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Abstract — Dynamic thread duplication is a known re-
dundancy technique for multi-cores. Recent research applied
this concept to hybrid multi-cores for error detection and
introduced thread shadowing that runs hardware threads in the
reconfigurable cores and compares their outputs for deviation
at configurable signature levels. Previously published work
evaluated this concept in terms of performance, error detection
latency and resource consumption.

In this paper we report on the error detection capabilities
of thread shadowing by presenting an extensive fault injection
campaign. We employ the Xilinx Soft Error Mitigation Con-
troller for fault injection and the Xilinx Essential Bit facility
to limit the fault injections to relevant bits in the configuration
bitstream. Our findings from fault injection experiments with a
sorting benchmark are threefold: First, up to 98% of all errors
are detected by the operating system of the hybrid multi-core
supported by thread shadowing. Second, thread shadowing’s
signature levels provide a useful trade-off between detected
errors and effort needed, with around 5% of all errors detected
in calls to operating system functions and around 52% of errors
detected in memory accesses of the hardware thread. Third,
essential bit testing is effective and cuts down the amount of
bits to be tested by a factor of 14.48 compared to the total
amount of bits available in the configuration address space.

I. INTRODUCTION

Hybrid multi-cores are effective at leveraging the vast
amounts of reconfigurable area available in todays Field
Programmable Gate Arrays (FPGA). In contrast to heteroge-
neous multi-cores, which combine CPU cores using different
instruction sets or, sometimes, cores using different imple-
mentations of the same instruction set, hybrid multi-cores
combine instruction set based cores, such as CPUs, with cores
implemented in reconfigurable logic. When combined with a
suitable programming model, hybrid multi-cores yield ease of
programming and high compute power at the same time. In
particular, the multi-threading programming model for hybrid
multi-cores has been investigated by several projects, e.g.,
Hthreads [1], ReconOS [2] and SPREAD[3] and has shown
its feasibility.

However, shrinking transistor sizes combined with an in-
creasing number of transistors per chip lead to an increased
number of faults during production and run-time of hybrid
multi-cores. According to S. Borkar [4] run-time monitoring
of errors will be needed to keep future systems perform over

a long period of time. Aside from production variations, run-
time effects such as aging [5], radiation [6][7] and violations
of operating parameters [8][9] introduce faults.

To this end, thread shadowing introduced error detection
in hybrid multi-cores [10][11]. It uses dynamic dual modular
redundancy (DMR) by attaching a shadow thread (ST) to
a thread-under-observation (TUO). All inputs to the TUO
are mirrored to the ST and all outputs of TUO and ST
are compared for deviations. The dynamic nature of thread
shadowing allows to attach and deattach an ST to any TUO
at run-time. This enables the error detection to be tailored to
the current run-time needs of the system. Thread shadowing’s
speciality is that the ST may lag behind the TUO to avoid
slowdowns of the TUO through synchronization. This may
lead to an increased error detection latency and lower error
detection coverage.

Our previous research focussed on performance, detection
latency and resource implications of thread shadowing. The
novelty of this paper is that we evaluate the error detection
capabilities of thread shadowing. We are interested in learning
how many of the possible errors in the FPGA configuration
can be caught by either the operating system itself or by our
thread shadowing system, also in dependency of the signature
level chosen for thread comparison. To answer these questions,
we perform an extensive fault injection campaign. The specific
contributions of this paper are as follows:

• We show the effectiveness of thread shadowing towards
detecting errors and the resulting distribution of errors
across different error classes.

• Regarding the error numbers and classes found, we
discuss the effectiveness of thread signatures for trading
performance versus error detection coverage and their
usefulness to adapt to different classes of applications.

• In contrast to most of the related work, we use a full
production level system, comprising a full operating
system on top of the test hardware. Therefore, we can
monitor the behaviour of such a complex system under
fault injection.

The remainder of the paper is structured as follows: Sec-
tion II presents related work, while Section III gives a short
introduction into thread shadowing concepts and implemen-
tation. Section IV then elaborates on our fault injection
methodology. Section V finally presents and discusses the fault
injection results. Section VI concludes the paper.



II. BACKGROUND AND RELATED WORK

This section presents related work in the fields of error
detection and mitigation methods and the corresponding test
and evaluation techniques.

