
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Classification of Electromyographic Signals:
Comparing Evolvable Hardware to

Conventional Classifiers
Paul Kaufmann, Kyrre Glette, Thiemo Gruber, Marco Platzner, Jim Torresen, and Bernhard Sick

Abstract—Evolvable Hardware (EHW) has shown itself to be
a promising approach for prosthetic hand controllers. Besides
competitive classification performance, EHW classifiers offer
self-adaptation, fast training, and a compact implementation.
However, evolvable hardware classifiers have not yet been suf-
ficiently compared to state-of-the-art conventional classifiers. In
this article, we compare two evolvable hardware approaches to
four conventional classification techniques: k-nearest-neighbor,
decision trees, artificial neural networks, and support vector
machines. We provide all classifiers with features extracted from
electromyographic signals taken from forearm muscle contrac-
tions, and let the algorithms recognize eight to eleven different
kinds of hand movements. We investigate classification accuracy
on a fixed data set and stability of classification error rates when
new data is introduced. For this purpose, we have recorded a
short-term data set from three individuals over three consecutive
days and a long-term data set from a single individual over
three weeks. Experimental results demonstrate that evolvable
hardware approaches are indeed able to compete with state-of-
the-art classifiers in terms of classification performance.

Index Terms—evolvable hardware, classification of electromyo-
graphic signals, prosthetic hand control, functional unit row
architecture, embedded cartesian genetic programming

I. INTRODUCTION

PROSTHETIC HAND CONTROLLERS (PHCs) are usu-
ally operated by signals generated by contracting muscles,

i.e., electromyographic (EMG) signals. In our work, we focus
on two challenges in the design of sophisticated PHCs: First,
traditional PHCs only cover a few motions driven by signals of
one or two muscle groups, effectively limiting the usefulness
of the PHC. A larger set of muscle groups and contraction
types would facilitate selection among a greater number of
prosthetic device functions. Second, having access to PHCs
which adapt themselves to changes in the user’s EMG signal
patterns would be a great advantage. The EMG patterns
are influenced by parameters such as muscle fatigue, skin
conductivity, and age. Currently, users are required to adapt
to predefined EMG patterns, partly supported by periodic re-
training sessions.

Paul Kaufmann and Marco Platzner are with the Department of Computer
Science, University of Paderborn, Warburger Str. 100, 33098 Paderborn,
Germany, (e-mail: paul.kaufmann@gmail.com, platzner@upb.de)

Kyrre Glette and Jim Torresen are with the Department of Informatics,
University of Oslo, Norway, P.O. Box 1080 Blindern, 0316 Oslo, Norway
(e-mail: {kyrrehg,jimtoer}@ifi.uio.no)

Thiemo Gruber and Bernhard Sick are with the Intelligent Embedded
Systems Lab, University of Kassel, Wilhelmshöher Allee 73, 34121 Kassel,
Germany, (e-mail: {gruber,bsick}@uni-kassel.de)

Evolvable Hardware (EHW) has originally been described
in [1], [2] as a combination of automated design of circuits
and reconfigurable hardware. The principle is based on Evolu-
tionary Algorithms (EAs) optimizing a circuit with respect to
a fitness metric which defines the input/output behavior. The
solution phenotype, encoded within a formal representation
model, is mapped to a hardware circuit and then tested on
a fitness function. The EHW principle allows a system to
adapt to a changing environment, recover from faulty states,
and react to new resource requirements at run-time. Several
applications of EHW have been presented, some of which
have been very successful. Examples include data compression
for printers [3], analog filters [4], evolved image filters [5],
evolved shapes for antennas [6], and high performance recon-
figurable caches [7].

While algorithmic aspects of EHW can be investigated by
simulation, a proof-of-concept implementation has to balance
the following trade-offs. To reduce the size of the search space,
the building block granularity of a potential solution should
match the building block granularity of the representation
model. Not constraining the search space by using general
building blocks allows for radically new and even superior
solutions but results in a very large search space and excessive
optimization times. Besides that, it is also essential for fitness
evaluation in hardware that the mapping from the genotype
to the phenotype circuit, including circuit reconfiguration, is
fast enough. This usually makes it necessary to avoid complex
place and route operations in software.

In the context of PHC, evolvable hardware becomes an in-
teresting approach, providing possibilities for self-adaptation,
fast training, and compactness. The combination of evolu-
tionary algorithms (EAs) and reconfigurable hardware allows
for automatically constructed hardware systems able to adapt
their structure to specification changes. Learning to classify
electromyographic signals is basically an incremental learning
problem when it is applied in practice. In general, a learning
task is incremental if the training examples that must be used
to solve that task become available over time [8]. In our case,
it would be possible that a disabled person using an intelligent
prosthesis system conducts some exercises under the guidance
of that system. The system records and processes the measured
data, extending the available training data with new samples.
The advantages of such an approach are obvious: First, the
system would adapt to the behavior of the disabled person (and
not vice versa). Second, the system would also be able to adapt
to long-term changes of the behavior of the disabled person.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2

An interesting question is whether the classifier can then be
trained incrementally instead of training it “from scratch”.
Updating and retraining the classifier using the most recent
data may allow to discard old training data, as the essential
knowledge that can be extracted from that data is already
contained in the classifier’s parameters. For Support Vector
Machines (SVMs) and other conventional classifier paradigms,
which are used for comparison in this work, there are in-
cremental training techniques available (see, e.g., [9]–[11]).
Our EHW approaches, while partially employing incremental
evolution, have not been analyzed with regard to dynamically
updating the classification function.

This article is a substantially extended version of our work
first published at the IEEE “Adaptive Hardware and Systems”
conference, Noordwijk, 2008 [12]. Generally, the article in-
vestigates the classification performance of EHW approaches
for a multi-movement prosthesis control application in order
to determine whether they are competitive with conventional
pattern matching algorithms. To achieve fair comparison, we
spent roughly the same effort for all algorithms on finding
well-performing configurations. We use grid search for con-
ventional and our expert knowledge for EHW classifiers. Our
results mirror general accuracy tendencies instead of peak
performances.

We present two different EHW approaches: a coarse-grained
and classification-tailored approach and a fine-grained and
more general approach. The performance of these approaches
is compared to that of four conventional classifiers, one of
which is SVM. SVMs are considered to be one of the most
powerful classifier methods existing today.

