Fundamental Algorithms

Chapter 2. Advanced Heaps

Sevag Gharibian

(based on slides of Christian Scheideler)

WS 2018

14.02.2019 Chapter 2

Ccontents

A heap implements a priority queue.
We will consider the following heaps:
* Binomial heap
* Fibonacci heap
* Radix heap

14.02.2019 Chapter 2

Priority Queue

14.02.2019 Chapter 2

Priority Queue

iInsert(10)

14.02.2019 Chapter 2

Priority Queue

min() outputs 3 (minimal element)

14.02.2019 Chapter 2

Priority Queue

deleteMin()

14.02.2019 Chapter 2

Priority Queue

decreaseKey(12,9) (note: 9 Is the offset)

14.02.2019 Chapter 2

Priority Queue

delete(15)

14.02.2019 Chapter 2

Priority Queue

D

merge(Q,Q’)

/\0

14.02.2019 Chapter 2

Priority Queue

M: set of elements In priority queue

Every element e identified by key(e).
Operations:

* M.build({e,,...,e.}): M:={e,,...,e.}

* M.insert(e: Element): M:=MuU{e}

* M.min: outputs eeM with minimal key(e)

* M.deleteMin: like M.min, but additionally
M:=M\{e}, for that e with minimal key(e)

14.02.2019 Chapter 2 10

Extended Priority Queue

Additional operations:

* M.delete(e: Element): M:=M\{e}

* M.decreaseKey(e:Element, A):
key(e):=key(e)-A

 M.merge(M"): M:=MUM’

Note: in delete and decreaseKey we have
direct access to the corresponding element
and therefore do not have to search for it.

14.02.2019 Chapter 2 11

Why Priority Queues?

« Sorting: Heapsort
» Shortest paths: Dijkstra’s algorithm
* Minimum spanning trees: Prim’s algorithm

» Job scheduling: EDF (earliest deadline
first)

14.02.2019 Chapter 2 12

Why Priority Queues?

Problem from the ACM International Collegiate Programming
Contest:

* A number whose only prime factors are 2,3,5 or 7 is called a
humble number. The sequence 1, 2, 3,4, 5,6, 7,8, 9, 10, 12,
14, 15, 16, 18, 20, 21, 24, 25, 27, ... shows the first 20 humble
numbers.

« Write a program to find and print the n-th element in this
sequence

Solution: use priority queue to systematically generate all
humble numbers, starting with queue just containing 1.
Repeatedly do:

¢« X:=M.deleteMin

* M.insert(2x); M.insert(3x); M.insert(5x), M.insert(7x)
(assumption: only inserts element if not already in queue)

14.02.2019 Chapter 2 13

Priority Queue

* Priority Queue based on unsorted list:
— build({e,,...,e,}): time O(n)
— insert(e): O(1)
— min, deleteMin: O(n)
* Priority Queue based on sorted array:
— build({e,,...,e,}): time O(n log n) (needed for sorting)
— insert(e): O(n) (rearrange elements in array)
— min, deleteMin: O(1)

Better structure needed than list or array!

14.02.2019 Chapter 2 14

Binary Heap

ldee: use binary tree instead of list

Preserve two Invariants:

* Form invariant.complete
pinary tree up to lowest

evel
* Heap Invariant:
key(e,)<min{key(e,),key(e,)} /" N\

14.02.2019 Chapter 2 15

Binary Heap

Example:

Heap invariant—,

o

14.02.2019 Chapter 2

16

Binary Heap

Representation of binary tree via array:

N
I
) () D G

\
(o) (o)

e, |le, | e;| e, | e | e | e, | eg| €

14.02.2019 Chapter 2

Binary Heap

Representation of binary tree via array:

e;|le, | e;|e, | e | e | e | eg| €

H: Array [1..N] of Element (N > #elements n)

Children of e in H[i]: in H[2]], H[2I+1]

Form invariant: H[1],...,H[n] occupied

Heap invariant: for all i€{2,...,n},
key(H[i])=key(H[[1/2]])

14.02.2019 Chapter 2

18

Binary Heap

Representation of binary tree via array:

7| € 0

€ | € | € s | € | €

Insert(e):

 Form invariant: n:=n+1; H[n]:=e

* Heap invariant: as long as e is in H[k] with
«>1 and key(e)<key(H[|k/2]]), switch e
with parent

14.02.2019 Chapter 2 19

Insert Operation

iInsert(e: Element):
n:=n+1; H[n]:=e
heapifyUp(n)

heapifyUp(i: Integer):
while i>1 and key(H[i])<key(H[|i/2]]) do
H[i] < HI[|i/2]]
1.=[1/2]

Runtime: O(log n)

14.02.2019 Chapter 2 20

Insert Operation - Correctness

@/@\ /@\
S

@@ @® D

Invariant: H[k] is minimal w.r.t. subtree of H[K]

() : nodes that may violate invariant

14.02.2019 Chapter 2 21

Insert Operation - Correctness

/@\ /®\
—
SO BOE®
Fwd e
Invariant: H[k] is minimal w.r.t. subtree of H[K]

() : nodes that may violate invariant

14.02.2019 Chapter 2 22

Insert Operation - Correctness

/@\ /®\
o O
ST e
SPEe Ay

Invariant: H[k] is minimal w.r.t. subtree of H[K]

() : nodes that may violate invariant

14.02.2019 Chapter 2 23

Insert Operation - Correctness

© 3
o @& e
e o

;D\ / \
SrEe g

Invariant: H[k] is minimal w.r.t. subtree of H[K]

() : nodes that may violate invariant

14.02.2019 Chapter 2 24

Binary Heap

deleteMin:
* Form invariant: H[1]:=H[n]; n:=n-1
* Heap Iinvariant: start with e in H|[1].