A. Redundancy for Error Detection and Correction

There are numerous error detection and mitigation methods
available at both hardware and software level.

At hardware level we can distinguish between the granular-
ity at which the methods are applied. In the FPGA context,
Look-Up-Tables (LUT) and registers are the smallest elements
at which dual (DMR) or triple modular redundancy (TMR) can
be applied. DMR uses one replica and a comparator to detect
errors, while TMR uses two replicas and a voter to correct a
single error via a majority vote. The BYU tool [12] operates at
this level: it takes EDIF netlists as input and applies TMR at
look-up table level. The tool writes EDIF netlists, which can be
fed back to the FPGA synthesis flow. At the next higher level
complete (sub-)modules are replicated. For example R3TOS
[13] and Re2DA [14] focus on redundancy on the module and
system level and replicate complete CPUs and voters to detect
and correct errors. An FPGA specific technique is scrubbing
[15][16][17]. Scrubbing repeatedly updates, i.e., reconfigures,
an FPGA’s configuration data with the original one. Bit flips
in the configuration plane are thus corrected. There exist
scrubbing variants that read back the configuration data to
check for errors before re-configuring. Scrubbing, however,
is only useful against accumulation of errors in the bitstream.
One scrubbing cycle may take hundreds of milliseconds, which
is enough time for an error to propagate into the system.

At software level redundancy is typically applied at thread
or process level, where a process can consist of several
threads. Dobel et al. [18] implement TMR at the thread level,
while several other works [19][20][21] address the process
level. While software-based redundancy techniques require
less implementation effort than hardware-based ones, they
typically suffer from enormous slowdowns due to the need for
intercepting memory accesses for all thread or process copies.
Besides pure hardware and software implementations for error
detection and recovery, there are also hybrid approaches. For
example, Campagna and Violante [22] combine a hypervisor-
based thread-level time redundancy with a hardware module
that implements a data checker and a watchdog.

Thread shadowing [10][11] is also a hybrid approach since
part of the replication and comparison is handled in software
and another part is handled in hardware (see Section III for
details). Thread shadowing is especially suitable for hybrid
multi-cores. It is as dynamic as the underlying reconfigurable
logic: as new hardware threads can be placed into or removed
from reconfigurable logic, so can shadow threads be attached
and removed from threads-under-observation. Additionally,
thread shadowing does not suffer from the overheads of
memory access interception like software-only approaches,
since comparison of memory accesses is handled in hardware.

B. Reliability Test and Evaluation Methods

For test and evaluation of reliability measures such as redun-
dancy or hardened designs, we need methods to inject faults
into the FPGAs. Literature [23] offers numerous methods for
fault injection. Beam testing [24][25] puts the target FPGA
into the beam of strong ionizing radiation and provokes charge
generation inside the silicon. The necessary equipment is big,
expensive and requires extensive knowledge, experience and
safety measures to operate. Atmosphere testing is used in the
Rosetta project of Xilinx Inc. [6]. It uses arrays of FPGAs
to measure the hit rate of high energy neutrons, which are
generated in the upper atmosphere by high energy radiation.
This method needs a high number of FPGAs and long time
spans to generate statistically significant data. Additionally, the
radiation strength is dependent on altitude and geographic lon-
gitude and latitude and therefore requires several locations to
gain general insights. Other methods require less effort to im-
plement. Accelerated ageing [5] is implemented by exceeding
the specified maximum temperature and voltage specifications
of an FPGA for an extended period of time. By the increased
thermal and electrical stress the silicon structures age in weeks
instead of years and show an increased error rate. An even
stronger violation of operating parameters can also directly
lead to faults. Overclocking of a design [8] or overheating [9]
are examples of this approach. Finally, bitstream manipulation
is an FPGA specific fault injection method in widespread use
[26][27]. It employs the run-time reconfiguration feature of
modern FPGAs to alter the FPGAs configuration and thereby
alter the actual hardware implemented in the reconfigurable
logic. Depending on the reconfiguration facility, faults may
be injected into the hardware portion only or even into the
user memory elements. This paper uses bitstream manipula-
tion for fault injection for three reasons: First, it allows for
reproducible results. Second, it gives direct control over the
exact position of the fault injection. Third, it is much easier to
use compared to the more involved methods mentioned above.

