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Contents

A heap implements a priority queue.

We will consider the following heaps:

• Binomial heap

• Fibonacci heap

• Radix heap
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Priority Queue
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Priority Queue
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Priority Queue
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Priority Queue
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Priority Queue
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Priority Queue
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Priority Queue
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Priority Queue

M: set of elements in priority queue

Every element e identified by key(e).

Operations:

• M.build({e1,…,en}): M:={e1,…,en}

• M.insert(e: Element): M:=M∪{e}

• M.min: outputs e∈M with minimal key(e)

• M.deleteMin: like M.min, but additionally
M:=M∖{e}, for that e with minimal key(e)
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Extended Priority Queue

Additional operations:

• M.delete(e: Element): M:=M∖{e}

• M.decreaseKey(e:Element, ): 
key(e):=key(e)-

• M.merge(M´): M:=M∪M´

Note: in delete and decreaseKey we have
direct access to the corresponding element
and therefore do not have to search for it.



Why Priority Queues?

• Sorting: Heapsort

• Shortest paths: Dijkstra´s algorithm

• Minimum spanning trees: Prim´s algorithm

• Job scheduling: EDF (earliest deadline

first)
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Why Priority Queues?

Problem from the ACM International Collegiate Programming 
Contest:

• A number whose only prime factors are 2,3,5 or 7 is called a 
humble number. The sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 
14, 15, 16, 18, 20, 21, 24, 25, 27, ... shows the first 20 humble 
numbers.

• Write a program to find and print the n-th element in this 
sequence

Solution: use priority queue to systematically generate all 
humble numbers, starting with queue just containing 1. 
Repeatedly do:

• x:=M.deleteMin

• M.insert(2x); M.insert(3x); M.insert(5x), M.insert(7x)
(assumption: only inserts element if not already in queue)
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Priority Queue

• Priority Queue based on unsorted list:

– build({e1,…,en}): time O(n)

– insert(e): O(1) 

– min, deleteMin: O(n)

• Priority Queue based on sorted array:

– build({e1,…,en}): time O(n log n)  (needed for sorting)

– insert(e): O(n)    (rearrange elements in array)

– min, deleteMin: O(1)

Better structure needed than list or array!
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Binary Heap

Idee: use binary tree instead of list

Preserve two invariants:

• Form invariant:complete

binary tree up to lowest 

level

• Heap invariant: e1

e2 e3

key(e1)≤min{key(e2),key(e3)}
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Binary Heap

Example:

4

8 5

11 9 12 18

15 17
Form invariant

Heap invariant
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Binary Heap

Representation of binary tree via array:

e1

e2 e3

e4 e5 e6 e7

e8 e9

e1 e2 e3 e4 e5 e6 e7 e8 e9e3
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Binary Heap

Representation of binary tree via array:

• H: Array [1..N] of Element   (N  #elements n)

• Children of e in H[i]: in H[2i], H[2i+1]

• Form invariant: H[1],…,H[n] occupied

• Heap invariant: for all i{2,…,n},

key(H[i])key(H[⌊i/2⌋])

e1 e2 e3 e4 e5 e6 e7 e8 e9e3
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Binary Heap

Representation of binary tree via array:

insert(e):

• Form invariant: n:=n+1; H[n]:=e

• Heap invariant: as long as e is in H[k] with
k>1 and key(e)<key(H[⌊k/2⌋]),  switch e
with parent

e1 e2 e3 e4 e5 e6 e7 e8 e9e3 e10
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Insert Operation

insert(e: Element):
n:=n+1; H[n]:=e
heapifyUp(n)

heapifyUp(i: Integer):
while i>1 and key(H[i])<key(H[⌊i/2⌋]) do

H[i] ↔ H[⌊i/2⌋]
i:=⌊i/2⌋

Runtime: O(log n)
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Insert Operation - Correctness

3

5 8

10 9 12 15

11 18

Invariant: H[k] is minimal w.r.t. subtree of H[k]

: nodes that may violate invariant 
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5 8

10 9 12 15

11 18 4
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Insert Operation - Correctness

3

5 8

10 9 12 15

11 18 4
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Invariant: H[k] is minimal w.r.t. subtree of H[k]

: nodes that may violate invariant 
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Insert Operation - Correctness

3

5 8

10 4 12 15

11 18 9

3

4 8

10 5 12 15

11 18 9

Invariant: H[k] is minimal w.r.t. subtree of H[k]

: nodes that may violate invariant 
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Insert Operation - Correctness

3

4 8

10 5 12 15

11 18 9
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11 18 9

Invariant: H[k] is minimal w.r.t. subtree of H[k]

: nodes that may violate invariant 



14.02.2019 Chapter 2 25

Binary Heap

deleteMin:

• Form invariant: H[1]:=H[n]; n:=n-1

• Heap invariant: start with e in H[1].