Switch e with the child with minimum key
until H[k]<min{H[2k],H[2k+1]} for the

current position k of e or e is in a leaf

14.02.2019 Chapter 2 25

Binary Heap

deleteMin(): Runtime: O(log n)
e:=H[1]; H[1]:=H[n]; n:=n-1
heapifyDown(1)
return e

heapifyDown(i: Integer):

while 2i<n do /[1is not a leaf position
If 2i+1>n then m:=2i // m: pos. of the minimum child
else

If key(H[2i])<key(H[2i+1]) then m:=2i
else m:=2i+1
If key(H[i])<key(H[m]) then return // heap inv. holds
H[i] « H[mM]; i:=m

14.02.2019 Chapter 2

deleteMin Operation - Correctness

/@ /

@/ @@d b @

Invariant: H[k] is minimal w.r.t. subtree of H[K]

() : nodes that may violate invariant

14.02.2019 Chapter 2 27

deleteMin Operation - Correctness

/ \

e
b e
SO

Invariant: H[k] is minimal w.r.t. subtree of H[K]

() : nodes that may violate invariant

14.02.2019 Chapter 2 28

deleteMin Operation - Correctness

@ /@\
s B @ e
@/ o

Invariant: H[k] is minimal w.r.t. subtree of H[K]

() : nodes that may violate invariant

14.02.2019 Chapter 2 29

Binary Heap

Naive implementation:
build({e,,...,e.}):

Call insert(e) n times.
Runtime O(n log n).

More careful implementation:
build({e,,...,e.}):

for i:=|n/2| downto 1 do
heapifyDown(i)

Fact (see A2): H(i) for [n/2|+1 <=1 <=n are leaves of heap

Runtime: Why should this be faster than O(n log n)?

14.02.2019 Chapter 2

30

Careful analysis

More careful implementation:
build({e4,...,e.}):

for 1:=|n/2| downto 1 do
heapifyDown(i)

Observation: Cost of heapifyDown(i) is O(h), for h
the height of the subtree rooted at H(i).

II—Ieifght(i): #edges on longest simple path from i to
ea

14.02.2019 Chapter 2 31

Careful analysis

puild{e,.,....e.}):

for i:=|n/2| downto 1 do
heapifyDown(i)

Facts for n-element heap:
1. Height(root)= |log(n)]
2. #nodes of height h < [n/2"*1]

Runtime (use fact Y. n, kx*=x/(1 — x)? for |x| < 1):

Tt | 0(h) = 0 22 = 0(n).

14.02.2019 Chapter 2

32

Binary Heap

Runtime:

* build({e,,...,e,}): O(n)
* Insert(e): O(log n)

* min: O(1)

* deleteMin: O(log n)

14.02.2019 Chapter 2

33

Extended Priority Queue

Additional Operations:

* M.delete(e: Element): M:=M\{e}
 M.decreaseKey(e:Element, A): key(e):=key(e)-A
« M.merge(M"): M:=MUM’

« delete and decreaseKey can be implemented
with runtime O(log n) in binary heap (if position
of e Is known)

* merge Is expensive (O(n) time)!

14.02.2019 Chapter 2 34

Ouch!

M.merge(M’): M:=MUM’

* merge Is expensive (O(n) time)!

* merging binary heaps M and M’ requires
,Starting from scratch®, i.e. building a new binary
heap containing all elements of M and M’

« Bad news If our application needs many merges.
Can we do better?

* Yes! Via Binomial Heaps.

14.02.2019 Chapter 2 35

Binomial Heap

Goal: Maintain costs of Binary Heaps, but
bring cost of merge from ®(n) to O(logn).

Binomial heap Is collection of binomial trees

So let us first define binomial trees!

14.02.2019 Chapter 2 36

Binomial Heap

Binomial trees:
 defined recursively for rank r

* Tree B, Is two trees B,_; linked together.

e Form Invariant:

r=0 r—r+l

1A

14.02.2019 Chapter 2

37

Binomial Trees

Examples of Binomial trees:

r=3

5

14.02.2019 Chapter 2 38

Binomial Trees

Properties of Binomial trees:

r=0 r=1 r—r+l
) i ﬁ/
« 2" nodes number of neighbors

* maximum degree r (at root)

 root deleted: Tree splits into Binomial trees
of rank O to r-1 (exactly one of each rank')

14.02.2019 Chapter 2

Binomial Trees

Example for decomposition into Binomial
trees of rank O to r-1 (exactly one per rank)

@ rank 3

ranks 2 0

14.02.2019 Chapter 2 40

Binomial Heap

Binomial trees:
 defined recursively for rank r

* Tree B, Is two trees B,_; linked together.

