,b)-Trees

Formally: for a tree node v let

• d(v) be the number of children of v

• t(v) be the depth of v (root has depth 0)

• Form Invariant:
For all leaves v,w: t(v)=t(w)

• Degree Invariant:
For all inner nodes v
except for root: d(v)[a,b],
for root r: d(r)[2,b]
(as long as #elements >1)

04.11.2018 Chapter 3 72

(a,b)-Trees

Lemma 3.10: An (a,b)-tree with n elements
has depth at most 1+⌊loga (n/2)⌋

Proof:

• The root has degree ≥2 and every other

inner node has degree ≥a.

• At depth t there are at least 2at-1 nodes

• n≥2at-1⇔ t≤1+⌊loga(n/2)⌋

04.11.2018 Chapter 3 73

(a,b)-Trees

(a,b)-Tree-Rule:

Then search operation easy to implement.

s1, s2,…,sd-1

T1 T2 Td

. . . .

For all keys k in Ti and

k´ in Ti+1: k  si < k´

04.11.2018 Chapter 3 74

Search(9)

1 3 10 14 195 28 ∞

1 3 5 14 28

10 19

04.11.2018 Chapter 3 75

Insert(e) Operation

Strategy:

• First search(key(e)) until some e´ found in

the list. If key(e´)>key(e), insert e in front

of e´, otherwise replace e´ by e.

e´ ∞.

04.11.2018 Chapter 3 76

Insert(e) Operation

e´e ∞.

Strategy:

• First search(key(e)) until some e´ found in

the list. If key(e´)>key(e), insert e in front

of e´, otherwise replace e´ by e.

04.11.2018 Chapter 3 77

Insert(e) Operation

• Add key(e) and pointer to e in tree node v

which is parent of e´. If we still have

d(v)[a,b] after-wards, then we are done.

x zy. x zy.

… x z … … x y z …
v v

e e’ e e’

04.11.2018 Chapter 3 78

Insert(e) Operation

• If d(v)>b, then cut v into two nodes.

(Example: a=2, b=4)

x u‘u

x u u‘ y
v

… b z …
w

y z x u u‘ y z

x u‘ y

… b u z …

e e’ e e’

split

04.11.2018 Chapter 3 79

Insert(e) Operation

• If after splitting v, d(w)>b, then cut w into two

nodes (and so on, until all nodes have degree
≤b or we reached the root)

a b u z
w

… r s …

a u z

… r b s …

split

04.11.2018 Chapter 3 80

Insert(e) Operation

• If for the root v of T, d(v)>b, then cut v into two

nodes and create a new root node.

a b c d
v

a c d

b

split

04.11.2018 Chapter 3 81

Insert(8)

1 3 10 14 195 28 ∞

1 3 5 14 28

10 19

a=2, b=4

04.11.2018 Chapter 3 82

Insert(8)

1 3 10 14 195 28 ∞

1 3 5 8 14 28

10 19

a=2, b=4

8

04.11.2018 Chapter 3 83

Insert(8)

1 3 10 14 195 28 ∞

14 28

3 10 19

a=2, b=4

8

1 5 8

04.11.2018 Chapter 3 84

Insert(6)

1 3 10 14 195 28 ∞

14 28

3 10 19

a=2, b=4

8

1 5 8

04.11.2018 Chapter 3 85

Insert(6)

1 3 10 14 195

14

3 10 19

a=2, b=4

8

1 5 6 8

6

. . .

04.11.2018 Chapter 3 86

Insert(7)

1 3 10 14 195

14

3 10 19

a=2, b=4

8

1 5 6 8

6

. . .

04.11.2018 Chapter 3 87

Insert(7)

1 3 10 14 195

14

3 10 19

a=2, b=4

8

1 5 6 7 8

6

. . .

7

04.11.2018 Chapter 3 88

Insert(7)

1 3 10 14 195

14

3 6 10 19

a=2, b=4

8

1

6

. . .