Switch e with the child with minimum key 
until H[k]≤min{H[2k],H[2k+1]} for the 

current position k of e or e is in a leaf

e1 e2 e3 e4 e5 e6 e7 e8 e9e3
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Binary Heap

deleteMin():
e:=H[1]; H[1]:=H[n]; n:=n-1
heapifyDown(1)
return e

heapifyDown(i: Integer):
while 2in do  // i is not a leaf position

if 2i+1>n then m:=2i  // m: pos. of the minimum child
else

if key(H[2i])<key(H[2i+1]) then m:=2i
else m:=2i+1

if key(H[i])key(H[m]) then return  // heap inv. holds
H[i] ↔ H[m]; i:=m

Runtime: O(log n)
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deleteMin Operation - Correctness
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Invariant: H[k] is minimal w.r.t. subtree of H[k]

: nodes that may violate invariant 
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deleteMin Operation - Correctness
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Invariant: H[k] is minimal w.r.t. subtree of H[k]

: nodes that may violate invariant 
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deleteMin Operation - Correctness
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Invariant: H[k] is minimal w.r.t. subtree of H[k]

: nodes that may violate invariant 
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Binary Heap

Naive implementation:

build({e1,…,en}):

• Call insert(e) n times. 

• Runtime O(n log n).

More careful implementation:

build({e1,…,en}):

for i:=⌊n/2⌋ downto 1 do
heapifyDown(i)

• Fact (see A2): H(i) for ⌊n/2⌋+1 <= i <=n are leaves of heap

• Runtime: Why should this be faster than O(n log n)?
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Careful analysis

More careful implementation:

build({e1,…,en}):

for i:=⌊n/2⌋ downto 1 do
heapifyDown(i)

Observation: Cost of heapifyDown(i) is O(h), for h 
the height of the subtree rooted at H(i).

Height(i): #edges on longest simple path from i to 
leaf
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Careful analysis

build({e1,…,en}):

for i:=⌊n/2⌋ downto 1 do
heapifyDown(i)

Facts for n-element heap:
1. Height(root)= ⌊log(n)⌋

2. #nodes of height h ≤ 𝑛/2ℎ+1

Runtime (use fact σ𝑘=0
∞ 𝑘𝑥𝑘= Τ𝑥 (1 − 𝑥)2 for 𝑥 ≤ 1): 

σℎ=0
log(𝑛) 𝑛

2ℎ+1
𝑂 ℎ = 𝑂(𝑛σℎ=0

log(𝑛) ℎ

2ℎ
)= 𝑂(𝑛).
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Binary Heap

Runtime:

• build({e1,…,en}): O(n)

• insert(e): O(log n)

• min: O(1)

• deleteMin: O(log n)
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Extended Priority Queue

Additional Operations:

• M.delete(e: Element): M:=M∖{e}

• M.decreaseKey(e:Element, ): key(e):=key(e)-

• M.merge(M´): M:=M∪M´

• delete and decreaseKey can be implemented 

with runtime O(log n) in binary heap (if position 

of e is known) 

• merge is expensive ((n) time)!
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Ouch!

• M.merge(M´): M:=M∪M´

• merge is expensive ((n) time)!

• merging binary heaps M and M‘ requires 

„starting from scratch“, i.e. building a new binary 

heap containing all elements of M and M‘

• Bad news if our application needs many merges. 

Can we do better? 

• Yes! Via Binomial Heaps.
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Binomial Heap

Goal: Maintain costs of Binary Heaps, but 

bring cost of merge from (n) to O(logn).

Binomial heap is collection of binomial trees

So let us first define binomial trees!
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Binomial Heap

Binomial trees: 

• defined recursively for rank r

• Tree 𝐵𝑟 is two trees 𝐵𝑟−1 linked together.

• Form invariant:

r=0 r=1 r → r+1

r

r
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Binomial Trees

Examples of Binomial trees:

4 4

10

4

106

8

4

106

8

7

1120

24

r=0 r=1 r=2 r=3
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Binomial Trees

Properties of Binomial trees:

• 2r nodes

• maximum degree r (at root)

• root deleted: Tree splits into Binomial trees 
of rank 0 to r-1 (exactly one of each rank!)

r=0 r=1 r → r+1

r

r

number of neighbors
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Binomial Trees

Example for decomposition into Binomial 

trees of rank 0 to r-1 (exactly one per rank)

4

106

8

7

1120

24

rank 3

ranks       2         1          0
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Binomial Heap

Binomial trees: 

• defined recursively for rank r

• Tree 𝐵𝑟 is two trees 𝐵𝑟−1 linked together.

• Form invariant:

• Heap invariant:
(key(Parent)≤key(Children))

r=0 r=1 r → r+1

r

r
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Binomial Heap

Binomial Heap:

• linked list of Binomial trees, ordered by ranks

• for each rank at most 1 Binomial tree

• pointer to root with minimal key (optional)

2
4

5
7

9

numbers: ranks



Binomial Heap

14.02.2019 Chapter 2 43

Data type:

2
4

5
7

9

numbers: ranks

parent: binTree

prev: binTree

next: binTree

key: Integer

rank: Integer

Children: binTree

binTree:
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Binomial Heap

Example of a correct Binomial heap:

4

106

8

7

1120

24

9 3

15

min-pointer

Binomial tree of

rank r=1
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Binomial Heap

Example of a correct Binomial heap:

parent: 

prev next

key: 9  rank: 0

children: 