 Form invariant: = o =1 - r+1l

* Heap invariant: A

(key(Parent) <key(Children))

14.02.2019 Chapter 2

41

Binomial Heap

Binomial Heap:
* linked list of Binomial trees, ordered by ranks

« for each rank at most 1 Binomial tree
 pointer to root with minimal key (optional)

TR

numbers: ranks

14.02.2019 Chapter 2

42

Binomial Heap

Data type:

parent: binTree
prev: binTree
next: binTree
key: Integer
rank: Integer
Children: binTree

oA A /\
numbers: ranks

14.02.2019 Chapter 2 43

binTree;

Binomial Heap

Example of a correct Binomial heap:

min-pointer
o La

L

/

Binomial tree of
rank r=1

14.02.2019 apter 2

44

Binomial Heap

Example of a correct Binomial heap:

parent: L parent: L parent: L
L prev next «— prev next - > prev next le—
key: 9 rank: O key: 3 rank: 1 key: 4 rank: 3
children: L children: children:
} // !
v I
parent: parent: parent:
—> prev next <= = prev next «— prev next «—»
key:15 rank: 0 key:10 rank: O key: 6 rank: 1
children: L children: L children:

1

14.02.2019 Chapter 2 45

Binomial Heap

Question: How many times can a distinct rank appear between both trees? 2.

Merge of Binomial heaps H, and H.;:

é R Idea: binary addition
A :
ranks ! 10100100

A

A A H, + 101100
g A 11010000
14.02.2019 D 46

Example of Merge Operation

s)
.
— numbers denote

E n the ranks
M sur t the heap H,

iInvariant served
by the merging!
A

A A outcome

14.02.2019 Chapter 2 47

Binomial Heap

Runtime of merge operation: O(log n) because

 the largest rank in a Binomial heap with n elements at most log n
(see analogy with binary numbersg), and

« at most one Binomial tree is allowed for each rank value

B,;: Binomial tree of rank i
* Insert(e): merge existing heap with B, containing only element e
* min: use min-pointer, time O(1). (Without min-pointer, O(logn).)
» deleteMin: let the min-pointer point to the root of B..

In H, deleting the root of B, results in Binomial trees B,,...,B, ;

— Obs: Since B,,...,B,, have distinct ranks, can link them immediately to
make a temporary Binomial heap H'. Then merge H and H".

Remarks:
 insert and deleteMin reduce to merge, yielding runtime of O(log n).

 If using min-pointer, update min-pointer after insert and deleteMin.
Additive cost: O(log n).

14.02.2019 Chapter 2 48

Example of Insert Operation

Insert(8):

14.02.2019 Chapter 2

49

Example of Insert Operation

Insert(8):

14.02.2019 Chapter 2

50

Example of Insert Operation

Insert(8):

14.02.2019 Chapter 2

51

Example of Insert Operation

Outcome of Insert(8):

14.02.2019 Chapter 2

52

Binomial Heap

» decreaseKey(e,A): perform heapifyUp
operation in Binomial tree starting with e,
update min-pointer. Time: O(log n)

— Note: Does not change ranks, only keys, so
suffices to locally relabel nodes of tree
containing e.

 delete(e): reduce to deleteMin!

— call decreaseKey(e,-»), then deleteMin
Time: O(log n)

14.02.2019 Chapter 2 53

Example of decreaseKey

decreaseKey(24,19):

14.02.2019 Chapter 2

Example of decreaseKey

decreaseKey(24,19):

14.02.2019 Chapter 2

Example of decreaseKey

decreaseKey(24,19):

14.02.2019 Chapter 2

Example of decreaseKey

Outcome of decreaseKey(24,19):

14.02.2019 Chapter 2

Recall: Binomial Heap

Goal: Maintain costs of Binary Heaps, but
bring cost of merge from ®(n) to O(logn).

 Goal i1s achieved.

 But... can we do better?
 Yes, If we work with amortized costs.

14.02.2019 Chapter 2

58

Fibonacci Heap

» Goal: To bring amortized cost of
operations not involving deletion of an
element down to O(1).

* Price we pay: Fibonacci Heaps more
complicated to implement in practice, large
constants hidden in Big-Oh notation

14.02.2019 Chapter 2 59

Summary

Runtime Binomial Heap |Fibonacci Heap
Insert O(log n) O(1)

min O(1) O(1)

deleteMin O(log n) O(log n) amor.
delete O(log n) O(log n) amor.
merge O(log n) O(1)
decreaseKey |O(log n) O(1) amor.

14.02.2019

Chapter 2

60

Fibonacci Heap

« Based on Binomial trees, but it allows lazy
merge and lazy delete.

* Lazy merge: no merging of Binomial trees
of the same rank during merge, only
concatenation of the two lists

» Lazy delete: creates incomplete Binomial
trees

14.02.2019 Chapter 2 61

Fibonacci Heap

Tree in a Binomial heap:

(4)

14.02.2019 Chapter 2

62

Fibonacci Heap

Tree in a Fibonacci heap:

Every parent only
knows first and last

child of list Every child

knows Its
parent

List of siblings

14.02.2019 Chapter 2 63

Fibonacci Heap

Tree in a Fibonacci heap:

Data type fibTree: /
(7)—(6)—(10

parent: fibTree
prev: fibTree
next: fibTree @ @

key: Integer
rank: Integer

mark: {0,1}
Children: fibTree @

14.02.2019 Chapter 2

64

Fibonacci Heap

Lazy merge of

min

AA“A : égA

results in min
/
A /\ AN

14.02.2019 Chapter 2

65

Fibonacci Heap

Lazy delete:

14.02.2019 Chapter 2

66

Fibonacci Heap

Lazy delete:

20 11 /D
@ G@

Problem: “lazy” deletes O
(not deleteMin!) should not happen “too often”
without a cleanup step

wahddse new variablg, sk to keep track

For any node v in the Fibonacci heap:

Fibonaccl Heap

parent: fibTree

parent(v) points to the parent of v prev: fibTree
(lf V IS a root, then parent(V):J_) next: fibTree
prev(v) and next(v) connect v to its key: Integer
preceding and succeeding siblings rank: Integer
key(v) stores the key of v mark.{0,1}

- - Children: fibTree
rank(v) is equal to the number of children

of v

mark(v) stores whether v has lost a child from a lazy delete
(unless v is a root node, in which case where mark(x)=0)

Children(v) points to the first child in the childlist of v (this is
sufficient for the data structure, but for the formal presentation
of the Fibonacci heap we assume that v knows the first and
last child in its childlist)

14.02.2019 Chapter 2 68

Fibonaccl Heap

Fibonacci heap Is a list of Fibonacci trees
Fibonacci tree has to satisfy:

* Form invariant:
Every node of rank r has exactly r children.

* Heap invariant:
For every node v, key(v)<key(children of v).

The min-pointer points to the minimal key
among all keys in the Fibonacci heap.

14.02.2019 Chapter 2 69

Fibonacci Heap

Operations:

merge: concatenate root lists, update min-
ointer.
ime O(1)
Insert(x): add x as B, (with mark(i?:O) to root
list, update mln-pom?er. Time O(
mi_n(?_: output element that the min-pointer Is
pointing to. Time O(1)

deleteMin(), delete(x), decreaseKey(x,A): to be
determined...

14.02.2019 Chapter 2 70

Fibonacci Heap

deleteMin(): This operation will clean up the Fibonacci
heap. Let the min-pointer point to x.

Algorithm deleteMin():
* remove x from root list

 for every child c in child list of x, set parent(c):=L
and mark(c):=0 // mark not needed for root nodes

* Integrate child list of x into root list

* while =2 trees of the same rank i do
merge trees to a tree of rank i+1
(like with two Binomial trees)

* update min-pointer

14.02.2019 Chapter 2

Fibonacci Heap

Merging of two trees of rank |
(.e., root has | children):

I+1 children, thus rank i+1
i i ™~ Root with
smaller key

14.02.2019 Chapter 2 72

Fibonacci Heap

Efficient searching for roots of the same rank:

« Before executing the while-loop, scan all roots and store
them according to their rank in an array:

Rank: | 0

3|4,5|6|7]|8
« Merge like for Binomial trees starting with rank O until the
maximum rank has been reached (like binary addition)

2

:

14.02.2019 Chapter 2 73

Fibonacci Heap

|deas behind delete(x) operation:
* Like deleteMin(), except:

— Since node being deleted is potentially not a root, need to
use the mark variables now

— Each time a node v loses a second child, v is promoted to
a separate tree in the root list of the heap

— No “cleanup” or “consolidation step” based on ranks as for
deleteMin() is performed.

14.02.2019 Chapter 2 74

Fibonacci Heap

Algorithm delete(x):
If X Is min-root then deleteMin()
else
y.=parent(X)
delete x
for every child c in child list of x, set parent(c):=L and
mark(c):=0
add child list to root list
while y=NULL do // parent node of x exists
rank(y):=rank(y)-1 // one more child gone
If parent(y)=_ then return // y is root node: done
If mark(y)=0 then { mark(y):=1; return }
else // mark(y)=1, so one child already gone
X:=y; y.=parent(x)
move x with its subtree into the root list
parent(x):=_L; mark(x):=0 // roots do not need mark

14.02.2019 Chapter 2

75

Fibonacci Heap

Example for delete operations: (@ : mark=1)

14.02.2019 Chapter 2 76

Fibonacci Heap

Algorithm decreaseKey(x,A):
y.=parent(x)
move x with its subtree Into root list
E arent(x& NULL mark(x):=
ey(x).=key
update m|n omter ,
whlle yqtNU Ldo /I arent node of x exists
rank(y): —rankb{L i one more child gone

If parent en return //y IS root node: done
If mar ;)=0 then mark(y 1, return }
else mark(y) , SO one child already gone

y; y:=parent(x)
move X With its subtree into the root list
parent(x):=NULL
mark(x):=0 // roots do not need mark

14.02.2019 Chapter 2 77

Fibonacci Heap

Runtime:
« deleteMin(): O(max. rank + #tree mergings)

» delete(x): O(max. rank + #cascading cuts)
l.e., #relocated marked nodes

« decreaseKey(x,A): O(1 + #cascading cuts)
We will see: runtime of deleteMin can reach

®(n), but on average over a sequence of
operations much better (even in the worst case).

14.02.2019 Chapter 2 78

Amortized Analysis

Consider a sequence of n operations on an
initially empty Fibonacci heap.

« Sum of individual worst case costs too high!
« Average-case analysis does not mean much

» Better: amortized analysis, i.e., average cost of
operations in the worst case (i.e., a sequence of
operations with overall maximum runtime)

14.02.2019 Chapter 2 79

Amortized Analysis

Recall:

Theorem 1.5: Let S be the state space of a
data structure, s, be its initial state, and let
0:S—R., be a non-negative function. Given
an operation X and a state s with s = s™ , we
define

Ax(S) = Tx(s) + (9(S') - ¥(8));

Then the functions A, (s) are a family of
amortized time bounds.