Another important aspect covered by this article in addition
to our previous work is the investigation of the classifiers’
behavior on EMG data recorded over a long period of time
(see Sec. VI-A and Sec. VI-D). Given the inherent ability
of EHW systems for autonomous adaptation, classification
of non-stationary data is an intriguing challenge for these
architectures. We show that using a moving average feature
extraction scheme and standard classification algorithms, the
accuracy rates degrade after a short period of time. Further-
more, we learn that data recorded at a single day is already
sufficient to reach high accuracies for all algorithms in our
comparison.

We demonstrate that our EHW architectures are competitive
with state-of-the-art classifiers. The rather compact distribution
of classification rates among different algorithms implies that
implementation requirements are the factor most relevant to
the actual selection of a classifier for prosthesis control. For
embedded system applications with functional and temporal
security aspects, adaptable hardware classifiers offer a range
of benefits.

The article is structured as follows. Section II describes
related work including both traditional classification methods
for PHC and classification by EHW. Sections III and IV
describe the setup of our EMG sensor system and the signal
processing applied to obtain the feature vectors. The tested
conventional classifiers as well as the two EHW approaches
are detailed in Section V. Descriptions of the conducted
experiments, validation schemes, and the obtained results are

given in Section VI. Section VII discusses the results and
Section VIII concludes our work.

II. RELATED WORK

The first known prosthesis controlled by electromyography
signals is the “Hüfner Hand” [13]. In 1948, Reiter imple-
mented a prosthesis controller using one EMG channel to en-
code “open” and “close” movements of an artificial hand [14].
A quick contraction and relaxation triggered the “open” move-
ment and a steady force contraction caused the prosthesis
to gradually close the hand. Driven by the availability of
compact electronic components, the area of prosthesis control
gained more popularity in the 1960s and 1970s. Substantial
effort went into defining strategies for robust selection of
prosthesis actions from muscular activities [15]–[19]. The first
commercial system was offered in the early 1960s [20]. In
the following, we discuss modern EMG signal classification
techniques with both conventional systems and evolvable
hardware.

A. Classification of EMG Signals with Conventional Systems

Modern conventional upper limb prosthesis control systems
typically use rudimentary algorithms to derive information
for steering a prosthesis. There are three popular methods of
acting on the signal of a muscle, or more precisely a group of
muscles, which consider:
• the intensity of muscular activity. For a single channel,

typically two intensity thresholds separate three muscle
states – relaxed, slightly contracted, and contracted –
allowing the prosthesis to perform, for example, “open”
and “close” movements [15].

• the muscular activity growth rate. Similar to the previ-
ous method, two thresholds for the speed of the per-
formed contraction partition the channel output into three
states [16].

• multiple groups of muscles, discriminating between con-
tracted / non-contracted muscles to encode the prosthesis
action. For example, using two channels, up to three
prosthesis actions and a neutral state can be selected.

For multi-functional prostheses, the control system can use
quick co-contractions to switch between different activity
modes (e.g., switching between the “grasping” and the “ro-
tating” modes for an artificial hand). However, such a control
mechanism is not intuitive and has to be learned by the user.

Pattern recognition algorithms enable a different way of
extracting information of muscular activity. For example,
instead of requiring the user to be familiar with the activation
of some groups of muscles to trigger an “open” movement,
pattern recognition algorithms are able to extract the natural
hand “open” impulse from the superimposed EMG signals of
the forearm. Pattern recognition methods allow for intuitive
control and are also capable of discriminating between a larger
number of distinct movements. However, multiple EMG chan-
nels are needed for a robust detection of multiple movements.

Early attempts to use pattern recognition algorithms were
made by Finely [21], Herberts [17], and Graupe and
Cline [19]. In today’s literature on EMG signal classification,

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 3

the signal processing chain is often broken down into three
algorithmic components: feature extraction, dimensionality
reduction and pattern classification. The feature extraction
step isolates application-specific attributes from the EMG
signal. Dimensionality reduction decreases the amount of data
for a more robust and accurate classification by selecting
or projecting features. The final pattern classification step
determines the predefined category to which the input data
belongs. The complete processing chain has to be carefully
balanced; in particular, the choice of a pattern recognition
algorithm and the selected features contribute significantly to
the recognition accuracy.

Feature extraction schemes for continuous prosthesis control
act in a sliding-window manner. That is, a feature set is
calculated for each window of the data, where the windows
are typically up to 300 milliseconds in length and are selected
according to the classification rate of the prosthesis controller.

Historically, the development of computationally efficient
algorithms has been of the utmost importance since pros-
thesis controllers typically run on battery-powered embed-
ded systems. Here, feature extraction methods acting in the
time domain (TD) are often regarded as being well-suited
because of their simplicity. Examples for time domain meth-
ods widely used in EMG classification are mean absolute
value (MAV) [22]–[27], zero crossing (ZC) [22], [23], slope
sign changes (SSC) [22], [23], [28] and waveform length
(WL) [22], [23], [28].

EMG electrodes, being electrically only loosely attached
to the skin surface, tend to act as antennas collecting noise
from power lines, adjacent electric and electronic prosthesis
subsystems, and other electromagnetic sources. Time domain
methods in general and methods using amplitude-based fea-
tures in particular have difficulties dealing with such noise
and also with the effects of varying skin conductance. Con-
sequently, a significant part of related work concentrates on
frequency domain based feature extraction to suppress noisy
influences. Fourier transformation (FT) and short-time Fourier
transformation (STFT) [23], [29], [30] are among the most
popular methods. Capturing information from the time and
frequency domains, wavelet transformation (WT) [23], [29]
and wavelet packet transformation (WPT) [23], [30], [31]
have also been successfully studied for recognition of EMG
signals. Despite being computationally expensive, frequency
domain feature extraction schemes are feasible on today’s
high-performance embedded systems.

Reducing the dimensionality of the feature space while
preserving essential information may increase a classifier’s
generalization ability. Additionally, irrelevant information that
is skipped in this step reduces the amount of data to be
processed by the classifier. Dimensionality reduction can be
implemented as feature selection that aims at maximizing
the probability of an correct classification [31], [32]. For the
classification of EMG signals, the projection of features is
quite popular. Projection creates a new and generally smaller
feature set by combining original features in a linear or non-
linear way. Some of the employed algorithms are principle
component analysis (PCA) [31], [32], linear and non-linear
discriminant analysis (LDA, NLDA) [33] and self-organizing

feature maps (SOFM) [33].
The last step of the signal processing chain covers pattern

recognition. A dominant part of related work uses artificial
neural network (ANN) classifiers [22], [34]–[36]. More recent
work also introduces support vector machines (SVM) for
EMG signal classification [26], [37], [38], as well as Bayesian
classifiers [31], [39], [40], fuzzy classifiers [41], [42], Gaussian
mixtures [43], and hidden Markov models [44].