III. THREAD SHADOWING CONCEPT AND
IMPLEMENTATION

In this section, we introduce the fault model and nomen-
clature to distinguish between the different stages of an error,
and then present the details of thread shadowing and how it
is implemented on top of ReconOS.

A. Fault Model and Nomenclature

Before introducing thread shadowing, we define the fault
model and some terms in accordance with the resilience
articulation point (RAP) model [28].

Physical sources are the origins of faults, errors and failures.
They encompass all physical imperfections and effects that can
disturb the operation of the circuit. Among others, radiation,
electromagnetic interferences, operating parameter violations
and ageing related mechanisms count as physical sources. If a
physical source is strong enough it leads to a fault: a fault is a
deviation of desired operation at transistor level. Examples
are deviations from specified voltage and current levels or



physical changes in the silicon. A fault can lead to an error,
which is a deviation from correct operation in the register-
transfer-level view of a hardware architecture. The resilience
articulation point (RAP) model ascribes all errors to bit-flips
in a corresponding register or memory cell. For example, in
an FPGA a change in the configuration memory could cause
an error and by changing the configuration bitstream of the
FPGA we can simulate the error. Finally, a failure is what can
be seen at application level: aborted programs or corrupted
results.

Masking may happen between adjacent levels: Physical
sources may not develop into faults if the specific part of the
silicon is not used. Faults may not propagate into an error if
a current surge is so short that a register does not store it.
And an error might not become a failure, for example if the
register containing the error is overwritten before it is read.

Thread shadowing detects errors at the register-transfer-
level. Since in the RAP model any fault articulates itself at
this level, thread shadowing is able to detect all kinds of
faults turning into errors: radiation induced single-event upsets
(SEU) and even multiple-event upsets (MEU), aging related
stuck-at-faults (SAF) and operating parameter violations in-
duced errors. As long as the behaviour of the thread differs
from its replica, even multiple errors appearing at the same
time are detectable. The limitations of thread shadowing are
the same as for any other DMR system: If an error leads to the
same behaviour in the original thread as well as in its replica,
it is undetectable.

B. Concept of Thread Shadowing

Thread shadowing is an error detection technique and
framework for hybrid multi-cores. Since thread shadowing is
based on ReconOS, hardware accelerators, for which we want
to detect errors, are viewed and implemented analogously to
software threads: the accelerators are active in the sense that
they call operating system functions and access memory on
their own. They also present themselves to the application
developer like software threads. We have designed thread
shadowing to impose only minimal work for the application
developer and no additional work for the hardware developer.

The main elements in the concept of thread shadowing are
the thread under observation (TUO) and the shadow thread
(ST). The TUO is the target whose operation is checked by
dynamically attaching a ST to it. All inputs to the TUO
are mirrored to the ST and all outputs of TUO and ST are
compared for deviations. A feature of thread shadowing is the
loose coupling of TUO and ST. Any free thread with the same
function as the TUO can serve as a ST. This makes it possible
to reuse idling threads for error detection or assign a single
ST to several TUOs in a round-robin fashion.

Another feature of thread shadowing are signature levels.
Depending on application requirements, comparison of outputs
can be set to three levels with increasing error coverage: Level
1 compares only names of function calls to the operating
system, level 2 compares function call names and function
parameters and, finally, level 3 adds comparison of memory

accesses. This allows for balancing performance versus error
detection coverage and for adapting to applications where only
errors in the control path are critical.

It is the choice of the application designer to determine
what actions are taken when thread shadowing reports an
error. While some applications might require a 100% error
free operation, others such as multi-media applications, might
tolerate single errors in the output data. However, statistics
have to be gathered and system reconfiguration may happen
when application specific error levels are exceeded.
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Fig. 1. ReconOS architecture extended to support thread shadowing.

C. Implementation of Thread Shadowing

ReconOS [2] serves as the implementation platform for
thread shadowing. It is an architecture, programming model,
and execution environment for run-time reconfigurable hybrid
multi-cores. ReconOS builds upon widely used host operating
systems such as Linux and Xilkernel and extends the multi-
threading model from software to hardware threads. From
an application programmer’s perspective, a hardware thread
looks like any other software thread and can use well-known
operating system calls to communicate and synchronize with
other threads and access shared system memory.