7

5 7 8

04.11.2018 Chapter 3 89

Insert(7)

1 3 10 14 195

14

a=2, b=4

8

1

6

. . .

7

5 7 8

3 10 19

6

04.11.2018 Chapter 3 90

Insert Operation

• Form Invariant:
For all leaves v,w: t(v)=t(w)
Satisfied by Insert!

• Degree Invariant:
For all inner nodes v except for the root:
d(v)[a,b], for root r: d(r)[2,b]

1) Insert splits nodes of degree b+1 into nodes
of degree ⌊(b+1)/2⌋ and ⌈(b+1)/2⌉. If b≥2a-1,
then both values are at least a.

2) If root has reached degree b+1, then a new
root of degree 2 is created.

04.11.2018 Chapter 3 91

Delete(k) Operation

Strategy:

• First search(k) until some element e is

reached in the list. If key(e)=k, remove e

from the list, otherwise we are done.

e´ e ∞e´´.

04.11.2018 Chapter 3 92

Delete(k) Operation

e´ ∞e´´.

Strategy:

• First search(k) until some element e is

reached in the list. If key(e)=k, remove e

from the list, otherwise we are done.

04.11.2018 Chapter 3 93

Delete(k) Operation

• Remove pointer to e and key k from the leaf

node v above e. (e rightmost child: perform key

exchange like in binary tree!) If afterwards we
still have d(v)≥a, we are done.

x yk. x y.

… x k y … … x y …
v v

e

04.11.2018 Chapter 3 94

Delete(k) Operation

• Remove pointer to e and key k from the leaf

node v above e. (e rightmost child: perform key

exchange like in binary tree!) If afterwards we
still have d(v)≥a, we are done.

x y k. x y.

… x y … x
v v

e

… k … … y …

04.11.2018 Chapter 3 95

Delete(k) Operation

• If d(v)<a and the preceding or succeeding sibling

of v has degree >a, steal an edge from that

sibling. (Example: a=2, b=4)

x ry

v

s t x y r s t

u y t

y r s

u x t

x r s

04.11.2018 Chapter 3 96

Delete(k) Operation

• If d(v)<a and the preceding and succeeding

siblings of v have degree a, merge v with one of

these. (Example: a=3, b=5)

x ry

v

s t x y r s t

u t

x y r sx r s

u y t

merge

04.11.2018 Chapter 3 97

Delete(k) Operation

• Perform changes upwards until all inner

nodes (except for the root) have degree
≥a. If root has degree <2: remove root.

x y z x y z

04.11.2018 Chapter 3 98

Delete(10)

1 3 10 14 195 28 ∞

1 3 5 14 28

10 19

a=2, b=4

04.11.2018 Chapter 3 99

Delete(10)

1 3 14 195 28 ∞

14 28

5 19

a=2, b=4

1 3

04.11.2018 Chapter 3 100

Delete(14)

1 3 14 195 28 ∞

14 28

5 19

a=2, b=4

1 3

04.11.2018 Chapter 3 101

Delete(14)

1 3 195 28 ∞

28

5 19

a=2, b=4

1 3

04.11.2018 Chapter 3 102

Delete(14)

1 3 195 28 ∞

5 28

3 19

a=2, b=4

1

04.11.2018 Chapter 3 103

Delete(3)

1 3 195 28 ∞

5 28

3 19

a=2, b=4

1

04.11.2018 Chapter 3 104

Delete(3)

1 195 28 ∞

5 28

3 19

a=2, b=4

1

04.11.2018 Chapter 3 105

Delete(3)

1 195 28 ∞

5 28

1 19

a=2, b=4

04.11.2018 Chapter 3 106

Delete(3)

1 195 28 ∞

28

19

a=2, b=4

1 5

04.11.2018 Chapter 3 107

Delete(1)

1 195 28 ∞

28

19

a=2, b=4

1 5

04.11.2018 Chapter 3 108

Delete(1)