A compact overview of methods for preparing, processing,
and classifying EMG signals is given by Zecca et al. [45] and
Parker et al. [46].

B. Classification of EMG Signals with EHW

An early use of EHW for pattern recognition was reported
by Higuchi et al. [47]. Their architecture was originally applied
to character classification but was later used for classification
in a prosthetic hand controller (PHC) [48], [49]. It employed a
programmable logic array (PLA)-like structure of AND gates
followed by OR gates. The configuration of the architecture
was evolved using a genetic algorithm (GA) implemented on
the same chip as the classifier, resulting in a compact and
adaptable system. The controller was trained with feature vec-
tors extracted from EMG data where one input signal consisted
of four channels at a resolution of four bits. The classifier
distinguished between six different kinds of movements. The
classification performance was computed by dividing the EMG
data into two halves and using one half as training data and
the second half as test data. Although the results showed a
competitive classification rate for evolved circuits compared
to artificial neural networks (ANNs), it was noted that the
size of the employed data set might be insufficient; this is
underlined by the strongly varying classification rates. As a
result of having the GA implemented entirely in hardware and
on the same chip, the learning time (800 ms) for the EHW
approach was significantly shorter than for the ANN. Short
training times are important for the user-friendliness of a PHC,
especially if online adaptation is applied.

Using similar EMG data, Torresen [50]–[53] conducted ex-
periments on incremental evolution using a EHW architecture.
The two-layered architecture consisted of AND-OR matrices
followed by a selector layer. The AND-OR matrices were
evolved in the first step followed by the evolution of the
selectors. In addition, the best subsystems from different runs
were combined into one system. The results showed that a two-
step incremental approach can lead to a better generalization
performance and shorter computation times than traditional
one-step evolution and ANN.

EHW classification architectures applied to domains other
than PHC include, for example, the function level evolution
of [54]. This architecture was applied to typical ANN appli-
cations (however, with fewer inputs and outputs), and attained
accuracies comparable to ANNs.

A different EHW pattern classification system, Logic De-
sign using Evolved Truth Tables (LoDETT), was presented
in [55], [56]. LoDETT allows for high accuracy classification
on problems with a much higher number of inputs and outputs.
However, the system does not implement online evolution

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 4

and relies on synthesis in software before the circuit is
implemented on a field-programmable gate array (FPGA). The
approach utilizes incremental evolution; i.e., sub-circuits are
evolved separately before being assembled into a final system.

A major challenge is to map evolved circuits to recon-
figurable hardware at runtime, since for today’s FPGAs no
commercial tools exist that support online reconfiguration at
the fine-grained level of logic gates and wires. An alternative
EHW approach to online reconfigurability on FPGAs is the
Virtual Reconfigurable Circuit (VRC) method proposed by
Sekanina in [57]. This method obtains virtual reconfigurability
by changing register values and multiplexer control signals in
the user circuit. The advantages of this high-level technique
are fast reconfiguration and applicability to all SRAM-based
FPGAs. However, the method potentially requires more logic
resources.

Work has also been carried out on bitstream reverse engi-
neering for recent FPGAs. This was applied to EHW circuits
in [58] and adapted to newer FPGA devices in [59]. The
approach allows for runtime reconfiguration of FPGA lookup
table (LUT) contents. However, changing an FPGA’s routing
resources is more complex and has not been achieved in the
context of EHW. While this approach has the potential to
save logic resources, it requires a low-level specification of
the circuit and yields potentially longer reconfiguration times.
An alternative approach to bitstream based reconfiguration is
an intermediate-level shift register based method as described
in [60]. This also allows for reconfiguration of LUTs, however
the method may not give access to all resources on newer
devices.

Using the virtual reconfiguration technique, Glette et al. pro-
posed an online evolvable EHW architecture, the Functional
Unit Row (FUR) architecture, for classification tasks [61]–
[63]. A device specific, shift register based implementation of
the architecture has been proposed [64] as well. The architec-
ture was applied to multiple-category face image recognition
and sonar return classification. The evolution part of the
system has been implemented on an FPGA, where fitness
evaluation is carried out in hardware and the evolutionary algo-
rithm runs on an on-chip processor. The architecture employs
function level modules as well as a method of dividing the
evolution into several smaller tasks.

Finally, the same architecture was also applied to PHC and
compared to another approach based on embedded cartesian
genetic programming (ECGP) [65]. The ECGP-based ap-
proach uses automatic definition of sub-functions and achieves
similar classification accuracies despite the fact that evolution
is performed on a more general architecture with lower level
primitives. Further investigation of the FUR and ECGP ap-
proaches continued in [12].

From simulated reconstructions of earlier proposed EHW
architectures of Kajitani et al. [48] and Torresen [50], a
comparison of different EHW approaches to classification for
PHC has been undertaken. The results have indicated better
performance for the FUR and ECGP approaches, with better
classification accuracies as well as faster evolution. We can
think at least of three reasons that the FUR and ECGP-
based architectures are more successful than the early EHW

+ -

+ -

+ -

+ -

A/D

Fig. 1. The EMG measurement system. The analog signal processing part is
decoupled from the PC and powered by a battery. EMG signal amplifiers
are placed close to the electrodes to reduce noise. Signal processing is
implemented completely on the PC.

classifiers of Kajitani et al. and Torresen. Firstly, both methods
share the same principle of decomposing a recognition func-
tion for a single category into an ensemble of multiple and
diverse recognition functions. The outputs are combined into
a graded metric and compared to the outputs of other category
classifiers. The reason for the decomposition is to reduced the
complexity a single classification function needs to realize.
In return, ensemble classifiers allow to tackle more complex
classification tasks.

The second reason lies in the complexity of the basic build-
ing blocks. Both early EHW classifiers employ Programmable
Logic Arrays (PLA). PLAs compute Boolean sum-of-product
(SOP) functions. Given the restricted functional set of AND,
OR, and NOT gates and a fixed circuit depth of two levels, a
search algorithm is typically faster at finding solutions when
exploring the unrestricted space of digital circuits comprising
all Boolean gates and without routing limitations. In contrast
to the ECGP representation model, which allows for explo-
ration of the unrestricted space of Boolean circuits, the FUR
architecture employes more complex functional elements using
comparators acting on binary encoded numbers.