Thread shadowing builds upon the ReconOS infrastructure
and extends it with dual modular redundancy. Figure 1 shows
the architecture of a typical thread shadowing system. It
depicts the main system CPU which runs the operating system
(OS), the ReconOS delegate threads, which call OS functions
on behalf of the hardware and the thread shadowing layer.

The hardware threads (HWT) run in hardware slots, which
are preassigned areas in the FPGA’s reconfigurable logic.
HWTs communicate via two interfaces: the operating system
interface (OSIF) and the memory interface (MEMIF). The
OSIF enables the HWTs to call OS functions for synchroniza-
tion via, e.g., semaphores and message boxes. The MEMIF
enables direct access to shared system memory without in-
volvement of the system CPU.

Thread shadowing extends the ReconOS architecture in two
places: on the main system CPU and in the MEMIF. On the
main system CPU, the newly added thread shadowing layer
has several tasks:

• It starts STs and (de-)attaches them to/from TUOs.
• It schedules the ST in round-robin mode.
• It intercepts OS function calls from the delegate threads,

compares them and relays them to the OS.



• It controls the signature levels.
• It configures the thread shadowing MEMIF and receives

error information from it.
• It forwards error information to the application.

In the MEMIF we added additional hardware, which mirrors
and compares memory accesses between TUO and ST. An
additional Fast Simplex Link (FSL) between CPU and MEMIF
allows for configuration and error reporting. This extended
MEMIF avoids costly performance slowdowns found in pure
software thread based systems [19][18].

IV. FAULT INJECTION SETUP

Running a fault injection campaign requires extensive
preparations: Means to manipulate the configuration bitstream
have to be integrated into the design, address lists of where to
inject faults have to be created, a careful floorplan to limit the
effects of fault injection has to be designed, and a robust test
harness, which injects faults and records the results, has to be
programmed. For our work, we leverage the Xilinx Soft Error
Mitigation Controller and the Xilinx Essential Bits facility. In
this section, we present and discuss our design choices for
each step of the preparation.

A. Fault Injection via Xilinx Soft Error Mitigation Controller

Our fault injection is based on the Soft Error Mitigation
Controller (SEM) from Xilinx [17]. Originally a module to
implement scrubbing in the reconfigurable area of the FPGA,
it also offers a simple interface for flipping a bit in the config-
uration bitstream of the FPGA. We have wrapped a Processor-
Local-Bus (PLB) interface around the SEM and implemented
a simple register based interface to its functionality. This
way, we can attach the SEM easily to the system bus in the
ReconOS architecture and extend the system with control over
the fault injection.

B. Addressing

The SEM accepts only addresses in the physical address
format. Physical addresses for the Xilinx Virtex 6 architecture
[29] consist of 35 bits and contain the following fields from
most significant bit to least significant bit: a 1 bit field which
is always zero, 2 bit block type, 1 bit top or bottom half of
FPGA, 5 bit row address, 8 bit column address, 7 bit minor
address, 7 bit word address and finally a 5 bit wide bit address.
Down to the level of a column address the physical position is
documented via the Xilinx datasheets. Starting with the minor
address, the position or functionality of configuration bits is
Xilinx’s proprietary knowledge.

However, when constraining (sub-)modules in the Xilinx
user constraints file, one has to use slice, BRAM and DSP
addresses which use different address spaces. Conversion
between address spaces requires knowledge of the FPGA
layout. We have implemented an address translation function
using positional data extracted from PlanAhead as a reference.

C. Essential Bits

A result of the addressing subsection is that every column in
a bitstream may have up to 524’288 bits where a fault might
be injected. If one takes the durations needed to test every
bit (see Section IV-D) into account, a fault injection campaign
may take between 12 days for a run with no errors and 1092(!)
days in case all faults result into errors. This is a prohibitively
long time. Therefore, we have used the essential bit file facility
provided by the Xilinx tools. The documentation [30] defines:

Essential bits are defined [. . . ] as those bits associ-
ated with the circuitry of the design, and are a subset
of the device configuration bits.