195 28 ∞

28

19

a=2, b=4

5

04.11.2018 Chapter 3 109

Delete(19)

195 28 ∞

28

19

a=2, b=4

5

04.11.2018 Chapter 3 110

Delete(19)

5 28 ∞

5

a=2, b=4

28

04.11.2018 Chapter 3 111

Delete(19)

5 28 ∞

a=2, b=4

5 28

04.11.2018 Chapter 3 112

Delete(19)

5 28 ∞

a=2, b=4

5 28

04.11.2018 Chapter 3 113

Delete Operation

• Form Invariant:
For all leaves v,w: t(v)=t(w)
Satisfied by Delete!

• Degree Invariant:
For all inner nodes v except for the root: d(v)[a,b], for
root r: d(r)[2,b]

1) Delete merges node of degree a-1 with node of
degree a. Since b2a-1, the resulting node has degree
at most b.

2) Delete moves edge from a node of degree >a to a
node of degree a-1. Also OK.

3) Root deleted: children have been merged, degree of
the remaining child is ≥a (and also ≤b), so also OK.

04.11.2018 Chapter 3 114

More Operations

• min/max Operation:

Pointers to both ends of list: time O(1).

• Range queries:

To obtain all elements in the range [x,y],

perform search(x) and go through the list

till an element >y is found.

Time O(log n + size of output).

04.11.2018 Chapter 3 115

n Update Operations

Theorem 3.11: There is a sequence of n

insert and delete operations in a (2,3)-tree

that require (n log n) many split and

merge Operations.

Proof: Exercise

04.11.2018 Chapter 3 116

n Update Operations

Theorem 3.12: Consider an (a,b)-tree with
b≥2a that is initially empty. For any

sequence of n insert and delete opera-

tions, only O(n) split and merge operations

are needed.

Proof:

Amortized analysis

04.11.2018 Chapter 3 117

External (a,b)-Tree

Internal memory (RAM)

External memory (harddisk)

block size B

size M

(a,b)-trees well suited for large amounts of data

04.11.2018 Chapter 3 118

External (a,b)-Tree

Problem: minimize number of block transfers between
internal and external memory

Solution:

• use b=B (block size) and a=b/2

• keep highest (1/2)loga(M/b) levels of (a,b)-tree in internal
memory (storage needed ≤ M)

• Lemma 3.10: depth of (a,b)-tree ≤1+⌊loga (n/2)⌋

• How many levels are not in internal memory?
loga[n/2] - (1/2)loga(M/b) ≤ loga[n/(2 M)] + O(1) (a, b are O(1))

• Cost for insert, delete and search operations:
O(logB(n/ M)) block transfers

04.11.2018 Chapter 3 119

External (a,b)-Tree

Problem: minimize number of block transfers between
internal and external memory

A better analysis can show (exercise):

• Cost for insert, delete and search operations:
~2logB/2(n/M)+1 block transfers (+1: list access)

Example:

• n = 100,000,000,000,000 keys

• M = 16 Gbyte (~4,000,000,000 keys)

• B = 256 Kbyte (~64,000 keys)

• 2logB/2(n/M)+13

04.11.2018 Chapter 3 120

Search Trees

Problem: binary tree can degenerate!

Solutions:

• Splay tree
(very effective heuristic)

• (a,b)-tree
(guaranteed well balanced)

• hashed Patricia trie
(loglog-search time)

Applications

04.11.2018 Chapter 3 121

Longest Prefix Search

• All keys are encoded as binary sequence {0,1}W

• Prefix of a key x∈{0,1}W: arbitrary subsequence
of x that starts with the first bit of x
(example: 101 is a prefix of 10110100)

Problem: given a key x∈{0,1}W, find a key y∈S
with longest common prefix

Solution: Trie Hashing

04.11.2018 Chapter 3 122

Trie

A trie is a search tree over some alphabet  that has the

following properties:

• Every edge is associated with a symbol c∈

• Every key x∈k that has been inserted into the trie can
be reached from the root of the trie by following the
unique path of length k whose edge labels result in x.

