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Abstract — Dynamic thread duplication is a known redun-
dancy technique for multi-cores. We have adopted this concept
to reconfigurable hardware cores running hardware threads
in a hybrid multi-core system. For hardware threads we can
compare three different signatures: the sequence of operating
system (OS) function calls, the sequence of OS function calls
with their parameters, and additionally all memory accesses
with their type and data. These signatures allow for an increas-
ing error detection coverage, but also come with increasing
performance overheads, which enables an application designer
to trade-off the error detection coverage for performance. Our
experiments with three benchmark applications show that the
best error coverage can be achieved at a performance cost
between 2% and 55%, depending on the benchmark, the
signature used and the utilization of the CPU.

I. INTRODUCTION

Hybrid multi-cores are single-chip systems comprising soft-
ware programmable cores with reconfigurable hardware cores.
Hybrid multi-cores are particularly interesting for applications
that can benefit from different core types and customized
accelerators in terms of performance and energy-efficiency.
With their architectures and logic capacities, todays platform
FPGAs enable the implementation of hybrid multi-core sys-
tems with dozens and even hundreds of cores. Such hybrid
multi-cores are ideal platforms for the multi-threaded program-
ming model, which has been explored by several approaches,
e.g., Hthreads [1] and ReconOS [2], [3]. These approaches
introduce the concept of a hardware thread (HWT), which
basically is a reconfigurable hardware module turned into a
thread, i.e., extended to implement OS-like thread semantics.
However, due to the continued scaling of nanoelectronic tech-
nology, hybrid multi-cores—as any other digital design—will
experience a higher failure rate in future [4]. FPGAs already
experience a variety of fault modes, for instance permanent
faults such as wear over time [4] and transient faults caused,
for example, by radiation [5]. Hence, techniques are required
for detecting and subsequently dealing with errors in hybrid
multi-cores. While at the thread level several approaches
have been presented for software programmable cores, dealing
with faults in reconfigurable hardware cores has received less
attention so far. Typical countermeasures implemented at the
hardware or/and the software level rely on redundancy to
detect and, optionally, compensate for errors. Dual modular
redundancy (DMR) and triple modular redundancy (TMR) are

popular schemes that can be implemented at different system
levels. For example, at the level of FPGA circuits, the BYU
tool [6] takes EDIF netlists as input and applies TMR at look-
up table level. R3TOS [7] focusses on redundancy on the
module and system level and replicates complete CPUs and
voters to detect and correct errors. At the software layer Dobel
et al. [8] implement TMR for software threads, while PLR [9]
addresses the process level. While software-based redundancy
techniques require less implementation effort than hardware-
based ones, they typically suffer from enormous slowdowns
due to the need for intercepting memory accesses for all thread
or process copies.

Consequently, we discuss in this paper an approach for
detecting errors in HWTs using a dynamic redundancy tech-
nique. We select a HWT to be checked, the thread-under-
observation (TUO), and temporarily run a copy of this HWT,
the shadowing thread (ST), in the multi-core architecture.
During shadowing, we compare the so-called signatures of
both threads and interpret any deviation in the signatures as a
failure in one of the threads. These signatures are subdivided
into three levels and allow for an increasing error detection
coverage with increasing level, but also come with increasing
performance and/or area overheads. Our error detection frame-
work provides flexibility and enables an application designer
to trade error detection coverage for performance needed. To
use our framework the HWTs do not have to be modified.

As a new contribution of this paper we present the concept
and multi-core implementation of a dynamic error detection
mechanism for HWTs that can use three variants of signatures
for detecting errors as well as an experimental comparison of
the variants in terms of slowdown, error detection latency and
resource usage for three benchmarks with different character-
istics. In contrast to related work using a similar approach
[10], we introduce the novel memory access signature that is,
in combination with other signature types, the best possible
signature as it covers the complete behaviour of a thread
towards the OS and system memory.