…

…

parent: 

prev next

key: 3  rank: 1

children:

parent: 

prev next

key:15 rank: 0

children: 

parent: 

prev next

key: 4  rank: 3

children:

parent: 

prev next

key:10 rank: 0

children: 

parent: 

prev next

key: 6  rank: 1

children:
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Binomial Heap

Merge of Binomial heaps H1 and H2:

2

5
7

2
3

5

4
6

7

H1

H2

10100100

+  101100

11010000

Idea: binary addition

ranks

Question: How many times can a distinct rank appear between both trees? 2.
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Example of Merge Operation

2

5

2
3

5

7

H1

H2

3
6

4

Make sure that the heap 

invariant is preserved

by the merging!

outcome

numbers denote

the ranks
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Binomial Heap
Runtime of merge operation: O(log n) because
• the largest rank in a Binomial heap with n elements at most log n

(see analogy with binary numbers), and
• at most one Binomial tree is allowed for each rank value

Bi: Binomial tree of rank i
• insert(e): merge existing heap with B0 containing only element e
• min: use min-pointer, time O(1). (Without min-pointer, O(logn).)
• deleteMin: let the min-pointer point to the root of Bi.

In H, deleting the root of Bi results in Binomial trees B0,…,Bi-1.
– Obs: Since B0,…,Bi-1 have distinct ranks, can link them immediately to 

make a temporary Binomial heap H‘. Then merge H and H‘.

Remarks:
• insert and deleteMin reduce to merge, yielding runtime of O(log n).
• If using min-pointer, update min-pointer after insert and deleteMin. 

Additive cost: O(log n).



Example of Insert Operation
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11

9 3

15

Insert(8):

&
8



Example of Insert Operation
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4

106

11

9

3

15

Insert(8):

&
8



Example of Insert Operation
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4

106

11 9

3

15

Insert(8):

&

8



Example of Insert Operation
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Outcome of Insert(8):

3

158

9

4

106

11
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Binomial Heap

• decreaseKey(e,): perform heapifyUp
operation in Binomial tree starting with e, 
update min-pointer. Time: O(log n)

– Note: Does not change ranks, only keys, so 
suffices to locally relabel nodes of tree 
containing e.

• delete(e): reduce to deleteMin!

– call decreaseKey(e,-), then deleteMin
Time: O(log n)



Example of decreaseKey

decreaseKey(24,19):
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8

7

1120

24

9 3

15



Example of decreaseKey

decreaseKey(24,19):
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4

106

8

7

1120

5

9 3

15



Example of decreaseKey

decreaseKey(24,19):
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4

106

8

7

11

20

5

9 3

15



Example of decreaseKey

Outcome of decreaseKey(24,19):
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4

106

8

5

117

20

9 3

15
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Recall: Binomial Heap

Goal: Maintain costs of Binary Heaps, but 

bring cost of merge from (n) to O(logn).

• Goal is achieved.

• But... can we do better?

• Yes, if we work with amortized costs.
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Fibonacci Heap

• Goal: To bring amortized cost of 

operations not involving deletion of an 

element down to O(1).

• Price we pay: Fibonacci Heaps more 

complicated to implement in practice, large 

constants hidden in Big-Oh notation
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Summary

Runtime Binomial Heap Fibonacci Heap

insert O(log n) O(1)

min O(1) O(1)

deleteMin O(log n) O(log n) amor.

delete O(log n) O(log n) amor.

merge O(log n) O(1)

decreaseKey O(log n) O(1) amor.
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Fibonacci Heap

• Based on Binomial trees, but it allows lazy 

merge and lazy delete.

• Lazy merge: no merging of Binomial trees 

of the same rank during merge, only 

concatenation of the two lists

• Lazy delete: creates incomplete Binomial 

trees
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Fibonacci Heap

Tree in a Binomial heap:

4

106

8

7

1120

24
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Fibonacci Heap

Tree in a Fibonacci heap:

4

106

8

7

1120

24
List of siblings

Every parent only 

knows first and last 

child of list Every child

knows its

parent
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Fibonacci Heap

Tree in a Fibonacci heap:

4

106

8

7

1120

24

Data type fibTree:

parent: fibTree

prev: fibTree

next: fibTree

key: Integer

rank: Integer

mark: {0,1}

Children: fibTree
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Fibonacci Heap

Lazy merge of

results in

2

5

2
3

57

&

2

5

2
3

5
7

min

min
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Fibonacci Heap

Lazy delete:

4

106

8

7

1120

24
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Fibonacci Heap

Lazy delete:

4

106

8
Problem: “lazy” deletes 

(not deleteMin!) should not happen “too often” 

without  a cleanup step 

→ use new variable mark to keep track

1120

24



Fibonacci Heap

For any node v in the Fibonacci heap:

• parent(v) points to the parent of v
(if v is a root, then parent(v)=)

• prev(v) and next(v) connect v to its
preceding and succeeding siblings

• key(v) stores the key of v

• rank(v) is equal to the number of children
of v

• mark(v) stores whether v has lost a child from a lazy delete 
(unless v is a root node, in which case where mark(x)=0)

• Children(v) points to the first child in the childlist of v  (this is 
sufficient for the data structure, but for the formal presentation 
of the Fibonacci heap we assume that v knows the first and 
last child in its childlist)
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parent: fibTree

prev: fibTree

next: fibTree

key: Integer

rank: Integer

mark: {0,1}

Children: fibTree
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Fibonacci Heap

Fibonacci heap is a list of Fibonacci trees

Fibonacci tree has to satisfy:

• Form invariant:

Every node of rank r has exactly r children.