For simplicity: all keys from {0,1}W for some W∈ℕ.

Example:

(0,2,3,5,6) with W=3 results in (000,010,011,101,110)

04.11.2018 Chapter 3 123

Trie

Example: (without list at bottom)

0

1

1

0

0

0

10 1

1

0

000 010 011 101 110

04.11.2018 Chapter 3 124

Trie

search(4) (4 corresponds to 100):

0

1

1

0

0

0

10 1

1

0

000 010 011 101 110

Output: 5 (longest common prefix)

04.11.2018 Chapter 3 125

Trie

In general: a search(x) request follows the edges in the trie

as long as their labels form a prefix of x. Once no edge is

available any more to follow the bits in x, the request

may be forwarded to any leaf y in the subtrie below since

all of them have the same longest prefix match with x.

x

y

04.11.2018 Chapter 3 126

Trie

insert(1) (1 corresponds to 001):

0

1

1

0

0

0

10 1

1

0

000 010 011 101 110

1

001

04.11.2018 Chapter 3 127

Trie

In general: an insert(x) request follows the edges in the trie

as long as their labels form a prefix of x. Once no edge is

available any more to follow the bits in x, a new path (of

length the remaining bits in x) is created that leads to the

new leaf x.

x

04.11.2018 Chapter 3 128

Trie

delete(5):

0

1

1

0

0

0

10 1

1

0

000 010 011 101 110

1

001

04.11.2018 Chapter 3 129

Trie

In general: a delete(x) request follows the edges in the trie

down to the leaf x. If x does not exist, the delete

operation terminates. Otherwise, x as well as the chain

of nodes upwards till the first node with at least two

children is deleted.

x

04.11.2018 Chapter 3 130

Patricia Trie

Problem:
• Longest common prefix search for some x∈{0,1}W

can take (W) time.

• Insert and delete may require (W) structural
changes in the trie.

Improvement: use Patricia trie

A Patricia trie is a compressed trie in which all chains
(i.e., maximal sequences of nodes of degree 1) are
merged into a single edge whose label is equal to
the concatenation of the labels of the merged trie
edges.

04.11.2018 Chapter 3 131

Trie

Example 1:

0

1

1

0

0

0

10 1

1

0

000 010 011 101 110

04.11.2018 Chapter 3 132

Patricia Trie

Example 1:

00

1

1

0

01

0 1

10

000 010 011 101 110

04.11.2018 Chapter 3 133

Trie

Example 2:

0 1

0

0

0 1

000 010 011

04.11.2018 Chapter 3 134

Patricia Trie

Example 2:

00

1

0 1

000 010 011

root stores prefix 0

04.11.2018 Chapter 3 135

Patricia Trie

search(4):

00

1

1

0

01

0 1

10

000 010 011 101 110

04.11.2018 Chapter 3 136

Patricia Trie
In general: a search(x) request follows the edges in the

Patricia trie as long as their labels form a prefix of x.

Once no edge is available any more to follow the bits in

x, choose the current child c with longest common prefix.

Then, the request may be forwarded to any leaf y in the

subtrie rooted c at below since all of them have the same

longest prefix match with x.

x

y

c

04.11.2018 Chapter 3 137

Patricia Trie

insert(1):

00

1

1

0

01

0 1

10

000 010 011 101 110

0

0 1

001

04.11.2018 Chapter 3 138

Patricia Trie

Insert(5):

00

1

0 1

000 010 011 101

0

101

0

04.11.2018 Chapter 3 139

Patricia Trie

In general: an insert(x) request follows the edges in the

Patricia trie as long as their labels form a prefix of x.

Once an edge e is reached whose label l(e) does not

follow the bits in x, a new tree node is created in the

middle of e.

x

e

e´

x

e

x

e´´

04.11.2018 Chapter 3 140

Patricia Trie

In general: an insert(x) request follows the edges in the

Patricia trie as long as their labels form a prefix of x.