II. SIGNATURE LEVELS CONCEPT AND IMPLEMENTATION

We have extended ReconOS [3] with our error detection
technique. ReconOS is an architecture, programming model,
and execution environment for run-time reconfigurable hybrid
multi-cores and it extends the multi-threading model from
software to HWTs. Figure 1 shows the our used ReconOS
architecture with a CPU, two hardware slots, peripherals and



memory controller mapped onto a platform FPGA. The CPU
runs the host OS, in particular its kernel, and the application’s
software threads. A hardware slot is a partially reconfigurable
region that can accommodate a HWT. The OS calls of a HWT
are communicated via its operating system interface (OSIF)
and executed by a delegate thread. HWTs can also access main
memory through the memory interface (MEMIF).
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Fig. 1. ReconOS architecture with one CPU and two hardware slots
accommodating a thread under observation (TUO) and a shadowing thread
(ST).

Looking at the ReconOS architecture, we can split the
interaction of a HWT into two categories. Calling an OS func-
tion results in communication over the OSIF, which includes
for each call the components function name or identifier,
respectively, the parameters and return values. Reading from
and writing to memory results in communication over the
MEMIF, which includes for each access as components the
type, address and data to be read or written. We define as
signature level a set of components that can be observed to
gain information about the behavior of a thread. The hardware
thread signature is then the actual sequence of observed
interactions of a thread.

TABLE I
OVERVIEW OF SIGNATURE LEVELS FOR HARDWARE THREAD SHADOWING.

Signature OS function calls (OSIF) Memory accesses (MEMIF)
Level Name Params Ret. Val. R/W Addr. Data

#1 D

#2 D D D

#3 D D D D D D

Table I summarizes the components included in the three
signature levels. The three levels provide a trade-off between
error coverage and performance, i.e., higher levels are able to
catch more errors but slow down a HWT and require more
resources to implement the shadowing technique. Signature
level #1 checks whether the threads issue the same sequence of
OS functions. Signatures of level #1 are light-weight and allow
us to recognize mainly failures in the control flow. Signature
level #2, when compared to level #1, provides a higher error
coverage and allows us to check for wrong results in many
HWT’s registers. Signature level #3 involves the OSIF and
the MEMIF and provides the best possible error coverage by
checking all communication a HWT can have toward the OS
and memory.

Our shadowing system has to intercept HWT communica-
tion over both the OSIF and the MEMIF for implementing the
three signature levels and to replay the captured data properly

to the ST. The following paragraphs detail the technical
realization of this interception mechanisms.

For intercepting and comparing OS function calls we
adopted the work from [10] and extended it to include the
signature levels. In short, the shadowing runtime system run-
ning on the CPU intercepts all OS function calls and maintains
a FIFO buffer to store those calls. The TUO writes to the
FIFO and the ST reads from it and compares its contents to
its own function calls. ST function calls are not propagated
to the OS kernel, but instead answered with the help of the
data stored in the FIFO entry. This mechanism is independent
from the signature level and ensures that the ST is always
provided with the same return values as the TUO. What
changes with the signature level is the amount of data stored
and checked. For signature level #1 the shadowing system
stores and compares the function names, for signature level
#2 additionally the parameters and return values. If these
values differ, the shadowing system issues an error message or,
alternatively, calls a user defined function. The FIFO decouples
the TUO and the ST and ensures that both threads can run
independently until the FIFO fills up. The FIFO depth is
configurable and allows for trading between performance, i.e.,
the TUO is not immediately slowed down by a slower ST,
and error detection latency. In our experiments, we have used
a shadowing system implementation with a 512-entry FIFO.

For intercepting and comparing memory accesses of the
TUO and the ST we had to extend the original MEMIF of
ReconOS. The ReconOS MEMIF uses a packet-based protocol
that allows for read and write requests to main memory. Each
read and write request packet comprises a header with the
type of the request, length and address and, for writes, the
data. The MEMIF of the default ReconOS system supports
up to 16 HWTs and implements a round robin protocol to
maintain a fair sharing of bus accesses.