14.02.2019 Chapter 2 80

Amortized Analysis

~or Fibonacci heaps we will use the
potential function
bal(s).= #trees + 2-#marked nodes In

in state s /

node v marked: mark(v)=1

But: Before we do amortized analysis, useful to
understand ranks and sizes of subtrees in heap.

14.02.2019 Chapter 2 81

Fibonacci Heap

Lemma 2.1: Let x be a node in the Fibonacci heap with
rank(x)=k. Let the children of x be sorted in the order

In which they were added below x. Then the rank of
the i-th child is =i-2.

Proof:
* When the i-th child is added, rank(x)=I-1.

* Only step which can add i-th child is “consolidation
step” of deleteMin. Thus, the i-th child must have
also had rank i-1 at this time.

o Afterwards, the i-th child loses at most one of its
children, i.e., its rank is =i-2. (Why?)

14.02.2019 Chapter 2 82

Fibonacci Heap

Theorem 2.2: Let x be a node in the Fibonacci
heap with rank(x)=k. Then the subtree with root
x contains at least F,,, elements, where F, is the
k-th Fibonacci number.

Definition of Fibonacci numbers:

- Fp=0and F, =1

* F.=F +F ., forall k>1

One can prove: F,,., =1+ >._XF,.

14.02.2019 Chapter 2 83

Fibonacci Heap

Proof of Theorem 2.2:

 Let f, be the minimal number of elements
In a tree of rank k.

* From Lemma 2.1 we get: ~

f, > f o+ o+ .+ + 1+ 1\ -

1. child

* Moreover, f,=1 and f,=2

* |t follows from the Fibonacci numbers:
T = Frao

14.02.2019 Chapter 2

84

Fibonacci Heap

e Itis known that F,,, > ®“*2 with

O=(1+V5)/2 = 1,618034

* Hence, a tree of rank k in the Fibonacci
heap contains at least 1,612 nodes.

* Therefore, a Fibonacci heap with n
elements contains trees of rank at most
O(log n) (like in a Binomial heap)

14.02.2019 Chapter 2

85

Fibonacci Heap

- t: time for operation |

» pal;: value of bal(s) after operation |
(bal(s) = #trees + 2-#marked nodes)

° a;: amortized runtime of operation |
a; =t + Abal, with Abal, = bal-bal, ;

Amortized runtime of operations:
 Insert: (=0(1) and Abal=+1, so a=0(1)
 merge: t=0(1) and Abal=0, so a=0(1)

— #trees before merge = total #trees in both heaps
 min: t=0(1) and Abal=0, so a=0(1)

14.02.2019 Chapter 2

86

Fibonacci Heap

Let H; denote the heap after operation I.

Theorem 2.3: The amortized runtime of deleteMin() is O(log n).

Proof:
« Actual cost: t; = O(rank(x) + #trees(H;_;)). Why?
— Move children of x to separate trees in heap: O(rank(x))
— Consolidate O(rank(x) + #trees(H;_,)) trees: O(rank(x) +
#trees(H;_1))
— Update min-pointer: O(rank(x) + #trees(H;_1))
— Theorem 2.2 says rank(x) = O(logn)

« Potential function before deleteMin():
— bal, = #trees(H;_1) + 2#markednodes(H;_,) (by def.)
— bal, < 0(logn) + 2#markednodes(H;_1). Why?
 deleteMin() can only unmark nodes

« Consolidation step creates heap with unigue root ranks.
Theorem 2.2 implies #trees(H;_1) < O(logn).

« Amortized cost: a; = t; + bal; — bal;,_; = 0(logn).

14.02.2019 Chapter 2 87

Fibonacci Heap

Theorem 2.4: Amortized runtime of delete(x) is O(log n).
Proof: (x is not the min-element — otherwise like Th. 2.3)

* |nsertion of child list of x into root list:
Abal < rank(x)

« Every cascading cut (i.e., relocation of a marked node)
Increases the number of trees by 1.
Abal = #cascading cuts

« Every cascading cut removes one marked node:
Abal = -2-#cascading cuts

« The last cut possibly introduces a new marked node:
Abal € {0,2}

14.02.2019 Chapter 2 88

Fibonacci Heap

Theorem 2.4: The amortized runtime of delete(x) Is
O(log n).

Proof:

« Altogether:
Abal; < rank(x) - #cascading cuts + O(1)
= O(log n) - #cascading cuts
because of Theorem 2.2
* Real runtime (in appropriate time units):
[, = O(log n) + #cascading cuts
« Amortized runtime:
a; = t; + Abal, = O(log n)

14.02.2019 Chapter 2

89

Fibonacci Heap

Thm 2.5: Amortized runtime of decreaseKey(x,A) is O(1).
Proof:

« Every cascading cut increases the number of trees by 1.
Abal = #cascading cuts

« Every cascading cut removes a marked node:
Abal < -2-#cascading cuts

« The last cut possibly creates a new marked node:
Abal € {0,2}

« Altogether: Abal;, = - #cascading cuts + O(1)
e Real runtime: [= #cascading cuts + O(1)
* Amortized runtime: a, =t + Abal, = O(1)

14.02.2019 Chapter 2 90

Summary

Runtime Binomial Heap |Fibonacci Heap
Insert O(log n) O(1)

min O(1) O(1)

deleteMin O(log n) O(log n) amor.
delete O(log n) O(log n) amor.
merge O(log n) O(1)
decreaseKey |O(log n) O(1) amor.