By testing only the essential bits, we avoid testing configu-
ration bits which are actually unused by our design. With an
additional parameter to the Xilinx command line tool bitgen,
it generates an *.ebd file which matches the configuration bits
and contains a ’1’ where a configuration bit is essential and
a ’0’ when it is not. With knowledge of the FPGA layout
and a visualization of the essential bit data, we have reverse-
engineered the format of the file. Thus, we were able to extract
the physical addresses of essential bits. Results are shown in
Section V.

D. Test Setup
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Fig. 2. Fault injection setup with one controlling Host PC and two FPGAs
boards to speed up fault injection.

Figure 2 shows our fault injection setup. It consists of a
host PC and two Xilinx ML605 FPGA boards. We are using
two FPGA boards to split the set of fault injection addresses
across the boards and thus reduce total testing time. Host
and FPGAs are connected over several interfaces: JTAG for
bitstream and Linux kernel download, Ethernet for network file
system (NFS) access and telnet for remote shell access. The
RS232 serial connection is not used by the control script, but
remains as means for manual monitoring of the FPGA boards.
For every board there is an instance of the control script. It
steers download of the bitstream and Linux kernel and starts
fault injection and the test program. Its main task is to record
the error codes generated by the test program and to reset the
FPGA board after an error is registered. Resetting the FPGA
board includes re-downloading the bitstream and Linux kernel.
With a duration of over 3 minutes this is a time-consuming
operation, compared to an error-less fault injection and test
program run of approximately 2 to 3 seconds.

Figure 3 shows the flowchart of our control script. The
control script starts in the lower left with a list of fault
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addresses. Then, for the first address, it downloads the FPGA
bitstream, operating system, and after the system has boot
up, connects via telnet to it. Now, it injects a fault into the
FPGA bitstream and then runs the test program. After the test
program finished or a preset timeout, the control script records
the exit code of the test program. Here, we use an optimization:
In case no error was recorded, the script removes the last fault,
injects the next one and re-runs the test program. Only after
an error was recorded, we reset the whole FPGA. This reduces
the fault injection time to 2 or 3 seconds in most cases, instead
of 3 minutes for a whole reset. This automated process stops
after every fault address on the list has been tested.

After the automated process we manually inspect the re-
sults and re-run the tests for fault addresses that resulted in
unspecific error codes to differentiate between random errors
of the test harness and actual errors due to fault injection.
These unspecific error codes have their root cause in network
instability or erroneous boot-up.

V. EXPERIMENTS

After laying the groundwork, this section describes the
benchmark application used, the FPGA layout chosen and the
corresponding essential bits. Finally, it presents and discusses
the results of our fault injection campaign.

A. Application Description and Placement

We have implemented the sort benchmark used in thread
shadowing publications [10][11] as our test program. It sorts
an array of integers by splitting it in blocks of 8 KiB, sorting
the blocks with the HWTs, and joining the results via a
merge sort on the CPU. The benchmark runs under Linux
kernel version 2.6.37. For the fault injection campaign we
have configured the system to use two hardware threads, one
for the TUO role and one for the ST. The sort program
was parameterized to sort only one 8 KiB block. Thread
shadowing was configured to signature level 3, which includes
comparison of OS function names, parameters and all memory
accesses and to performance mode. In particular, this means
that the ST can lag behind the TUO. As soon as the sort
benchmark encountered an error, it quit operation and returned
a unique error code for every error condition encountered
during fault injection.

At the end of the program, the sort benchmark performs
an additional sort purely in software on the system’s main
CPU. Thus, we are capable of comparing the results to the
ones from the HWT and of identifying cases of silent data
corruption (SDC) that might have not been detected by thread
shadowing.

TABLE I
RESOURCE UTILIZATION OF THE SORT DEMO HWT, CONSTRAINED TO

THREE COLUMNS.

Resource Type Available Used Utilization

LUT 960 769 81%
FD LD 1920 412 22%
SLICEL 120 97 81%
SLICEM 120 97 81%
RAMBFIFO36E1 2 2 100%

To reduce the duration of the fault injection campaign
we have constrained the sort hardware thread to use the
smallest possible FPGA area. The resulting HWT fits into
three columns and reaches a utilization of 81% of the available
LUTs; see Table I for full details. A high utilization of
resources per area is important to achieve a high error rate,
since faults injected into unused FPGA resources will unlikely
lead to an error.