The third reason for the success of the FUR and ECGP-
based classifiers is that both architectures process input data at
much higher resolution as the early EHW classifiers. Kajitani’s
et al. and Torresen’s PLA based approaches use 4 bits to
encode a signal value. As signal values are, for instance, binary
encoded, evolution has also to master the implicit task of
data type conversion or at least has to deal with differently
encoded input data types and function block inputs [49], [65].
Inputs of FUR’s basic building blocks, in contrast, match
the encoding of the input data types. In the ECGP-based
architecture, input values are linearly quantized by a 1-out-
of-500 encoder unifying the input data and functional block
encodings.

Details on FUR and ECGP-based architectures will be
presented in Sec. V-A.

III. EMG SIGNAL MEASUREMENT

We use different measurement systems for stationary and
portable EMG signal recording. The stationary system com-
prises four components: EMG sensors (Tyco Arbo*, Ag/AgCl,
35 mm), amplifiers (Biovison [66]), A/D converters (N.I. [67]),
and a standard computer. The system shown in Fig. 1 contin-
uously monitors four sensor channels with 14 bit resolution
at a sampling rate of 6 kHz. Two important requirements
for such a measurement system are the reduction of noise

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 5

channel 0

channel 3
channel 1

channel 2

Fig. 2. Sensor placement (muscle anatomy taken from [70]).

1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11)

Fig. 3. Motion classes: 1) extension, 2) flexion, 3) ulnar deviation, 4) radial
deviation, 5) pronation, 6) supination, 7) open, 8), close 9) key grip, 10) pincer
grip and 11) extract index finger.

in the analog signal domain and a reproducible biomechanical
experimental setup. To reduce noise, we employ an optical
bridge (Sonowin [68]) to galvanically decouple the signal
amplifiers and the A/D converters from the computer that
accumulates the data. A separate battery provides a stable
power supply to the amplifiers and A/D converters. Moreover,
the amplifiers are placed as near as 10 cm to the skin-
attached electrodes in order to minimize parasitic inductance.
For portable EMG data acquisition, we use a MindMedia
Nexus 10 Biofeedback System [69] to continuously monitor
four EMG sensor channels with 24 bit resolution at a sampling
rate of 2048 Hz.

We place the four electrode pairs on the top, bottom, medial,
and lateral sides of the forearm with the reference at the wrist,
as shown in Fig. 2. The exact electrode positions are specif-
ically determined for the test subject to obtain pronounced
signals. A reproducible biomechanical experiment setup is an
important requirement for such a measurement system. Thus,
after the initial calibration we mark the electrode positions
to be able to re-establish the experimental setup on different
days.

In a single run of the experiment, the test subject has to
perform a sequence of different movements. Some of these
movements are depicted in Fig. 3. Each movement starts with
a relaxation phase followed by a contraction phase, as shown
in Fig. 4(a). The EMG signal for the contraction part divides
roughly into a one second phase at the onset of the contraction
containing the transient components of the EMG signal and a
subsequent steady state phase which corresponds to a constant
force contraction. We use the steady phase for classification.

For the first experiment, we use the stationary EMG
measurement system to record the movements 1) to 8), as
presented in Fig. 3, by three individuals on three consecutive
days. In each of the nine sessions, an individual repeats the
movement sequence 20 times. Each movement consists of

 5

 5.2

 5.4

 5.6

 5.8

 6

 6.2

 6.4

 6.6

 6.8

 0 200 400 600 800 1000 1200 1400

v1,1 v1,2 v1,3 v1,4 v1,5

mean for two
moving average

windows
moving average

window size

Fig. 5. (200, 2, 5) feature extraction scheme for a single channel signal: five
mean average values over 2× 200 samples define a feature vector.

a nine second relaxation and an eleven second contraction
phase. The data is recorded at a 6 kHz sampling rate. For the
second experiment, we use the portable EMG measurement
system to have a single individual collect data from all eleven
movements presented in Fig. 3 over 21 days. Similar to
the previous setup, the subject records a single sequence of
movements 5 to 6 times a day. In total, 121 sessions are
conducted during different times of a day. Each movement
starts with a relaxation phase of about 4 seconds followed by
a contraction phase that lasts about 5 seconds. The sampling
rate in this experiment is set to 2048 Hz.

The data from the first experiment is analyzed by the
“Day1–3” and “2of3” evaluation schemes and the data from
the second experiment is analyzed by the “121” evaluation
scheme. The definitions of these schemes will be given in
Section VI-A.

IV. SIGNAL PREPROCESSING AND FEATURE EXTRACTION

Signal preprocessing and feature extraction is done com-
pletely in the digital domain. Our method is inspired by the
mean average value (MAV) scheme of Kajitani et al. [49].
We designed a method for an efficient computation procedure
by subdividing the input signals into small disjoint intervals.
Partial solutions are computed for each interval and reused for
feature vector extraction. This minimizes redundant computa-
tions.

The feature vector extraction scheme is defined by a 3-tuple
(r, s, t) where r is the size of the moving average window in
terms of samples, s is the number of moving average windows
used to compute a single feature value, and t is the number of
values in the feature vector calculated for a particular channel.
With k being the number of signal channels, p being an
index of a signal sample, dip, i = 1, . . . , k, being the DC
compensated raw signal, and j = 1, . . . , t, a single feature
vector, v ∈ Rkt is calculated as:

v = (v)ij = − log

(
1

rs

(j−1+s)r∑

l=(j−1)r+1

|dil|
)
.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 6

(a) relax (b) (c) steady state

Fig. 4. EMG signal preprocessing. The left figure shows the raw signals for all four channels, consisting of a) a relaxation phase, b) a transient phase with
intensified activity, and c) a steady state contraction phase. The center figure presents the DC offset-compensated and rectified signals from the four channels
in the steady state phase, and the right figure shows a single extracted feature vector using the (200, 2, 5) scheme.

Thus, a single feature vector in the (r, s, t) scheme consists of
k × t values calculated over r(s + t − 1)f−1 seconds where
f denotes the sampling rate.

To demonstrate feature vector calculation, we exemplarily
compute a (200, 2, 5) scheme for a signal sampled at 6kHz
(Fig. 5). The first element of v = (v1,1, v1,2, v1,3, v1,4, v1,5) is
computed as v1,1 = −log([200 · 2]−1 · [|d1,1|+ |d1,2|+ · · ·+
|d1400|]). Similarly, remaining elements of v rely on means
computed using raw signal values with indices (201, . . . , 600),
(401, . . . , 800), (601, . . . , 1000), and (801, . . . , 1200). Alto-
gether, the first feature vector relies on data recorded during
200 · (2 + 5− 1) · 6000−1 = 200[ms].