• Heap invariant:
For every node v, key(v)≤key(children of v).

The min-pointer points to the minimal key

among all keys in the Fibonacci heap.
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Fibonacci Heap

Operations:
• merge: concatenate root lists, update min-

pointer. 
Time O(1)

• insert(x): add x as B0 (with mark(x)=0) to root 
list, update min-pointer. Time O(1)

• min(): output element that the min-pointer is 
pointing to. Time O(1)

• deleteMin(), delete(x), decreaseKey(x,): to be 
determined…
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Fibonacci Heap

deleteMin(): This operation will clean up the Fibonacci 
heap. Let the min-pointer point to x.

Algorithm deleteMin():
• remove x from root list
• for every child c in child list of x, set parent(c):=

and mark(c):=0  // mark not needed for root nodes
• integrate child list of x into root list
• while ≥2 trees of the same rank i do

merge trees to a tree of rank i+1
(like with two Binomial trees)

• update min-pointer
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Fibonacci Heap

Merging of two trees of rank i

(i.e., root has i children):

i i
Root with

smaller key

i+1 children, thus rank i+1



14.02.2019 Chapter 2 73

Fibonacci Heap

Efficient searching for roots of the same rank:

• Before executing the while-loop, scan all roots and store 
them according to their rank in an array:

• Merge like for Binomial trees starting with rank 0 until the 
maximum rank has been reached (like binary addition)

0 21 3 4 5 6 7 8Rank:
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Fibonacci Heap

Ideas behind delete(x) operation:

• Like deleteMin(), except:
– Since node being deleted is potentially not a root, need to 

use the mark variables now

– Each time a node v loses a second child, v is promoted to 
a separate tree in the root list of the heap

– No “cleanup” or “consolidation step” based on ranks as for 
deleteMin() is performed.
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Fibonacci Heap

Algorithm delete(x):
if x is min-root then deleteMin()
else

y:=parent(x)
delete x
for every child c in child list of x, set parent(c):= and 
mark(c):=0
add child list to root list  
while y≠NULL do      // parent node of x exists 

rank(y):=rank(y)-1  // one more child gone
if parent(y)= then return // y is root node: done
if mark(y)=0 then { mark(y):=1; return }
else       // mark(y)=1, so one child already gone

x:=y; y:=parent(x)
move x with its subtree into the root list
parent(x):=; mark(x):=0  // roots do not need mark
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Fibonacci Heap

Example for delete operations:  (    : mark=1)
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Fibonacci Heap

Algorithm decreaseKey(x,):
y:=parent(x)
move x with its subtree into root list
parent(x):=NULL; mark(x):=0
key(x):=key(x)-
update min-pointer
while y≠NULL do      // parent node of x exists 

rank(y):=rank(y)-1  // one more child gone
if parent(y)=NULL then return // y is root node: done

if mark(y)=0 then { mark(y):=1; return }
else    // mark(y)=1, so one child already gone

x:=y; y:=parent(x)
move x with its subtree into the root list
parent(x):=NULL
mark(x):=0  // roots do not need mark



14.02.2019 Chapter 2 78

Fibonacci Heap

Runtime:

• deleteMin(): O(max. rank + #tree mergings)

• delete(x): O(max. rank + #cascading cuts)
i.e., #relocated marked nodes

• decreaseKey(x,): O(1 + #cascading cuts)

We will see: runtime of deleteMin can reach 
(n), but on average over a sequence of 
operations much better (even in the worst case).
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Amortized Analysis

Consider a sequence of n operations on an 

initially empty Fibonacci heap.

• Sum of individual worst case costs too high!

• Average-case analysis does not mean much

• Better: amortized analysis, i.e., average cost of 
operations in the worst case (i.e., a sequence of 
operations with overall maximum runtime)
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Amortized Analysis

Recall:

Theorem 1.5: Let S be the state space of a 
data structure, s0 be its initial state, and let
:S→ℝ≥0 be a non-negative function. Given 
an operation X and a state s with s → s´ , we 
define

AX(s) := TX(s) + ((s´) - (s)).

Then the functions AX(s) are a family of 
amortized time bounds. 

X
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Amortized Analysis

For Fibonacci heaps we will use the 

potential function

bal(s):= #trees + 2#marked nodes in

in state s

But: Before we do amortized analysis, useful to 

understand ranks and sizes of subtrees in heap.

node v marked: mark(v)=1
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Fibonacci Heap

Lemma 2.1: Let x be a node in the Fibonacci heap with 
rank(x)=k. Let the children of x be sorted in the order 
in which they were added below x. Then the rank of 
the i-th child is ≥i-2.

Proof:

• When the i-th child is added, rank(x)=i-1.

• Only step which can add i-th child is “consolidation 
step” of deleteMin. Thus, the i-th child must have 
also had rank i-1 at this time.

