Indicator-Based Inspections: A Risk-Oriented Quality Assurance Approach for Dependable Systems

Frank Elberzhager
Outline

- Motivation & Problem
- Idea
- Indicator-based Inspection with respect to safety
- Conclusion
Motivation

- Surrounded by evermore software and software-intensive systems

- Some Characteristics
 - Increasing functionality
 - Increasing complexity
 - Have to ensure certain non-functional requirements
 → Software may cause harm to the environment (number of examples from every domain)

- Challenge: Perform suitable development and **quality assurance**
 - Number of different techniques exist
Motivation

- Some static quality assurance techniques to cover risk
 - Risk analysis (Safety)
 - FME(C)A: Identification of failure modes and assessment of criticality
 - FTA: Identification of causes
 - Reliability Block Diagrams
 - Attack Trees (Security)
 - Software Inspections

- Problems
 - Often too coarse-grained analysis
 - Little support to ensure certain quality properties
 - Many different techniques
Idea

- Example: Control unit for an electrically-powered car window
 - Focus on demonstration that all safety-related non-acceptable risks have been reduced to an acceptable level
1. Determine concrete quality goals

- Quality goals are often application-specific
- For safety, FMECA and FTA can be used to identify safety hazards and causes (high-level analysis)

- FTA enables determination of minimal cut sets which can be used to derive quality goals, e.g.:
 - When an object jams the window while the “window-up” button is pressed, the data from the jam sensor must be correctly received
2. Construct a Goal-Indicator Tree for each quality goal

- Determination of possible correct implementations
- Identification of indicators that ensure a correct implementation

First quality goal:

- Jam detection:
 - Dedicated jam detection
 - Jam detection by motor monitoring

 - Jam detector exists
 - Jam detection conditions are realistic
 - Controller has a suitable connection to the sensor

 - Motor current is monitored
 - Current measurement is used to detect window jamming

 - Maximum motor current is specified
 - The motor current is compared against the limit

- Jam condition is "window does not move for n seconds" with n at most 3
- Jam condition is "counter force on motor is at most n Newton" with n at most 100

Goal

Subgoal

Logical juncture

Indicator
2. Construct a Goal-Indicator Tree for each quality goal

Second and third quality goal:
3. Carry out the inspection

- Available artifacts: Requirements and Matlab Simulink model
- Use the GIT and check each indicator
 - Order: depth first, left to right

- First question: Does a dedicated piece of hardware exist for jam detection?
 - The requirements document describes another realization
 - Question is answered with “no”
 - Indicators below can be skipped
3. Carry out the inspection

- Second subgoal: “Jam detection by motor monitored”
 - Question: Is the motor current monitored?
 - Answer 1: “...when a current is detected that is less than -2.5 A” (requirements)
 - Answer 2: Implementation shows connection from window system to the power window control system
3. Carry out the inspection

- The remaining indicators are also fulfilled, either by a description in the requirements or by the realization in the Matlab Simulink model

- After performing the inspection, the fulfillment of the quality goal has to be checked:
 - Left subgoal “Dedicated jam detection” is not fulfilled
 - Right subgoal “Jam detection by motor current” is fulfilled
 - Due to logical “or” connection, overall goal is fulfilled

- Remark: Enhancement of the reading support possible by derivation of a checklist which presents more detailed support for an inspector
Summary and Outlook

- Indicator-based inspection approach to ensure certain quality properties
 - Determination of quality goals
 - Construction of goal-indicator tree
 - Performing the inspection

- Benefit
 - Concrete and detailed support how to reduce risk
 - Improvement of quality
 - Knowledge transfer

- Outlook
 - Application to further quality properties
 - Details on construction
 - Usage of goal-indicator trees to select different quality assurance techniques
Thank you! Questions?

Frank Elberzhager (TAI)
+49 631 6800 2248
Frank.Elberzhager@iese.fraunhofer.de