Our feature extraction scheme is tailored for the continu-
ous operation mode of a prosthesis controller running on a
small embedded system. With the update frequency fu for
the feature extraction and classification chain, the window
size r should be set to f · f−1u to allow the reuse of
(v)ij , i = 1, . . . , k, j = 2, . . . , t for the calculation of the
following feature vector. With t = f · f−1u only the averages
(v)ij , i = 1, . . . , k, j = t have to be updated. Coming back
to the example of Fig. 5, we set the update frequency to 30,
which results in a moving average window of r = 6000 ·
30−1 = 200 samples. We can thus reuse v1,2, v1,3, v1,4, v1,5
of the first feature vector and thereby relabel the elements to
v1,1, v1,2, v1,3, v1,4; consequently, for v1,5, only the sum of
raw signal elements with indices (1201, . . . , 1400) needs to
be computed. v1,5 is then the sum of partial results

1200∑

l=1001

|d1l| and
1400∑

l=1201

|d1l|

divided by rs = 200 · 2, so that the first partial sum is already
computed for the first feature vector.

In our experiments we set the update frequency to f(r(s+
t− 1))−1. Thus, the feature vectors are computed on disjoint
data. If further feature normalization is applied by the classi-
fication algorithm, the channels are treated independently. For
the “Day1–3”, “2of3”, and “121” experiments, the feature
vectors are computed by a (300, 2, 5) and (100, 2, 5) scheme,
respectively. Thus, the feature vectors consist of 20 values and
the corresponding label. Both feature extraction schemes use
the data of roughly a third of a second, which is a realistic

assumption for prosthesis control.

V. CLASSIFICATION PARADIGMS

This chapter introduces and compares two evolvable hard-
ware approaches and four state-of-the-art classifiers. The first
EHW approach uses simple Boolean gates to construct pattern
recognition circuits. The circuits are encoded within a variant
of the Embedded Cartesian Genetic Programming (ECGP)
representation model. The second EHW approach uses com-
parators acting on binary encoded numbers. A pattern recog-
nition circuit in this architecture is represented by multiple
comparators feeding into a single AND gate. We refer to the
first EHW classifier as the ECGP-based and to the second
classifier as the Functional Unit Row (FUR) architecture.

To evaluate the performances of EHW classifiers, we com-
pare their results to a reference algorithm. As we cannot expect
a single algorithm to perform best among all applications and
data sets, we select four conventional classifier paradigms,
Artificial Neural Networks (ANN), Support Vector Machines
(SVM), Decision Trees (DT) and k-nearest-neighbors (kNN),
that realize different forms of decision boundaries between
classes.

This section continues with the description of the common
structure of our EHW classifiers then proceeds with a detailed
presentation of the ECGP-based and FUR architectures, com-
pares their representation model, algorithmic and classification
properties, and finishes by sketching the conventional classi-
fiers.

A. Evolvable Hardware Classifiers

Both proposed EHW architectures for classification tasks
have a common high-level structure, see Fig. 6. The input
pattern is presented to a number of sub-circuits called classifier
circuits (CCs). A CC is a function with a binary output
indicating a match or a mismatch. Several CCs are grouped
together and their outputs are fed into a counter summarizing
the number of matches. A set of CCs and the counter are
denoted as a Category Detection Module (CDM) since the
CCs are detecting the same category. The classifier’s global
decision is made by selecting the category (CDM output) with

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 7

∑

∑

∑

...

max
in
pu
t

decision

CDM

CCs

Fig. 6. High-level structure of the EHW classifier architectures.

the highest number of matches. In case of a tie, the category
with the lower index wins.

The presented architecture belongs to the family of ensem-
ble classifiers. The idea of ensemble classifiers is to train
a set of diverse classifiers on the same training set and to
combine the predictions. The presented architecture can also
be seen as an extension of the early EHW architectures of
Kajitani et al. [71] and Torresen [50]. Kajitani used a single
Boolean sum-of-products (SOP) function to realize a CDM
while Torresen utilized a two-stage scheme of multiple SOPs
and a SOP subset selector for CDM implementation. Similar
to the architecture presented in Fig. 6, the maximal number of
activated SOP’s in Torresen’s architecture defines the global
decision.

1) The Embedded Cartesian Genetic Program Classifica-
tion Architecture: The first EHW-based classifier relies on
a variant of the ECGP model. ECGP is an extension of the
popular Cartesian Genetic Program (CGP) model [72] which
is a structural model that arranges functional blocks in a
two-dimensional geometric layout. In contrast to a genetic
program [73], which relies on trees to represent evolved
functions, a CGP in its original formalization is essentially
a restricted directed acyclic graph (DAG). The restrictions are
imposed by the array structure which limits the number of
overall functional blocks and the interconnect depth.

nc

nn

ni nr

f4

f5

f7

f8

f11

f10

f17
f21

f22

f23

f6

f9

f20

pi1

pi2

pi3

pi0

po24

po25

no

Fig. 7. Cartesian Genetic Programming Model.

Formally, a CGP model as defined in [72] consists of
nc × nr functional blocks, ni primary inputs, and no primary
outputs. A functional block has nn inputs and implements
one out of nf different functions on these inputs. While the
primary inputs and outputs can be connected to any functional
block input and output, respectively, the connectivity of the

pi4

pi1

pi2

pi3

pi0
f5

f6

m7

f8

f9

f10

m11

po12

po13

po14

{ , , . . .}
Fig. 8. The Embedded Cartesian Genetic Programming Model automatically
creates modules as compositions of primitive nodes.

functional block inputs is restricted. The input of a functional
block at column c may only be connected to the outputs of
blocks in columns c − l, . . . , c − 1 as well as to the primary
inputs. The levels-back parameter l restricts wiring to local
connections. Since only feed-forward connections are allowed,
the creation of combinational feedback loops is avoided.
Fig. 7 shows an example of a CGP model together with its
parameters. The model in this example has five columns, four
rows, four primary inputs, and two primary outputs.

To improve scalability, Walker et al. [74] introduced auto-
matic acquisition and reuse of sub-functions (modules) to CGP.
Coined as Embedded CGP, it configures the CGP genotype as
a single line of functional nodes (nr = 1, l = nc) and defines
modules as compositions of primitive nodes. While in the
original work modules are composed from randomly selected
primary nodes, in our work we aggregate primitive nodes
that have persisted in the genotype for a higher number of
generations to assemble a new module. The rationale is that
aged nodes are more likely to contribute directly or indirectly
to an individual’s success and should, therefore, be preferred
over randomly selected nodes for module creation. Initially, we
described the age-based module creation technique in [75].