Once an edge e is reached whose label l(e) does not

follow the bits in x, a new tree node is created in the

middle of e.

Example: l(e)=10010, x=…10110100

e´

x

e

x

e´´

l(e´)=10

l(e´´)=010

l(e´´´)=110100
e´´´

04.11.2018 Chapter 3 141

Patricia Trie

In general: an insert(x) request follows the edges in the

Patricia trie as long as their labels form a prefix of x.

Once an edge e is reached whose label l(e) does not

follow the bits in x, a new tree node is created in the

middle of e.

Special case:

x

old root

e

x

old root

new roote

04.11.2018 Chapter 3 142

Patricia Trie

delete(5):

1

1

0

01

0 1

10

000 010 011 101 110

0

0 1

001

110

04.11.2018 Chapter 3 143

Patricia Trie

delete(6):

1

0

0 1

000 010 011 110

0

0 1

001

110

0

04.11.2018 Chapter 3 144

Patricia Trie

In general: a delete(x) request follows the edges in the

Patricia trie down to the leaf x. If x does not exist, the

delete operation terminates. Otherwise, x as well as its

parent are deleted.

Example: l(e´)=10, l(e´´)=010, l(e´´´)=110100,

x=…10110100

e´

x

e

e´´

l(e)=10010

e´´´

04.11.2018 Chapter 3 145

Patricia Trie

• Search, insert, and delete like in an

ordinary binary tree, with the difference

that we have labels at the edges.

• Search time still O(W) in the worst case,

but just O(1) structural changes.

04.11.2018 Chapter 3 146

Patricia Trie

• History:
– Invented independently by D. R. Morrison (1968) and

G. Gwehenberger (1968).

– Morrison called them „Patricia trees“, where
PATRICIA stands for Practical Algorithm To Retrieve
Information Coded in Alphanumeric.

– Patricia trees are also referred to as radix trees (with
radix 2).

Idea (Kniesburges and Scheideler, 2011):

• To improve search time in Patricia trie, we hash
the Patricia trie to some hash table.

Patricia Trie

Hashing to some hash table:

• Idea: Work over nodes rather than edges.

• Add labels to nodes: concatenation of edge labels from root

• Every node is hashed according to its node label.

• Then every Patricia node can directly be accessed via a HT-lookup
if its label is known.

04.11.2018 Chapter 3 147

0

10

010

g(010)

Hash table

Patricia Trie

Observation:

If one calls Search(x) when x is already in the
tree (i.e. there exists a node with label x in
tree), then a single lookup to the hashtable
suffices to solve Search(x). Easy!

But what if x is not in the tree? Need to find a
string in tree with largest matching prefix with
x. We henceforth assume this case.

04.11.2018 Chapter 3 148

Patricia Trie

Hashing to some hash table:

• Idea: Work over nodes rather than edges.

• Add labels to nodes: concatenation of edge labels from root

• Every node is hashed according to its node label.

Next idea: Use binary search over node labels via HT-lookups to find the
desired maximum prefix. This would run in time O(log W) instead of O(W)!

Problem: Max prefix is not necessarily attained at a node! (Why?)

04.11.2018 Chapter 3 149

Hash table

Patricia Trie
Hashing to some hash table:

• Idea: Work over nodes rather than edges.

• Add labels to nodes: concatenation of edge labels from root

• Every node is hashed according to its node label.

Solution: add extra „intermediate“ nodes, called msd-nodes.

04.11.2018 Chapter 3 150

Hash table

Solution: add msd-node () for each edge.

04.11.2018 Chapter 3 151

Patricia Trie Hashing

04.11.2018 Chapter 3 152

Patricia Trie Hashing

• |x|: length of a bit sequence x.

• b(v): label of node v.

• Recall: msd(f,f´) for two bit sequences f and f´ is most
significant bit (starting with position 0 from right) in which
f and f´ differ.