B. Essential Bits

Figures 4 and 5 show the layout and the essential bits on
the Virtex-6 LX240T FPGA we have used. Figure 4 shows
the placement from PlanAhead. We have separated the base
system and the hardware threads to make sure that injected
faults result in errors in the HWTs and not in the base system.
In the top left of Figure 4 we see the TUO over the ST, and
the bottom half is reserved for the base system. The straight
lines in the middle of the figure connect the base system to
the external input/output blocks.

Figure 5 shows our interpretation of the essential bit file
corresponding to our design. Every pixel of the image cor-
responds to one word (32 bits) of configuration data and the
color corresponds to the amount of essential bits in that word:
bright red means 32 essential bits, black means 1 essential
bit and white means no essential bit. The layout correlates to
the one in Figure 4 very well, except for red horizontal bands
with unknown function. The top left shows the two hardware
threads, the bottom is filled with the base system and in
between we see patches of black which represent configuration
bits for the reconfigurable wiring between base system and
HWTs and base system and input/output blocks.

Figures 6 and 7 show the TUO in a magnified view. The
TUO occupies, from left to right, two block-RAMs and three
columns. Please note that, since we have no information about
the actual meaning and physical position of a configuration bit
below the level of a column, we choose our own layout: Every
line in a column consists of 81 words, and every column is 36
minors high. To fit the aspect ratio of the original PlanAhead
layout, we vertically stretched our essential bit visualization.
Figure 8 shows the error density found by our fault injection



Fig. 4. Visualization of placement from PlanAhead for the whole
FPGA.

Fig. 5. Visualization of the essential bit data file for the whole FPGA.

TABLE II
FAULT INJECTION RESULTS: ERROR TYPES AND COUNTS

Error Classes Column 1 Column 2 Column 3 Total Total Share

Silent Data Corruption 100 33 3 136 1.79 %
OS Detected Errors 340 306 140 786 10.37 %
Timeouts 692 1337 299 2328 30.70 %
Thread Shadowing detected errors 1769 1506 1057 4332 57.14 %

Function call errors 61 239 87 387 5.10 %
Memory access errors 1708 1267 970 3945 52.03 %

Total Error Counts 2901 3182 1499 7582
# Essential Bits and Faults Injected 43519 40874 24238 108631
% Errors of Essential Bits 6.67 7.78 6.18 6.98
Duration of fault injection campaign 9 days 7 days 6 days 22 days

experiments (see next subsection for numerical results). It
shows, that not every fault in an essential bit turned into an
error, but error density correlates with essential bit density.

C. Fault Injection Results

We have conducted fault injection campaigns based on
essential bits for every of the three columns of the TUO. The
results are shown in Table II. We sum up all encountered errors
in four categories, as follows:

• Silent Data Corruption: An actual error was not de-
tected until the test program compared the HWT’s results

to known good results. The reason for these deviations
lies in our shadowing mechanism that allows the ST lag
behind the TUO for performance reasons. Since in our
fault injection campaign we only sort one block of data,
the sort benchmark observes the completion of the TUO
and exits before the ST can report the error that it, in
fact, had caught. While for longer running programs this
should be less of an issue, we plan to introduce a barrier
mechanism which blocks the main thread until all STs
have completed as future work. Such a barrier mechanism
will eliminate silent data corruption errors.



Fig. 6. Visual-
ization of placement
from PlanAhead for
the TUO.

Fig. 7. Visualization
of essential bits of the
TUO.

Fig. 8. Visualiza-
tion of error bits in
the TUO (block-RAM
column removed).

• OS Detected Errors: Operating system facilities detected
illegal behaviour: this category encompasses mainly sig-
nals from the OS kernel to the test program indicating
memory access violations and illegal instructions. Such
errors do not even require our thread shadowing system
and can be easily resolved by using appropriate signal
handlers in the host OS.

• Timeouts: The program did not finish within a 30 sec-
onds timeout period, which is approximately 15 times
longer than the test program needs to finish. Such time-
outs are caused by crashed threads and can in any operat-
ing system easily be checked by watchdog mechanisms.