In our work we use a standard (1+1) Evolutionary Strategy
(ES) algorithm. In every generation, the offspring individual is
derived from the parent by a mutation operator. The offspring
becomes the new parent except for the case when the parent
has a higher fitness. We have selected the (1 + 1) ES variant
as it has demonstrated better convergence behavior than other
(1 + n) ES variants, with n > 1.

The fitness is defined as candidate solution’s classification
accuracy on the training data set. More precisely, for the set
of labeled training feature vectors X = (x, l)j the fitness f of
an evolved classifier circuit c is defined as:

f(c) = |X|−1
∑

(x,l)j∈X

{
1 : if c(xj) = lj ,
0 : otherwise.

The complete set of ECGP model parameters and the ES
configuration are summarized in Tab. I. As our goal is to
evolve digital circuits that can be easily mapped to generic
FPGAs, we are using 4-input lookup tables as functional

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 8

TABLE I
PARAMETERS FOR THE EVOLUTION OF THE ECGP EHW CLASSIFIER.

ni / no / nr / nc 10000 / 1 / 1 / 1000–1500
nn / nf 4 / |B4|
fitness evaluations per generation 1
mutation prob. 1.0
mutation rate 0.03
one point mutation prob. 0.6
compress / expand prob. 0.1 / 0.2
module point mutation prob. 0.04
add / remove module input prob. 0.01 / 0.02
add / remove module output prob. 0.01 / 0.02
maximum module size 3

blocks and single wires for the connections. The mutation
operator either re-routes an input connection of a functional
block or selects block’s function randomly. The population
is initialized randomly with genotypes containing 1000 logic
blocks. Depending on the created modules, the genotype is
allowed to grow up to 1500 blocks. The rather large genotype
size helps to avoid stagnation during the final search phase.

Our ECGP-based classifier architecture is configured to
evolve 24 and 20 ECGP classifier circuits per category for
the Day1–3 and 2of3 experiments and for the 121 experiment,
respectively. Each of the 20 values in a feature vector are
linearly quantized to a 9-bit representation and input to a
1-out-of-500 encoder. The resulting 20 × 500 bits are then
fed into a classifier circuit. We noticed no further accuracy
improvement in our setup when increasing quantization’s
precision. However, our feature extraction scheme considers
only steady state phases of a muscle contraction. In order to
consider the contraction’s initial phase, which, as illustrated
in Fig. 4, has much higher amplitudes than the steady-state
phase, finer quantization would be required.

The remaining ECGP parameters in Tab. I, except the mod-
ule size, follow the standard configuration presented in [75].
We found that larger module sizes slow down the convergence
rate. In the light of the more randomized nature of EMG
signals, when compared to arithmetic functions, recurrent and
symmetric patterns within EMG signals may be more sparse
and compact.

2) The Functional Unit Row EHW Architecture: The sec-
ond EHW-based classifier investigated in this article is specifi-
cally tailored towards classification tasks and online evolution.
A regular structure has been chosen to make the mapping to
an FPGA-implemented circuit as direct as possible. Further-
more, the choice of functionality in the processing elements,
the width of the data elements, as well as the dimensional
parameters of the architecture, have been determined based
on the input data and through experimentation. To facilitate
online evolution, the classifier architecture is implemented
as a circuit whose behavior and connections can be con-
trolled through configuration registers, similar to the VRC
approach [57]. By writing the evolved genome bitstream to
these registers, one obtains the phenotype circuit which can
then be evaluated. The architecture is presented at a hardware-
abstracted level in the following paragraphs. Details about
the implementation can be found in [61]. A more hardware-
specific implementation, which saves resources by utilizing

FU1 ...FU2 FUn

AND

input pattern

�

...

Fig. 9. Category Classifier (CC): n Functional Units (FUs) are connected to
an n-input AND gate. Multiple CCs with a subsequent counter for activated
CCs define a CDM.

input
pattern

a > c

M
U

X

configuration

M
U

X

input selection

function
selection

a

c

constant

Fig. 10. Functional Unit (FU): The data MUX selects which of the input
data is fed to the functions “>” and “≤”. The constant c is given by the
configuration lines. Finally, a result MUX selects which of the function results
is returned.

lower-level FPGA reconfiguration abilities, has been explored
in [64]. This implementation would also have a straightforward
mapping to a bitstream manipulation approach using partial
reconfiguration, such as in [58].

The classifier system consists of P CDMs, one for each
category Cp to be classified—see Fig. 6. The input data to be
classified is presented to each CDM concurrently on a common
input bus. Each CDM consists of m CCs, or functional unit
(FU) rows, see Fig. 9. Each FU row consists of n FUs. The
inputs to the circuit are passed on to the inputs of each FU.
The 1-bit output from the FUs in a row are fed into an n-
input AND gate. This means that all outputs from the FUs
must be 1 in order to activate a rule. The 1-bit outputs from
the AND gates are connected to an input counter which counts
the number of activated FU rows. As the number of FU rows is
increased, so is the output resolution from each CDM. Each
FU row is evolved from an initial random bitstream, which
ensures a variation in the evolved FU rows.

The FUs are the reconfigurable elements of the architecture.
As seen in Fig. 10, each FU behavior is controlled by
configuration lines connected to the configuration registers.
Each FU has all input bits to the system available at its
inputs, but only one data element (e.g., one byte) of these
bits is chosen. One data element is thus selected from the
input bits, depending on the configuration lines. This data is
then fed to the available functions. Any number and type of
functions could be imagined, but for clarity, in Fig. 10 only two
functions are illustrated. The choice of functions for the EMG
classification application will be detailed below. In addition,
the unit is configured with a constant value, c. This value and
the input data element are used by the function to compute the
output from the unit. The advantage of selecting the suitable
inputs is that not all inputs have to be connected. A direct
implementation as done in the LoDETT system [56] would
have required n = 20 FUs in a row for the PHC application.
In contrast, our system uses n = 8 units. The rationale is that
not all of the inputs are necessary for the classification.

The 20 normalized amplitudes (5×4 channels) of the input

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 9

EMG signal are converted to 8-bit values before they become
inputs to the FUs. Based on the data elements of the input
being 8-bit values, the functions available in the FU elements
have been chosen to be greater than and less than or equal.
Through experiments these functions were seen to work well.
Intuitively, this allows for discriminating signals by looking at
the different channels’ amplitudes. The input is compared to
the constant, which is also 8 bits, to give true or false as the
output. This can be summarized as follows, with a being the
selected input value, and c the constant value, FU’s output is
defined as:

FU(a, c) =

{
1 : a > c
0 : otherwise.