• Consider a bit sequence b with (xk,…,x0) being the
binary representation of |b|. Let b’ be a prefix of b.
The msd-sequence m(b’,b) of b’ and b is the prefix of b
of length l(|b|,j)=i=j

k xi 2i with j=msd(|b|,|b’|).

(Note: read the definition above carefully, noting the use
of parameters b’, b’, |b|, and |b’|.)

04.11.2018 Chapter 3 153

Patricia Trie Hashing

• |x|: length of a bit sequence x.

• b(v): label of node v.

• Recall: msd(f,f´) for two bit sequences f and f´ is most
significant bit (starting with position 0 from right) in which f
and f´ differ.

• Consider a bit sequence b with (xk,…,x0) being the binary
representation of |b|. Let b’ be a prefix of b.
The msd-sequence m(b’,b) of b’ and b is the prefix of b of
length l(|b|,j)=i=j

k xi 2i with j=msd(|b|,|b’|).

Example: Consider b=01101001010 and b’=011010.
Then |b|=10112, and |b’|=1102, i.e., msd(|b|,|b’|)=3. Hence,
l(|b|,j)=8 and m(b’,b)= 01101001.

Q: Why is msd used on |b| and |b‘|, instead of b and b‘?

Patricia Trie Hashing
Example: Consider b=01101001010 and b’=011010.

Then |b|=10112, and |b’|=1102, i.e., msd(|b|,|b’|)=3. Hence,
l(|b|,j)=8 and m(b’,b)= 01101001.

Since we will binary search over label lengths, the new msd
node is chosen to be of the „right length“ so as to help our binary
search find it as we go down the tree.

04.11.2018 Chapter 3 154

b´=011010

b=01101001010

m(b’,b) = 01101001

|b´| = 1 1 0

|b| = 1 0 1 1

j=msd(|b|,|b´|)

l(|b|,j) = 1 0 0 0 = 8

bit positions <j set

to 0, rest as in |b|

Patricia Trie Hashing

Another example:

04.11.2018 Chapter 3 155

b´: prefix of b, |b´|=36

b: string of length |b|=43

m(b’,b) is first 40 bits of b

|b´| = 1 0 0 1 0 0

|b| = 1 0 1 0 1 1

j=msd(|b|,|b´|)

l(|b|,j) = 1 0 1 0 0 0 = 40

bit positions <j set

to 0, rest as in |b|

04.11.2018 Chapter 3 156

Patricia Trie Hashing

Approach: We replace every edge e={v,w} in the

Patricia trie by two edges {v,u} and {u,w} with

b(u)=m(b(v),b(w)) and hash the labels on each

node to the hash table.

p

v

w

v

w

p1

p2

msd-node

of v and w

p1 ∘ p2 = p
u

04.11.2018 Chapter 3 157

Patricia Trie Hashing

Motivation for inserting msd-nodes: msd-node

placed at the position where binary search on

the node label length will look for the first time

for a node label of length between |b(v)| and

|b(w)|.

p

v

w

v

w

p1

p2

msd-node

of v and w

p1 ∘ p2 = p
u

Hash table

04.11.2018 Chapter 3 158

Patricia Trie Hashing

v

g(b(v))

p’

p

p p’

04.11.2018 Chapter 3 159

Patricia Trie Hashing

Data structure for longest prefix search:

Every hash entry of a tree node v stores:
1. Label b(v) of v (always e for the root!)
2. Key key(v) of an element e below the subtree of v,

if v is an original Patricia trie node. (As in splay tree,
allows us to directly jump to an element e in O(1) time.)