We had to extend the MEMIF to guarantee that the ST
always reads the same data from memory as the TUO and that
ST writes do not reach main memory, but are compared against
the written data of TUO instead. To fulfill these requirements
we have implemented two new MEMIF arbiters.

The first arbiter implementation is denoted as arbiter dlat
since it minimizes the error detection latency. TUO and ST are
synchronized on every memory access. Errors in the MEMIF
packet header are immediately detected by comparing with
the ST’s MEMIF packet header and are not propagated to
main memory. Data errors are detected while on flight to main
memory. Even if a data error is detected, the rest of the write
request is completed. In either case an error message is sent
to the CPU detailing the kind of error and the position in the
data stream.

The second arbiter implementation is called arbiter perf
since it aims at maximizing the TUO performance by not
slowing it down too much. To that end, TUO and ST are
decoupled by a FIFO buffer. Similar to the shadowing system
on the CPU, the FIFO allows the TUO to advance further
than the ST at the cost of a higher error detection latency. The
TUO writes all memory access requests, including all read or



TABLE II
HARDWARE THREAD CHARACTERISTICS FOR OUR BENCHMARK APPLICATIONS.

Benchmark # OS function Memory accesses (MEMIF) Total Average computation
calls (OSIF) Reads Writes Data read Data written computation cycles cycles per second

matrixmul 3 132 128 128 KiB 64 KiB 49 9.16
sort 4 1 1 8 KiB 8 KiB 512 8.33
gsm 3 4 2 716 to 1144 Byte 674 to 888 Byte 28976 357.72

written data, into the FIFO. When the ST issues a memory
access request, the packet is compared to the packet in the
FIFO. On read, the data stored in the FIFO is sent to the ST
and on write, the data written by the TUO is compared to
the ST’s data. In our implementation we have chosen a FIFO
buffer size of 32 KB. In general, small buffer sizes lead to a
TUO slowdown and larger buffers consume more resources.

III. EXPERIMENTS

We have conducted experiments on a ReconOS implemen-
tation extended for thread shadowing running under Linux
kernel version 2.6.37 on the Xilinx ML605 Evaluation Kit
The CPU and the two hardware slots have been clocked at
100 MHz. We have conducted experiments with three bench-
marks: matrixmul, sort and gsm. All benchmark applications
instantiate a HWT for processing and run several computation
cycles until all input data is processed. The benchmarks have
been chosen to be quite diverse in their needs for calling
OS functions and accessing memory. Table II lists the HWT
characteristics for the benchmarks. The number of OS function
calls and memory accesses are given per application cycle and
the the average computation cycles per second are measured in
a system without shadowing. The matrixmul benchmark mul-
tiplies matrices using the Strassen algorithm [11] to split the
multiplication of a bigger matrix into several multiplications of
smaller matrices. The HWT works on integer matrices of 128
columns × 128 rows, resulting in 64 KiB per matrix. The sort
benchmark sorts an array of integers by splitting it in blocks
of 8 KiB, sorting the blocks with the HWTs, and joining the
results via a merge sort on the CPU. The gsm benchmark is
part of the well-known embedded MiBench benchmark [12].
We have ported the original benchmark code to ReconOS and
turned it into a software/hardware implementation, where it
computes the short term synthesis filtering of a GSM audio
stream for noise reduction with the help of a HWT. We have
conducted a set of experiments to quantify the effects of our
error detection technique with different HWT signature levels
on the runtime of the TUO, the error detection latency, and
the required logic resources. We have run each benchmark in
each shadowing configuration for 10 times for averaging the
results.