A bit string (genome) is associated with each individual in
the population. Each FU is encoded in the genome string with
5, 1, and 8 bits for the feature address, function type, and
constant, respectively. This gives a total of Bunit = 14 bits
for each unit. With n = 8, the total number of bits in the
genotype for one FU row then is Btot = Bunit · n = 112.

For a more efficient implementation than the standard
single bit mutation probability approach, a customized scheme
has been adopted as the mutation operator. The number of
mutations, Nmut, is randomly selected first. Then, Nmut

random places are mutated (bit-flipped), instead of calculating
a random number for every bit in the genome. A standard
single-point crossover operator is applied directly to the bit
string.

Evolving the whole classification system in one run would
give a very long genome and, therefore, an incremental ap-
proach is chosen. Each category detector CDMp is evolved
separately. This is also true for the FU rows each CDM
consists of. Thus, the evolution can be performed on one FU
row at a time. This significantly reduces the genome size. One
then has the possibility of evolving CDMp in M steps before
proceeding to CDMp+1. However, we evolve only one FU
row in CDMp before proceeding to CDMp+1. This makes it
possible to have a working system in P evolution runs (that
is, 1/M of the total evolution time). While the recognition
accuracy is lower with only one FU row for each CDM, the
system is operational and improves gradually as more FU rows
are added for each CDM.

Fig. 11 illustrates a complete FUR adaptable classifier sys-
tem. That is, classifier containing all CDMs, while evolution
performs further adaptation/tuning in parallel. This could work
by having a CPU running the EA and evaluating candidate
CCs in a separate evaluation module. The evaluation module
would only need to contain enough hardware resources for
one CC, and thus requires much less hardware resources than
the operational classifier.

A certain subset of the available vectors, Vt, is used for
training the system, while the remaining, Vv , is used for
verification after the evolution run. Each row of FUs is fed
with the training vectors (v ∈ Vt), and fitness is based on
the row’s ability to give a positive (1) output for vectors v
belonging to its own category (Cv = Cp), while giving a
negative (0) output for the rest of the vectors (Cv 6= Cp). In
the case of a positive output when Cv = Cp, the value A is

category

decision

input

pattern

CLASSIFICATION

MODULE

fitnesstraining

patterns

EVALUATION

MODULE

configuration

CPU

configuration

&

Fig. 11. Run-time adaptation architecture for EHW classifiers.

TABLE II
MUTATIONS RATE DISTRIBUTION FOR THE FUR ARCHITECTURE.

Nmut 0 1 2 3
p 0.1 0.6 0.2 0.1

added to the fitness sum. When Cv 6= Cp and the row gives a
negative output (value 0), 1 is added to the fitness sum. The
other cases do not contribute to the fitness value. The fitness
function F for a row can then be expressed in the following
way, where o is the output of the FU row:

F =
∑

v∈Vt

xv where xv =

{
A · o if Cv = Cp

1− o if Cv 6= Cp.

For the experiments, a value of A = 4 is used. This
emphasis on the positive matches for Cp has shown to speed
up the evolution. Further, the architecture parameters n = 8
FUs per row and 20 rows per CDM are used. A maximum of
150 generations is allowed for each evolution run, however,
evolution is terminated earlier in case maximum fitness value
is reached. We have implemented a Simple GA [76] with
elitism, a population size of 32 and a crossover rate of 0.9.
The mutation rate distribution is summarized in Table II. That
is, the mutation operator is applied once with a probability
0.6, twice with a probability of 0.2, and so on.

3) Evolvable Hardware Classifier Comparison: While in
the ECGP-based approach, the genotype representing the en-
tire classifier is subject to evolutionary optimization, the FUR-
based approach employs the concept of incremental evolution.
An advantage of this is a simpler search, which in turn
should reduce the total evolution time and add the ability
to start classifying before all the sub-circuits have evolved,
i.e., one could start classifying as soon as one CC for each
category has evolved. Both EHW approaches also employ
high-level building blocks in addition to, or instead of, gate-
level components. The rationale for this is to reduce the
search space for the evolutionary algorithm. While the ECGP
approach extracts building blocks automatically, and thus is
a very general approach, the FUR architecture uses a priori
knowledge in the form of predefined building blocks found to
be good for classification. The EHW approaches allow for run-

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 10

time adaptation of hardware and online evolution, as shown
in Fig. 11.

Both EHW approaches rely on the principle of having a
graded output for each of the categories, which are then
connected to a maximum detector. This can be seen as a
way of having several different “detection rules” for each
category, which in turn should reduce the effect of overfitting.
A parallel could be drawn to ensemble approaches such as
random decision forests [77]: whereas single decision trees
(DTs) can be prone to overfitting, having a collection of
slightly different DTs for one category can significantly reduce
this effect.

The decision boundary of ECGP-based classifier is im-
plemented as a Boolean combination of signal values and
constants. Therefore, similar to kNN, the decision boundary is
a composition of straight lines. The FUR approach compares
signal values with constants, thus, analogous to DTs, realizes a
decision boundary with sections of straight lines that must be
parallel to the axes of the input space spanned by all attributes.

B. Conventional Classifiers

To investigate whether the evolvable hardware approaches
are competitive with state-of-the-art classifier paradigms in the
field of machine learning, we have chosen four “conventional”
classifiers for a comparison. These classifiers differ greatly in
the ways they form the decision boundary between any two
classes. Building a classifier basically consists of three tasks:
(1) choosing the functional form of the classifier, (2) defining
an objective function together with an optimization technique
to minimize or maximize that objective function, and (3) using
both together with a sample data set to find values for the
parameters of the classifier (i.e., to train the classifier). In [78],
Fisch et al. have shown that not only (1) but also (2) influence
the form of the decision boundary and, thus, the performance
of the classifier.

1) Nearest Neighbor Classifiers: A k-nearest-neighbor
(kNN) classifier is a very simple, data-based classification
approach [79], i.e., it does not require any training phase
as described above. From an analysis of the very general
“bias/variance dilemma” for classification tasks [80], [81],
which states that variance dominates bias, it can be concluded
that classifiers with a low complexity—corresponding roughly
to the number of free parameters—perform well in many
classification tasks. With this property in mind, we select
kNN, having only one parameter (k), as a baseline method.
We consider kNN as a reference method that is expected to
be outperformed by other kinds of classifiers. However, kNN
classifiers require storing of and iteration through all of the
sample vectors of the training data set during the operational
phase, thus they are barely suitable for many real applications,
which require a compact and fast implementation. In a kNN
classifier, the form of the decision boundary between two
classes is defined locally by the k nearest (using a Euclidean
distance measure) samples in the training set. Therefore, the
decision boundary is composed of sections of straight lines.
In our experiments, the number of neighbors is set to k = 7.