3. Labels px(v) of edges to children, x∈{0,1}
4. Label p-(v) of edge to parent (root: p-(v)=prefix to root)

Every hash entry of a list element e stores:
1. Key of e
2. Label p-(v) of edge to parent
3. Label of tree node storing key(e)

04.11.2018 Chapter 3 160

Patricia Trie Hashing

Example:

u

w

v

p0(u)=0010 p1(u)=10

p-(u)=101

b(u)=10110101key(u)=101101010010011

p1(v)=0

b(w)=1011010100100

b(v)=101101010010

04.11.2018 Chapter 3 161

Patricia Trie Hashing

k2

k1 k2 k3 k4 

Requirement: every tree node stores key of

exactly one element (possible with ).

k1

k3

k4

04.11.2018 Chapter 3 162

Patricia Trie Hashing

k2

k1 k2 k3 k4 

Invariant: the label of a tree node is a prefix of

the key stored in it.

k1

k3

k4

04.11.2018 Chapter 3 163

Patricia Trie Hashing

k2

k1 k2 k3 k4 

We first illustrate the structural changes for

insert and delete.

k1

k3

k4

04.11.2018 Chapter 3 164

Patricia Trie Hashing

k2

k1 k2 k3 k4 

Insert(e), key(e)=k5: like in binary search tree

k3

k4

k5

k5

k1

04.11.2018 Chapter 3 165

Patricia Trie Hashing

k2

k1 k2 k3 k4 

Delete(k3): like in binary search tree

k1

k3

k4

k2

04.11.2018 Chapter 3 166

Patricia Trie Hashing
Search(x): (W: power of two)

Phase 1: binary search on length of longest

matching prefix of x via msd-nodes to find „good

starting point“ for a brute force search (Phase 2)
0

W

W/2

3W/4

x y

04.11.2018 Chapter 3 167

Patricia Trie Hashing

Search(x): (W: power of two)

Phase 2: Do brute force traversal downward

y

x z

Output: y

z

y

Case 1:

(Stop at msd

Node)

End of Phase 1

04.11.2018 Chapter 3 168

Patricia Trie Hashing

Search(x): (W: power of two)

Phase 2: Do brute force traversal downward

y

x z

Output: z

z

y

Case 2:

(Stop at an

“original”

node)

End of Phase 1

04.11.2018 VADS - Kapitel 7 169

Patricia Trie Hashing

• Let x∈{0,1}W be represented by (x1,…,xW)

• Hash function: h:U→[0,1), Hash table: T

search(x):
// Easy case: x is already in tree
if key(T[h(x)])=x then return T[h(x)]
// Phase 1: binary search for x
s:=⌊log W⌋; k:=0; v:=T[h(e)]; p:=p-(v) ∘ px1

(v) // v: root of Patricia trie
while s >= 0 do

// is there node with label (x1,…,xk+2
s) ?

if (x1,…,xk+2
s) = b(T[h(x1,…,xk+2

s)]) // yes
then k:=k+2s; v:=T[h(x1,…,xk)]; p:= (x1,…,xk) ∘ pxk+1

(v)
else if (x1,…,xk+2

s) is prefix of p
// edge from v covers (x1,…,xk+2

s)
then k:=k+2s

s:=s-1
// end while – end of Phase 1 – continues next slide

04.11.2018 VADS - Kapitel 7 170

Patricia Trie Hashing

search(x): (continued from previous slide)
// Phase 1 stops at deepest node v with b(v)
being a prefix of (x1,…,xW)
// Phase 2: brute force to find correct max prefix
if pxk+1

(v) exists then

v:=T[h(b(v) ∘ pxk+1
(v))]

else

v:=T[h(b(v) ∘ pxk+1
(v))]

if v is msd-node then //jump to next original node

v:=T[h(b(v) ∘ p)] for bit sequence p out of v

return key(v)

04.11.2018 Chapter 3 171

Patricia Trie Hashing

Correctness of phase 1:

• Let p be largest common prefix of x and an
element y∈S and let |p|=(zk,…,z0)2.

• Patricia trie contains a route for prefix p

• Let v be last node on route till p

• Case 1: v is Patricia node

|p|0

v

Binary representation of |b(v)| has ones

at positions i1,i2,… (i1: maximal position)

04.11.2018 Chapter 3 172

Patricia Trie Hashing

Correctness of phase 1:

• Let p be largest common prefix of x and an
element y∈S and let |p|=(zk,…,z0)2.