14.02.2019

Chapter 2

91

Summary

Great, but... can we do better?

Yes... if we're willing to make assumptions
about the Iinput

14.02.2019 Chapter 2

92

Radix Heap

Assumptions:

1. At all times, maximum key — minimum
key <= constant C. (Think of fixed
architecture, like 32-bit ints.)

2. Insert(e) only inserts elements e with
key(e)=K.., (K., minimum key).

The priority queue we implement is called a
“monotone” priority queue, i.e. top-priority
element’s key monotonically increases.

14.02.2019 Chapter 2

93

Radix Heap

ldea:
Define K = |log C].

Two integers x and y s.t. |x — y| < € < 2 must
agree on all bits after (i.e. more significant than) K.

Thus: suffices to keep track of first K bit positions.

14.02.2019 Chapter 2 94

Radix Heap

Let B[-1..K] be array of lists B[-1] to B[K], where
K = [log C].

-1,0]1) 2 K

° e

Invariant: Each e stored in B[msd(k,,,,,key(e))]
* msd(k...key(e)):

— most significant bit for which binary representations of k.
and key(e) differ (-1: no difference)

— If k., = —oco (heap empty), msd returns -1.

14.02.2019 Chapter 2 95

Radix Heap

Example for msd(k,,k):

* letk. ,=17,orin binary form, 10001

« k=17: msd(k,,,K)=-1

* k=18:In binary 10010, so msd(k,..k)=1
* k=21:In binary 10101, so msd(k,.,k)=2
» k=52:1In binary 110100, so msd(k,k)=5

Computation of msd for a=Db:
msd(a,b)=[log(a®b)]
where @ denotes bit-wise xor.

Time: O(1) (with appropriate machine instruction set)

14.02.2019 Chapter 2 96

Radix Heap

1|2

3 S

min():
e output k.. In B[-1]
Runtime: O(1)

14.02.2019 Chapter 2

97

Radix Heap

insert(e): (key(e)=k,)
o ii=msd(K,.key(e))

e store e in BJl]
Runtime: O(1)

delete(e): (key(e)>k,,,, otherwise call deleteMin())
« Remove e from its list BJj]
Runtime: O(1) (assuming have pointer to e)

decreaseKey(e,A): (key(e) - A = Kk, , A>0)
« call delete(e) and insert(e) with key(e):=key(e) - A
Runtime: O(1)

14.02.2019 Chapter 2

98

Radix Heap

deleteMin():

If B[-1] Is unoccupied, heap is empty, we are done
else, remove some e from B[-1]

find minimal | so that B[i]=© (if there is no such i or i=-1
then we are done)

determine k., In BJi]
distribute nodes in B[i] among B[-1],...,B[i-1] w.r.t. the
new K.,

Question: What about the bins BJj] for j>1? Do their

elements need to be moved as well?

14.02.2019 Chapter 2 99

Radix Heap

Claim: In deleteMin(), after we distribute nodes in BJi]
among Bl[-1],...,B[i-1] w.r.t. the new k., all nodes e in
B[j],]>1 do not have to be moved, i.e. msd(k,,..key(e))=].

Proof:

« Assume the new min elementis to be drawn from BJ[i].

» By def, B[i] agrees with (the old) k., on all bits > i, but
disagrees on Dbit I.

 Similarly, Blj] for j>I agrees with k ;. on all bits > |, but
disagrees on Dbit |.

« By transitivity, BJ[i], B[j] hence agree on all bits > |, and
they disagree on bit |.

« Thus, msd(B[i],B[j]) =].

14.02.2019 Chapter 2 100

We consider a sequence of deleteMin operations

14.02.2019

Radix Heap

-1 11234 38
I L I
2 4119 260
L I
5|11 381
L
6 | |14

Chapter 2

101

We consider a sequence of deleteMin operations

14.02.2019

Radix Heap

-1 11234 38
I L I
9 11 | | 14 260
I
381

Chapter 2

102

Radix Heap

In illustration, all elements in new minimal list BJi]
were moved (when i>=0) with each deleteMin()
call. Let's prove this holds!

Lemma 2.6: Let B[i] be the minimal non-empty list,
I>0. Let x,;, be the minimal key in Bli]. Then
msd(X,,i,,x)<I for all keys x in BJi].

Proof:
« Consider any x In BJl].
* If x=x,,: x placed in B|-1], so claim holds.

 What if x+#x,,?

14.02.2019 Chapter 2 103

Radix Heap

more significant bits

bit position: i €« 0
Old kmln a 0
)Xmm>kmm
Xmin a 1 "\
) X, X 0 B[]
X a 1 /

« By assumption, k... , X, , X agree on all bits after K.
* Since x, X, In B[l], they agree on hits i to K.

* Thus, msd(X,;,X)<I.
14.02.2019 Chapter 2 104

 Lemma 2.6: Let B[i] be the minimal non-empty list, i=0.

Radix Heap

Let X, be the minimal key in BJi]. Then msd(x,,,,x)<i for
all keys x in B[i].

-1

0

1

2

K

Consequence:

°

- Each element can be moved at most K times (due to
deleteMin or decreaseKey operations)

:

 Insert(): amortized runtime O(K)=0(log C).