• Afterwards, the i-th child loses at most one of its 
children, i.e., its rank is ≥i-2. (Why?)
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Fibonacci Heap

Theorem 2.2: Let x be a node in the Fibonacci 

heap with rank(x)=k. Then the subtree with root 

x contains at least Fk+2 elements, where Fk is the 

k-th Fibonacci number.

Definition of Fibonacci numbers:

• F0 = 0 and F1 = 1

• Fk = Fk-1+Fk-2 for all k>1

One can prove: Fk+2 = 1 + i=1
k Fi .
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Fibonacci Heap

Proof of Theorem 2.2:

• Let fk be the minimal number of elements 

in a tree of rank k.

• From Lemma 2.1 we get:
fk ≥ fk-2+fk-3+…+f0 + 1 + 1

• Moreover, f0=1 and f1=2

• It follows from the Fibonacci numbers:
fk ≥ Fk+2

1. child

root
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Fibonacci Heap

• It is known that Fk+2 > k+2 with

=(1+   5 )/2 ≈ 1,618034

• Hence, a tree of rank k in the Fibonacci 

heap contains at least 1,61k+2 nodes.

• Therefore, a Fibonacci heap with n

elements contains trees of rank at most 

O(log n) (like in a Binomial heap)
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Fibonacci Heap

• ti: time for operation i

• bali: value of bal(s) after operation i
(bal(s) = #trees + 2#marked nodes)

• ai: amortized runtime of operation i
ai = ti + bali with bali = bali-bali-1

Amortized runtime of operations:

• insert: t=O(1) and bal=+1, so a=O(1)

• merge: t=O(1) and bal=0, so a=O(1)
– #trees before merge = total #trees in both heaps

• min: t=O(1) and bal=0, so a=O(1)
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Fibonacci Heap
Let 𝐻𝑖 denote the heap after operation i.

Theorem 2.3: The amortized runtime of deleteMin() is O(log n).
Proof:
• Actual cost: 𝑡𝑖 = 𝑂(𝑟𝑎𝑛𝑘 𝑥 + #𝑡𝑟𝑒𝑒𝑠 𝐻𝑖−1 ). Why?

– Move children of x to separate trees in heap: O(rank(x))
– Consolidate 𝑂(𝑟𝑎𝑛𝑘 𝑥 + #𝑡𝑟𝑒𝑒𝑠 𝐻𝑖−1 ) trees: 𝑂(𝑟𝑎𝑛𝑘 𝑥 +
#𝑡𝑟𝑒𝑒𝑠 𝐻𝑖−1 )

– Update min-pointer: 𝑂(𝑟𝑎𝑛𝑘 𝑥 + #𝑡𝑟𝑒𝑒𝑠 𝐻𝑖−1 )
– Theorem 2.2 says 𝑟𝑎𝑛𝑘 𝑥 = 𝑂 𝑙𝑜𝑔𝑛

• Potential function before deleteMin(): 
– bali-1= #𝑡𝑟𝑒𝑒𝑠(𝐻𝑖−1) + 2#𝑚𝑎𝑟𝑘𝑒𝑑𝑛𝑜𝑑𝑒𝑠(𝐻𝑖−1) (by def.)
– bali ≤ 𝑂(𝑙𝑜𝑔𝑛) + 2#𝑚𝑎𝑟𝑘𝑒𝑑𝑛𝑜𝑑𝑒𝑠(𝐻𝑖−1). Why?

• deleteMin() can only unmark nodes
• Consolidation step creates heap with unique root ranks. 

Theorem 2.2 implies #𝑡𝑟𝑒𝑒𝑠(𝐻𝑖−1) ≤ 𝑂(𝑙𝑜𝑔𝑛).
• Amortized cost: 𝑎𝑖 = 𝑡𝑖 + 𝑏𝑎𝑙𝑖 − 𝑏𝑎𝑙𝑖−1 = 𝑂 𝑙𝑜𝑔𝑛 .
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Fibonacci Heap

Theorem 2.4: Amortized runtime of delete(x) is O(log n).

Proof: (x is not the min-element – otherwise like Th. 2.3)

• Insertion of child list of x into root list: 
bal ≤ rank(x)

• Every cascading cut (i.e., relocation of a marked node) 
increases the number of trees by 1:
bal = #cascading cuts

• Every cascading cut removes one marked node: 
bal = -2#cascading cuts

• The last cut possibly introduces a new marked node:
bal  {0,2}
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Fibonacci Heap

Theorem 2.4: The amortized runtime of delete(x) is 
O(log n).

Proof:

• Altogether:
bali  rank(x) - #cascading cuts + O(1)

= O(log n) - #cascading cuts
because of Theorem 2.2

• Real runtime (in appropriate time units): 
ti = O(log n) + #cascading cuts

• Amortized runtime:
ai = ti + bali = O(log n)
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Fibonacci Heap

Thm 2.5: Amortized runtime of decreaseKey(x,) is O(1).

Proof:

• Every cascading cut increases the number of trees by 1:
bal = #cascading cuts

• Every cascading cut removes a marked node: 
bal ≤ -2#cascading cuts

• The last cut possibly creates a new marked node: 
bal  {0,2}

• Altogether:          bali = - #cascading cuts + O(1)

• Real runtime:            ti = #cascading cuts + O(1)

• Amortized runtime:  ai = ti + bali = O(1)
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Summary

Runtime Binomial Heap Fibonacci Heap

insert O(log n) O(1)

min O(1) O(1)

deleteMin O(log n) O(log n) amor.

delete O(log n) O(log n) amor.

merge O(log n) O(1)

decreaseKey O(log n) O(1) amor.
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Summary

Great, but… can we do better?