Figure 2 shows the slowdowns (formally, the speedups) for
our benchmarks under different shadowing system configu-
rations. The figure includes error bars showing the standard
deviation, which ranges from 5.1× 10−4 to 8.2× 10−3. The
baseline run measurements have been conducted with a non-
shadowed version of the benchmarks and the ReconOS default
arbiter and act as a reference point. The baseline sh off run
measurements have been done with a shadowing implemen-

tation that only intercepts OS function calls via the OSIF
but not the memory accesses via the MEMIF. There is
no ST running and there is no comparison of signatures.
This variant basically measures the overhead of OS function
call interception and handling. The next two measurements,
baseline sh on lvl1 run and baseline sh on lvl2 run are for
shadowing configurations that run an ST and perform compar-
isons of signatures of level #1 and #2, respectively, but still
without intercepting memory accesses. The next six measure-
ments are for full shadowing configurations with interception
of OSIF and MEMIF communication and signature compar-
isons at all three signature levels. Measurements dlat are for
the MEMIF arbiter that optimizes error detection latency, and
measurements perf for the MEMIF arbiter that minimizes
TUO slowdown.

Generally, the experimental results underline that increasing
the signature level decreases the TUO performance. However,
the slowdown depends more on the benchmark than on the
signature level. While the matrixmul and sort benchmarks
are slowed down by 2% at worst by shadowing, the gsm
benchmark is slowed down up to 55%. This is because it
performs a much higher number of OS function calls during
its runtime, which can also be seen in Table II (OS calls ×
computation cycles). Hence, it uses the CPU up to capacity
already at the baseline run measurement, and the additional
load of shadowing directly affects its performance. Comparing
the two MEMIF arbiters, arbiter dlat is always slower or
as fast as the arbiter arbiter perf, although the performance
difference is rather small for all our benchmarks.

Figure 3 shows the minimum, average and maximum error
detection latencies of all benchmarks in microseconds. The
error bars indicate a standard deviation from 83.24 us to
9483.84 us. We define the error detection latency as the
time difference between the ST and TUO function calls. The
detection latency can be positive, when the ST follows the
TUO, or negative in case the ST is blocked waiting for the
TUO. The earliest possible point in time to detect an error
is when the TUO issues an OS function call or accesses the
memory. In this sense our error detection latency measures the
additional delay in excess to this time. The results resemble
the trends in Figure 2: While matrixmul and sort experience
small detection latencies in the range of roughly 0.5 to 13 ms,
the gsm benchmark experiences latencies of up to 67.8 ms.
Again, this increased latency is caused by the high load of the
system CPU.

Table III shows the logic resource overheads of the three
arbiter implementations. Most of the resource increases comes
from the error detection and handling. Additionally, the ar-
biter perf implements a 32 KB FIFO buffer in distributed
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Fig. 2. TUO slowdown for our error detection technique, depending on the shadowing configuration, signature level and benchmark.
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Fig. 3. Detection latency for our error detection technique, depending on the shadowing configuration, signature level and benchmark.

TABLE III
RESOURCE CONSUMPTION OF THE MEMIF ARBITER IMPLEMENTATIONS.

MEMIF Abiter LUTs % FPGA Registers % FPGA
default ReconOS 211 0.13 % 133 0.04 %
arbiter dlat 2089 1.39 % 531 0.18 %
arbiter perf 9075 6.02 % 661 0.22 %

memory which leads to a high LUT count. Comparing the
resource requirements to the total available resources on our
FPGA, the increase in resource usage seems acceptable.

IV. CONCLUSION

In this paper we have presented our concept and imple-
mentation for dynamic error detection in hardware threads of
hybrid multi-cores. We have introduced three different sig-
nature levels for checking OS functions calls and accesses to
system memory. We have experimented with three benchmarks
and discussed the slowdown for the thread under observation,
error detection latency and resource usage for using our error
detection technique. There are two main insights. First, in
strong contrast to software-based systems, our implementation
for intercepting and comparing memory accesses of hardware
threads is very efficient and has only small impact on the
performance of the thread under observation. Second, the
load on the system CPU is a critical factor. Benchmarks that
frequently call OS functions increase CPU load which, in turn,
can severely slow down the hardware thread under observation.
Future work could therefore focus on spending a separate CPU
or even a hardware module for supporting the error detection
mechanism.
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