• Thread Shadowing Detected Errors: The thread shad-
owing system reported the error. This includes errors in
the OS function calls (signature levels 1 and 2) as well
as memory access errors (signature level 3).

Table II lists the absolute error counts as well as relative
numbers. We can see that the host OS was able to catch about
40% of all errors, including 30.7% timeouts and 10.37 %
OS kernel signals raised due to errors. Our thread shadowing
system detected further 57.14% of the errors, importantly these
are errors that the host OS would not be able to recognize
because they do not lead to a thread crash or access violation
in the overall system. The remaining 1.79% of errors are silent
data corruptions that appear in our current shadowing system
but could easily be avoided.

Table II details the errors detected by thread shadowing into
function call errors (signature levels 1 and 2) and memory
errors (signature level 3). Memory errors outnumber function

call errors by a factor of only 10. This is noteworthy since the
HWT writes around 256 times more bytes to memory than
needed for calling functions over the OSIF. However, these
numbers will change with different HWTs that have different
characteristics in function calls and memory accesses. The
table also shows that, across all columns, less than 7% of all
faults injected lead to an error. We have expected this value
to be higher, since we have injected faults into the essential
bits, which were calculated by the FPGA vendors tools.

A notable observation is the correlation between memory
related errors, such as memory access errors and silent data
corruption, and the distance to the block-RAM, which on the
FPGA fabric is placed left of column 1 of the HWT. The closer
the column is to the block-RAM, the more errors we see.

Testing every bit in the address space would have resulted in
1’572’864 fault addresses. Usage of essential bits reduced the
amount of fault addresses to 108’631. This is a reduction by
a factor of 14.48. Regarding the duration of the fault injection
campaigns, we see that injecting faults into the essential bits
saved a lot of time. If we assume 3 seconds per error free
fault injection, full injection would have added 1’464’233 fault
addresses, and thus additional 51 days to the already spent 22
days.

Experimentation times of 22 days may seem prohibitively
long. On one hand we have to note that the fault injection
process can be optimized for speed, in particular by per-
forming experiments on several boards in parallel, to reduce
validation time. This is part of our ongoing work. On the other
hand, considering industry product development times, e.g.,
7.5 years on average for a satellite [31], spending a few weeks
for design validation seems to be feasible. Additionally, we
believe that it is not necessary to conduct such fault injections
experiments for all possible system configurations. Rather,
these experiments help understand the effectiveness of our
thread shadowing approach and classify the different errors
caught into classes.

VI. CONCLUSION

In this paper we have prepared and conducted fault injec-
tion experiments to test the effectiveness of the previously
presented thread shadowing mechanism for error detection
at the hardware thread level. We have used the Xilinx Soft
Error Mitigation Controller to inject errors and Xilinx facilities
to extract essential bits from the configuration bitstream.
Then, we have injected faults only into these essential bits to
eliminate testing of unused configuration bits and thus speed
up fault injection experiments.

Our measurements demonstrate the effectiveness of thread
shadowing. The hybrid multi-core’s host operating system
together with our thread shadowing layer were able to de-
tect over 98% of the overall errors. The remaining 2% of
errors result in silent data corruptions and are caused by our
thread shadowing system that allows the shadowing threads
to lag behind the threads-under-observation for performance
reasons. As we have shown in previous work [11], letting
the shadow thread lag behind results in slowdowns of only



2% to 3% compared to a system without shadowing. We can
easily catch all errors by closer synchronizing the shadow
thread and the thread under observation, but this comes with
a performance penalty. Additionally, our experiments have
shown that different signature levels are feasible and allow
the application programmer to distinguish between control
path and data path errors, where the former mostly manifest
themselves in corrupted sequences and parameters of OS calls
and the latter in wrong data written to memory.

Future work will extend our thread shadowing with a
barrier mechanism that allows the main application thread to
synchronize with the completion of all shadowing threads to
avoid the error class of silent data corruption. Moreover, we
will reduce the time needed for fault injection experiments
by optimizing the test procedures and running experiments
on several boards in parallel. Reduced validation times will
allow us to evaluate the effectiveness of thread shadowing for
a larger number of benchmark applications.
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