Yes… if we’re willing to make assumptions 

about the input
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Radix Heap

Assumptions:

1. At all times, maximum key – minimum 

key <= constant C. (Think of fixed 

architecture, like 32-bit ints.)

2. Insert(e) only inserts elements e with 
key(e)≥kmin (kmin: minimum key). 

The priority queue we implement is called a 

“monotone” priority queue, i.e. top-priority 

element’s key monotonically increases.
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Radix Heap

Idea:

Define 𝐾 = log 𝐶 .

Two integers x and y s.t. 𝑥 − 𝑦 ≤ 𝐶 ≤ 2𝐾 must 

agree on all bits after (i.e. more significant than) K.

Thus: suffices to keep track of first K bit positions.
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Radix Heap

Let B[-1..K] be array of lists B[-1] to B[K], where

𝐾 = log𝐶 . 

Invariant: Each e stored in B[msd(kmin,key(e))]

• msd(kmin,key(e)):
– most significant bit for which binary representations of kmin

and key(e) differ (-1: no difference)

– If kmin = −∞ (heap empty), msd returns -1.

-1 0 1 2 …. K
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Radix Heap

Example for msd(kmin,k):

• let kmin=17, or in binary form, 10001

• k=17: msd(kmin,k)=-1

• k=18: in binary 10010, so msd(kmin,k)=1

• k=21: in binary 10101, so msd(kmin,k)=2

• k=52: in binary 110100, so msd(kmin,k)=5

Computation of msd for a≠b: 
msd(a,b)=⌊log(a⊕b)⌋

where ⊕ denotes bit-wise xor.

Time: O(1) (with appropriate machine instruction set)
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Radix Heap

min():

• output kmin in B[-1]

Runtime: O(1)

-1 0 1 2 …. K
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Radix Heap

insert(e): ( key(e)≥kmin )

• i:=msd(kmin,key(e))

• store e in B[i]

Runtime: O(1)

delete(e): (key(e)>kmin, otherwise call deleteMin() )

• Remove e from its list B[j]

Runtime: O(1) (assuming have pointer to e)

decreaseKey(e,): ( key(e) -  ≥ kmin , >0)

• call delete(e) and insert(e) with key(e):=key(e) - 

Runtime: O(1)
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Radix Heap

deleteMin():

• if B[-1] is unoccupied, heap is empty, we are done

• else, remove some e from B[-1]

• find minimal i so that B[i]≠∅ (if there is no such i or i=-1
then we are done)

• determine kmin in B[i]

• distribute nodes in B[i] among B[-1],…,B[i-1] w.r.t. the 
new kmin

Question: What about the bins B[j] for j>i? Do their 
elements need to be moved as well?
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Radix Heap

Claim: In deleteMin(), after we distribute nodes in B[i]
among B[-1],…,B[i-1] w.r.t. the new kmin, all nodes e in 
B[j], j>i do not have to be moved, i.e. msd(kmin,key(e))=j.

Proof:

• Assume the new min element is to be drawn from B[i].

• By def, B[i] agrees with (the old) kmin on all bits > i, but 
disagrees on bit i. 

• Similarly, B[j] for j>i agrees with kmin on all bits > j, but 
disagrees on bit j.

• By transitivity, B[i], B[j] hence agree on all bits > j, and 
they disagree on bit j.

• Thus, msd(B[i],B[j]) =j.
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Radix Heap

-1

2

0

5

1

4

2

6

3

9

4

381

5 6 7 8

260

14

11

We consider a sequence of deleteMin operations
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Radix Heap

-1 0 1 2 3

9

4

381

5 6 7 8

2601411

We consider a sequence of deleteMin operations
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Radix Heap

In illustration, all elements in new minimal list B[i]

were moved (when i>=0) with each deleteMin()

call. Let‘s prove this holds!

Lemma 2.6: Let B[i] be the minimal non-empty list, 

i0. Let xmin be the minimal key in B[i]. Then 

msd(xmin,x)<i for all keys x in B[i].

Proof:

• Consider any x in B[i].

• If x=xmin: x placed in B[-1], so claim holds.

• What if x≠xmin?
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Radix Heap

• By assumption, kmin , xmin , x agree on all bits after K.

• Since x, xmin in B[i], they agree on bits i to K.

• Thus, msd(xmin,x)<i.

0aold kmin

1axmin

bit position: i

1ax

0

xmin>kmin

x, xmin in B[i]

more significant bits
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Radix Heap

• Lemma 2.6: Let B[i] be the minimal non-empty list, i0. 
Let xmin be the minimal key in B[i]. Then msd(xmin,x)<i for 
all keys x in B[i].