(i.e. When an item is inserted, it ,pays up front® for later potentially
needing to be moved K times)

14.02.2019

Chapter 2

105

Summary

Runtime Fibonacci Heap |Radix Heap
Insert O(1) O(log C) amor.
min O(1) O(1)
deleteMin O(log n) amor. |O(1) amor.
delete O(log n) amor. |O(1)

merge O(1) ?7?7?
decreaseKey |O(1) amor. O(1)

14.02.2019

Chapter 2

106

Extended Radix Heap

Assumptions:

1. At all times, maximum key — minimum
key <= constant C. (Think of fixed
architecture, like 32-bit ints.)

5 &) only. | "

The priority queue we implement is called a
“monotone” priority queue, i.e. top-priority

element’'s key monotonically increases.
14.02.2019 Chapter 2 107

Extended Radix Heap

-1/ 0 (1

2 K
At least one é %

“normal”
element in -1

super elements at the end

(O : “super element” e contains a Radix heap with

K.in=key(e) where k., IS the smallest value In the
Radix heap of e and B_[-1] has =1 "normal” element.

Note: super elements may contain super elements

14.02.2019 Chapter 2 108

Extended Radix Heap

Example:

@

G =

14.02.2019 Chapter 2 109

Extended Radix Heap

Further detalls:

1 1

« Everylistis 84) é
doubly-linked.

* “Normal” elements are (added)

at the front of the list, super-
elements in the back.

« The first element of each list
points to the Radix heap it
belongs to.

14.02.2019 Chapter 2

3|
1

110

Extended Radix Heap

Merge of two extended Radix heaps B
and B with k...(B) < k...(B"):
(Case k.,.(B) > k,(B") : flip Band B")
 transform B’ into a super element e with
key(e) - kmin(B,)
 call insert(e) on B
Runtime: O(1)

14.02.2019 Chapter 2 111

Extended Radix Heap

Example of a merge operation:

; e

-110(1]2 3] ...]K

I I

14.02.2019 Chapter 2 112

Extended Radix Heap

Insert(e):

- key(e)=k.,,: as in standard Radix heap

* else, merge extended Radix heap with a
new Radix heap just containing e

Runtime: O(1)

min(): like in a standard Radix heap (note -1
bucket has at least one "normal” element)

Runtime: O(1)

14.02.2019 Chapter 2 113

Extended Radix Heap

deleteMin():

 Remove normal element e from BJ-1]
(B: Radix heap at highest level, i.e. “top” heap)

 If B[-1] does not contain any elements, then
update B like in a standard Radix heap (i.e.,
dissolve smallest non-empty bucket Bli])

ot contain normal elements any

more, then take-the first super element e’ from
B[-1] and merge thedists of e’ with B

(then there i again a noxmal element in B[-1]!)

Runtime: O(log C) + time for updates

14.02.2019 Chapter 2 114

Extended Radix Heap

deleteMin():
11011123]...|K
% @ ©
@
0 2 |3 K
123 K

110
merge Radix heap of @
into top Radix heap

-1
14.02.2019 Chapter 2

115

Extended Radix Heap

deleteMin():

14.02.2019

-1

0

1] 2

IOl

Chapter 2

G~

116

Extended Radix Heap

delete(e):

Case 1: key(e)>k,,, for heap of e:

 like delete(e) in a standard Radix heap

Case 2: key(e)=k,,, for heap of e:

« if eisin “top” Radix heap, proceed like deleteMin()
« Else, e is in Radix heap of super element e’:

— If €’ Is afterwards empty, then remove e’ from heap B’
containing €’

— If the minimum key in e’ has changed, then move €' to its
correct bin in B’

Since there is a normal element in B’[-1], both cases have no
cascading effects! (don’t have to recurse upwards)

Runtime: O(log C) + time for updates

14.02.2019 Chapter 2 117

Extended Radix Heap

-1
@
1|0

;élZB....K &

delete(10):

%{

14.02.2019 Chapter 2 118

®

Extended Radix Heap

delet6(10)3 1lo0l1l213|.... 1K
? ®
@)
1/0[1]2]|3 K
1101|213 K
dDd‘SD ® 4
0123 K

o -

14.02.2019 Chapter 2 119

Extended Radix Heap

delete(10):

14.02.2019 Chapter 2 120

Extended Radix heap

decreaseKey(e,A): [precondition: key(e) - A>=Kk ;.]
« call delete(e) in heap of e

« setkey(el: (e)-A

« call insert(e) on " Radix heap

Runtime: O(log C) + time for updates

Amortized analysis: similar to Radix heap

« eachtime a normal element e is inserted, the potential is increased
by K+pos(e) (to compensate for pos(e) left moves of itself and a
right move of its superelement e if it is removed as the minimum
element in the Radix heap of e)

« eachtime a superelement e is inserted, the potential is increased by
K+pos(e) (to compensate for pos(e) left moves and the merging of
up to K lists in its Radix heap if it is removed from B[-1] in deleteMin)

14.02.2019 Chapter 2 121

Summary

Runtime Radix heap ext. Radix heap
Insert O(log C) amor. |O(log C) amor.
min O(1) O(1)

deleteMin O(1) amor. O(1) amor.
delete O(1) O(1) amor.
merge 277 O(log C) amor.
decreaseKey | O(1) O(log C) amor.