• Patricia trie contains a route for prefix p

• Let v be last node on route till p

• Case 1: v is Patricia node

|p|0

v

msd-node must exist at 2i1,

will be found by binary search

|b(w)|<2i1

w

04.11.2018 Chapter 3 173

Patricia Trie Hashing

Correctness of phase 1:

• Let p be largest common prefix of x and an
element y∈S and let |p|=(zk,…,z0)2.

• Patricia trie contains a route for prefix p

• Let v be last node on route till p

• Case 1: v is Patricia node

|p|2i1

v

a) no msd-node at 2i1+2i2 : only if no
Patricia node u with 2i1<|b(u)|≤2i1+2i2,

but this can be recognized via pw

2i1+2i2

w pw u

04.11.2018 Chapter 3 174

Patricia Trie Hashing

Correctness of phase 1:

• Let p be largest common prefix of x and an
element y∈S and let |p|=(zk,…,z0)2.

• Patricia trie contains a route for prefix p

• Let v be last node on route till p

• Case 1: v is Patricia node

|p|2i1

v

b) msd-node at 2i1+2i2: is found by

binary search

<2i1+2i2

04.11.2018 Chapter 3 175

Patricia Trie Hashing

Correctness of phase 1:

• Let p be largest common prefix of x and an
element y∈S and let |p|=(zk,…,z0)2.

• Patricia trie contains a route for prefix p

• Let v be last node on route till p

• Case 1: v is Patricia node

|p|

v

j 2ij

and so on, till node v is found as the

last node of the binary search

04.11.2018 Chapter 3 176

Patricia Trie Hashing

Correctness of phase 1:

• Let p be largest common prefix of x and an
element y∈S and let |p|=(zk,…,z0)2.

• Patricia trie contains a route for prefix p

• Let v be last node on route till p

• Case 2: v is msd-node

|p|0

v

v will also be the last node of binary search

if it is an msd-node (argue like in case 1)

04.11.2018 Chapter 3 177

Patricia Trie Hashing

Number of HT accesses for longest prefix search:

• O(log W) HT-lookups, where W is key length

Number of HT accesses for insert:

• O(log W) HT-lookups

• O(1) HT-updates

Number of HT accesses for delete:

• O(1) HT-lookups (why not O(log W)?)

• O(1) HT-updates

Patricia Trie Hashing

Application: distributed storage system

Goal: minimize number of accesses to

servers for longest prefix match
04.11.2018 Chapter 3 178

1 3 5 14 1910

04.11.2018 Chapter 3 179

Distributed Storage System

Standard approach for exact search:

distributed hash table (DHT)

1 3 5 14 1910

hash function h

Chapter 5 180

Consistent Hashing

0 1

Data

Servers

g:U→[0,1)

h:V→[0,1)

Choose two random hash functions h, g

Region that server v is responsible for

v

d

Chapter 5 181

Consistent Hashing

• V: current set of servers

• succ(v): closest successor of v in V w.r.t. hash function h
(where [0,1) is viewed as a cycle)

• pred(v): closest predecessor of v in V w.r.t. h

Assignment rules:

• One copy per data item: server v stores all items d with
g(d)∈I(v), where I(v)=[h(v), h(succ(v))).

• k>1 copies per data item: d is stored in the above server
v and its k-1 closest successors w.r.t. h

Distributed Patricia Trie Hashing

04.11.2018 Chapter 3 182

v

g(b(v))

p’

p

0 1

04.11.2018 Chapter 3 183

Distributed Patricia Trie Hashing

Number of DHT accesses for longest prefix search:

• O(log W), where W is key length

Number of DHT accesses for insert:

• O(log W) for lookups

• O(1) for updates

Number of DHT accesses for delete:

• O(1) for lookups

• O(1) for updates