Consequence:

• Each element can be moved at most K times (due to 
deleteMin or decreaseKey operations)

• insert(): amortized runtime O(K)=O(log C).
(i.e. When an item is inserted, it „pays up front“ for later potentially 
needing to be moved K times)

-1 0 1 2 …. K
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Summary

Runtime Fibonacci Heap Radix Heap

insert O(1) O(log C) amor.

min O(1) O(1)

deleteMin O(log n) amor. O(1) amor.

delete O(log n) amor. O(1)

merge O(1) ???

decreaseKey O(1) amor. O(1)
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Extended Radix Heap

Assumptions:

1. At all times, maximum key – minimum 

key <= constant C. (Think of fixed 

architecture, like 32-bit ints.)

2. Insert(e) only inserts elements e with 
key(e)≥kmin (kmin: minimum key). 

The priority queue we implement is called a 

“monotone” priority queue, i.e. top-priority 

element’s key monotonically increases.
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Extended Radix Heap

: “super element” e contains a Radix heap with 

kmin=key(e) where kmin is the smallest value in the
Radix heap of e and Be[-1] has ≥1 “normal” element.

Note: super elements may contain super elements

-1 0 1 2 …. K

At least one 

“normal”

element in -1
super elements at the end
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Extended Radix Heap

Example:
-1 0 1 2 …. K

4

4 7 12

3

-1 0 1 2 …. K3
-1 0 1 2 …. K3

12 15
4 5

-1 0 1 2 …. K3

15
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Extended Radix Heap

Further details:

• Every list is

doubly-linked.

• “Normal” elements are (added)

at the front of the list, super-

elements in the back.

• The first element of each list

points to the Radix heap it

belongs to.

-1 0 1 2 …. K

4 7

12

3

-1 0 1 2 …. K3

12 15

10
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Extended Radix Heap

Merge of two extended Radix heaps B 

and B’ with kmin(B) ≤ kmin(B´):

(Case kmin(B) > kmin(B’) : flip B and B´)

• transform B’ into a super element e with 

key(e) = kmin(B’)

• call insert(e) on B

Runtime: O(1)
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Extended Radix Heap

Example of a merge operation:

-1 0 1 2 …. K

4

7

3

-1 0 1 2 …. K3

&

-1 0 1 2 …. K

4

3

7

7

-1 0 1 2 …. K3
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Extended Radix Heap

insert(e): 

• key(e)≥kmin: as in standard Radix heap

• else, merge extended Radix heap with a
new Radix heap just containing e

Runtime: O(1)

min(): like in a standard Radix heap (note -1 
bucket has at least one “normal” element)

Runtime: O(1)
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Extended Radix Heap

deleteMin():

• Remove normal element e from B[-1]
(B: Radix heap at highest level, i.e. “top” heap)

• If B[-1] does not contain any elements, then 
update B like in a standard Radix heap (i.e., 
dissolve smallest non-empty bucket B[i])

• If B[-1] does not contain normal elements any 
more, then take the first super element e’ from 
B[-1] and merge the lists of e’ with B
(then there is again a normal element in B[-1]!)

Runtime: O(log C) + time for updates



Extended Radix Heap

deleteMin():
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-1 0 1 2 …. K

4

4 7 12

3

-1 0 1 2 …. K3
-1 0 1 2 …. K3

12 15
4 5

-1 0 1 2 …. K3

15

merge Radix heap of

into top Radix heap

4
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deleteMin():
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-1 0 1 2 …. K

4 7 12

3

-1 0 1 2 …. K3

12 15

5

-1 0 1 2 …. K3

15
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Extended Radix Heap

delete(e):

Case 1: key(e)>kmin for heap of e: 

• like delete(e) in a standard Radix heap

Case 2: key(e)=kmin for heap of e: 

• if e is in “top” Radix heap, proceed like deleteMin()

• Else, e is in Radix heap of super element e’:

– if e’ is afterwards empty, then remove e’ from heap B’
containing e’

– if the minimum key in e’ has changed, then move e’ to its 
correct bin in B’

Since there is a normal element in B’[-1], both cases have no 
cascading effects! (don’t have to recurse upwards)

Runtime: O(log C) + time for updates
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delete(10):
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-1 0 1 2 …. K

4

4 7 8

3

-1 0 1 2 …. K3
-1 0 1 2 …. K3

8 10
4 5

-1 0 1 2 …. K3

10 14
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delete(10):
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-1 0 1 2 …. K

4

4 7 8

3

-1 0 1 2 …. K3
-1 0 1 2 …. K3

8 14
4 5

-1 0 1 2 …. K3

14
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delete(10):
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-1 0 1 2 …. K

4

4 7 8

3

-1 0 1 2 …. K3
-1 0 1 2 …. K3

8 14
4 5

-1 0 1 2 …. K3

14
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Extended Radix heap

decreaseKey(e,): [precondition: key(e) -  >= kmin ]

• call delete(e) in heap of e

• set key(e):=key(e)-

• call insert(e) on “top” Radix heap

Runtime: O(log C) + time for updates

Amortized analysis: similar to Radix heap

• each time a normal element e is inserted, the potential is increased 
by K+pos(e) (to compensate for pos(e) left moves of itself and a 
right move of its superelement e if it is removed as the minimum 
element in the Radix heap of e)

• each time a superelement e is inserted, the potential is increased by 
K+pos(e) (to compensate for pos(e) left moves and the merging of 
up to K lists in its Radix heap if it is removed from B[-1] in deleteMin)
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Summary