14.02.2019 Chapter 2 122

Ccontents

* Binomial heap
* Fibonacci heap
* Radix heap

* Applications

14.02.2019 Chapter 2 123

Shortest Paths

N

oy vy w

. -

Central question: Determine fastest way to get from s to t.

14.02.2019 Chapter 2 124

Shortest Paths

Cost of p:
c(p)=1+2+5=8

d(s,v): distance from s to v

o no path fromstov

disv)= . e
min{ c(p) | p is a path from s to v}

\. J
14.02.2019 Chapter 2 125

Dijkstra's Algorithm

Consider the single source shortest path problem
(SSSP), I.e., find the shortest path from a source
s to all other nodes, in a graph with arbitrary
non-negative edge costs.

W

Basic idea behind Dijkstra’s Algorithm:
visit nodes In the order of their distance from s

14.02.2019 Chapter 2 126

Dijkstra's Algorithm

* Initially, set d(s):=0 and d(v):=« for all other nodes. Use
a priority queue ¢ in which the priorities represent the
current distances d(v) from s. Add s to g.

* Repeat until g is empty:

— Remove node v with lowest d(v) from ¢ (via
deleteMin).
— For all (v,w)eE,
e set d(w) := min{d(w), d(v)+c(v,w)}. If w is already in
g, this needs a decreaseKey operation. Else, if w
was never in g, insert w into g.

14.02.2019 Chapter 2 127

Dijkstra's Algorithm

Example: (@ : current, @ : done)

1
2 '@ 1
2 \
1

4
‘™
(-
i 3 5 . A’

14.02.2019 Chapter 2 128

Dijkstra's Algorithm

Procedure Dijkstra(s: Nodeld)
d=<oo,..., o> NodeArray of RU{-o0,x}
parent=<41,...,1>: NodeArray of Nodeld
d[s]:=0; parent[s].=s
g=<s>: NodePQ
while g #<> do
u.=q.deleteMin() // u: node with min distance
foreach e=(u,v)cE do
If d[v] > d[u]+c(e) then // update d[v]
If d[v]=cc then g.insert(v) // vin q?
parent|v]:=u
// d[v] set to d[u]+c(e)
g.decreaseKey(v, d[v]-(d[u]+c(e)))

14.02.2019 Chapter 2 129

Dijkstra's Algorithm

« Assume input graph has n nodes, m edges
* Top(n): runtime of operation Op on data structure
with n elements

each vertex added/removed precisely once
: each time we traverse an edge
Runtime: / J

TDijkstra = O(n(TDeIeteMin(n)+T|nsert(n)) T m'TdecreaseKey(n))

Binary heap: all operations have runtime O(log n), so
TDijkstra - O((m+n)|og n)

Fibonacci heap: amortized runtimes
TDeIeteMin(n):Tlnsert(n):O(Iog n)

: TdecreaseKey(n):O(l)
* Therefore, Ty, = O(N log N+ m)

14.02.2019 Chapter 2 130

Dijkstra's Algorithm

Remark: Dijkstra’s Algorithm does not need a
general priority queue but only a monotonic
priority queue (i.e., labels are distances, which
are monotonically decreasing!)

If all edge costs are integer values in [0,C], use a
Radix heap. Its amortized runtimes are

: “Deletel\/lin(n):TdecreaseKey(n):O(l)
: “Insert(n)zo(log C)

* Thus in this case, Ty, = O(nlog C + m)

14.02.2019 Chapter 2 131

Minimal Spanning Tree

Problem: Which edges do | need to take In
order to connect all nodes at the lowest
possible cost?

14.02.2019 Chapter 2 132

Minimal Spanning Tree

Input:
* Undirected graph G=(V,E)
 Edge costs c.E—> R,

Output:

« Subset T<E so that the graph (V,T) is connected
and c(T)=>_._; c(e) is minimal

- T always forms a tree (if c Is positive).

 Tree over all nodes in V with minimum cost:
minimal spanning tree (MST)

14.02.2019 Chapter 2 133

Prim’s Algorithm

Procedure Prim(s: Nodeld)
d=<o0,..., 00>: NodeArray of RU{-o0,0}
parent=<41,...,1>: NodeArray of Nodeld
d[s]:=0; parent[s].=s
g=<s>: NodePQ
while g #<> do
u.=q.deleteMin() // u: node with min distance
foreach e=(u,v)cE do
If d[v] > c(e) then // update d[v]
If d[v]=co then qg.insert(v) // vin g?
parent[v].=u
// d[v] set to c(e)
g.decreaseKey(v, d[v]-c(e))
store e along with v

14.02.2019 Chapter 2 134

Prim’s Algorithm

* Assume input graph has n nodes, m edges
* Top(n): runtime of operation Op on data structure
with n elements

Runtime:
TPrim - O(n(TDeIeteMin(n)+T|nsert(n)) T m'TdecreaseKey(n))

Binary heap: all operations have runtime O(log n), so
TPrim - O((m+n)|og n)

Fibonacci heap: amortized runtimes

: TDeIeteMin(n):Tlnsert(n):O(Iog n)

: TdecreaseKey(n):O(l)

* Therefore, T.,,, = O(nlog n + m)

14.02.2019 Chapter 2 135

Prim’s Algorithm

Can we use Radix heap? (does a monotone
priority queue suffice?)

14.02.2019 Chapter 2 136

Next Chapter

Topic: Search structures

14.02.2019 Chapter 2 137