Runtime Radix heap ext. Radix heap

insert O(log C) amor. O(log C) amor.

min O(1) O(1)

deleteMin O(1) amor. O(1) amor.

delete O(1) O(1) amor.

merge ??? O(log C) amor.

decreaseKey O(1) O(log C) amor.
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Shortest Paths

Central question: Determine fastest way to get from s to t.

s

t
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Shortest Paths

0

8 3

1 3s
1 2

2

5

d(s,v): distance from s to v

d(s,v) =
 no path from s to v

min{ c(p) | p is a path from s to v}

p
Cost of p:

c(p)=1+2+5=8

∞
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Dijkstra's Algorithm

Consider the single source shortest path problem 

(SSSP), i.e., find the shortest path from a source 

s to all other nodes, in a graph with arbitrary 

non-negative edge costs.

Basic idea behind Dijkstra´s Algorithm:

visit nodes in the order of their distance from s

0 d1 d2 d3 d4s v
w
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Dijkstra's Algorithm

• Initially, set d(s):=0 and d(v):= for all other nodes. Use 
a priority queue q in which the priorities represent the 
current distances d(v) from s. Add s to q.

• Repeat until q is empty:

– Remove node v with lowest d(v) from q (via 
deleteMin). 

– For all (v,w)E, 

• set d(w) := min{d(w), d(v)+c(v,w)}. If w is already in 
q, this needs a decreaseKey operation. Else, if w
was never in q, insert w into q.
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Dijkstra's Algorithm

Example: (     : current,     : done)

s











 



1

2

1
1

1

1

3

2

2

4 2

3

2

1

2

2

5

5

4

3

4

5
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Dijkstra's Algorithm

Procedure Dijkstra(s: NodeId)
d=<,…, >: NodeArray of ℝ∪{-,}
parent=<⊥,…,⊥>: NodeArray of NodeId
d[s]:=0; parent[s]:=s
q=<s>: NodePQ
while q =<> do

u:=q.deleteMin()  // u: node with min distance
foreach e=(u,v)∈E do

if d[v] > d[u]+c(e) then // update d[v]
if d[v]= then q.insert(v) // v in q?
parent[v]:=u
// d[v] set to d[u]+c(e)
q.decreaseKey(v, d[v]-(d[u]+c(e)))
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Dijkstra's Algorithm

• Assume input graph has n nodes, m edges
• TOp(n): runtime of operation Op on data structure 

with n elements

Runtime:
TDijkstra = O(n(TDeleteMin(n)+TInsert(n)) + mTdecreaseKey(n))

Binary heap: all operations have runtime O(log n), so 
TDijkstra = O((m+n)log n)

Fibonacci heap: amortized runtimes
• TDeleteMin(n)=TInsert(n)=O(log n)
• TdecreaseKey(n)=O(1)
• Therefore, TDijkstra = O(n log n + m)

each time we traverse an edge
each vertex added/removed precisely once
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Dijkstra's Algorithm

Remark: Dijkstra´s Algorithm does not need a 

general priority queue but only a monotonic 

priority queue (i.e., labels are distances, which 

are monotonically decreasing!)

If all edge costs are integer values in [0,C], use a 

Radix heap. Its amortized runtimes are

• TDeleteMin(n)=TdecreaseKey(n)=O(1)

• TInsert(n)=O(log C)

• Thus in this case, TDijkstra = O(n log C + m)
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Minimal Spanning Tree

Problem: Which edges do I need to take in 

order to connect all nodes at the lowest 

possible cost?

2

1

1

3

3

2

2

4
3

2
5
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Minimal Spanning Tree

Input:

• Undirected graph G=(V,E)

• Edge costs c:Eℝ+

Output:

• Subset T⊆E so that the graph (V,T) is connected 
and c(T)=eT c(e) is minimal

• T always forms a tree (if c is positive).

• Tree over all nodes in V with minimum cost: 
minimal spanning tree (MST)
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Prim´s Algorithm
Procedure Prim(s: NodeId)

d=<,…, >: NodeArray of ℝ∪{-,}
parent=<⊥,…,⊥>: NodeArray of NodeId
d[s]:=0; parent[s]:=s
q=<s>: NodePQ
while q =<> do

u:=q.deleteMin()  // u: node with min distance
foreach e=(u,v)∈E do

if d[v] > c(e) then // update d[v]
if d[v]= then q.insert(v) // v in q?
parent[v]:=u
// d[v] set to c(e)
q.decreaseKey(v, d[v]-c(e))
store e along with v
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Prim´s Algorithm

• Assume input graph has n nodes, m edges
• TOp(n): runtime of operation Op on data structure 

with n elements

Runtime:
TPrim = O(n(TDeleteMin(n)+TInsert(n)) + mTdecreaseKey(n))

Binary heap: all operations have runtime O(log n), so 
TPrim = O((m+n)log n)

Fibonacci heap: amortized runtimes
• TDeleteMin(n)=TInsert(n)=O(log n)
• TdecreaseKey(n)=O(1)
• Therefore, TPrim = O(n log n + m)
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Prim´s Algorithm

Can we use Radix heap? (does a monotone 
priority queue suffice?)
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Next Chapter

Topic: Search structures