2) Decision Trees: Decision trees (DT) can be used for the
classification of numerical as well as categorical data [79]. A
DT realizes a set of human-interpretable if-then rules. In a tree
structure, each leaf node represents a classification decision,
each non-leaf node evaluates an attribute associated with that
node. An input sample vector is classified by successive tests
from the root of a DT down to a leaf. Our motivation for
including DT in our comparison is the possibility for extracting
human-interpretable rules. Moreover, DT can be regarded as a
state-of-the-art technique to solve classification problems. DT
realize a decision boundary with sections of straight lines that
must be parallel to the axes of the input space spanned by all
attributes. This restriction basically enables interpretability of
training results in the form of “if-then-else” rules. This is one
reason why DT are used for many practical applications.

In our experiments, we use the C4.5 algorithm [82] to
build a DT. C4.5 selects the next attribute (based on a greedy
principle) according to an information gain measure. Pruning
techniques such as subtree raising are applied to reduce over-
fitting of the classifier to the training data set. The confidence
threshold for pruning is set to 0.25 and the minimum number
of instances per leaf are 2.

3) Support Vector Machines: Support vector machines
(SVM) use a hyperplane to separate any two classes [83], [84].
For problems that cannot be linearly separated in the input
space, SVM find a solution using a nonlinear transformation
of the original input space into a high-dimensional so called
feature space, where an optimal separating hyperplane is
determined. Those hyperplanes having a maximal margin are
called optimal, where margin means the minimal distance from
the separating hyperplane to the closest (mapped) data points
(so called support vectors). The transformation is usually
realized by nonlinear kernel functions, e.g., Gaussian kernels.
C-SVMs, which are used here, introduce slack variables—
being subject to minimization as well—to allow a certain
degree of misclassification. With the aid of nonlinear kernel
functions, SVM are able to realize arbitrary nonlinear decision
boundaries in the input space. The key advantage of SVM is
that they are based on the principle of structural risk mini-
mization which typically leads to a very good generalization
performance. Thus, one could expect SVM to yield very good
results in our comparison.

In our experiments, we use a C-SVM with a Gaussian
(radial basis function, i.e., RBF) kernel. For the “Day1–3”
and “2of3” experiments, we set C = 0.5 and γ = 0.175. The
parameters for the “121” experiment are C = 3 and γ = 1.

4) Neural Networks: Multilayer perceptrons (MLP), also
known as backpropagation networks, are neural networks that
are biologically inspired [85], [86]. They aim at being discrim-
inative, but they lack a built-in mechanism for structural risk
minimization like SVM. Thus, good generalization properties
must be assured by means of comprehensive cross-validation
or bootstrapping tests. Like SVM, MLP are able to realize
nonlinear decision boundaries. A major difference to SVM
is that the structure of the classifier (e.g., number of hidden
neurons) must be fine-tuned by hand. We have chosen MLP for
our comparison because of their use as a reference classifier
in related work on EHW.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 11

In our experiments, we use a MLP with 20 input neurons
(for the 20 input features), 8 and 11 output neurons (for the 8
and 11 classes), and one hidden layer consisting of 32 neurons.
MLP are trained using the backpropagation algorithm with an
additional momentum term. The learning rate is set to 0.3, the
momentum rate to 0.2, and the number of training epochs is
500.

VI. EXPERIMENTS AND RESULTS

This section presents and compares the performance of the
proposed EHW and conventional state-of-the-art classification
algorithms. First, we present the classification accuracy calcu-
lation schemes. Then, we evaluate the classification algorithms
and rank them using three different benchmarks.

A. Validation Schemes

Our first experiment is based on the stationary EMG
measurement system and uses cross-validation for evaluation.
Cross validation is a partitioning scheme splitting the data
into similar-sized chunks, selecting one chunk for performance
testing and the remaining chunks for training. This scheme
is repeated until all chunks have served for testing. The
considered classifiers are trained anew for each test chunk. The
data of the first experiment is used to define two benchmarks:
In the first benchmark, referred to as Day1–3 benchmark,
we investigate the asymptotic classifier accuracy by merging
and shuffling all data from a single individual and evaluating
the proposed classifiers with 10-fold cross validation. In the
second benchmark, referred to as 2of3 benchmark, we aim
at investigating the classifier’s generalization capabilities. To
this end, we use a 3-fold cross validation defining the data
partitioning by the recorded day. Thus, data from two days
are used for training and the data from the remaining day are
used for testing.

The second experiment, referred to as 121 benchmark,
is undertaken with our portable EMG measurement system
and investigates longer-term effects on the performance of
classifying EMG signals. The main question is whether and
how much the classification accuracy degrades over time if
the classifiers are not being trained continuously. Despite its
importance, this issue has not yet been investigated. The main
part of related work on EMG signal classification focuses
on accuracy improvement and the number of discriminated
movements. Assuming the EMG signal changes over time,
one needs to study the nature of the change, the way it can be
measured, and the effects has on the classification accuracy. To
design practical prosthesis controllers, one finally has to devise
appropriate feature extraction schemes compensating for EMG
signal variations and also look at the interdependency between
a continuously retrained controller and the amputee interacting
with the prosthesis controller. Furthermore, one also has to
analyze technical issues such as the amount of training data
needed for reaching nearly asymptotic accuracy, the selec-
tion of most stable feature extraction scheme, dimensionality
reduction method, classification algorithm combination, and
incremental learning. In this work, we address a subset of
these issues, in particular the amount of data required to

reliably reach high accuracies and the fundamental question
of accuracy degradation for an initially trained classifier. In
the 121 benchmark we define three validation schemes. For a
test trial i, i ≥ 2, we configure the training set to consist of:

1) 1, . . . , i− 1,
2) 1, . . . ,min(s, i− 1), and
3) max(i− s, 1), . . . , i− 1

trials. Here, s denotes the number of trials sufficient for all
algorithms to reach high accuracy. Over all classifiers, we
found five trials to be sufficient. The first validation scheme
determines the accuracy using all available data for training.
It is a priori unclear whether this results in the best possible
performance, since in general, aged data might lower the clas-
sification accuracy. Moreover, a permanently growing training
data set also permanently increases the computational load for
retraining. The goal of the second scheme is to check whether
the accuracy degrades, when a classifier is trained with data
from the first day only. Finally, the third validation scheme
investigates the evolution of the accuracy when using only
recent data for training and thus tries to answer the question:
Can the classification accuracy be improved by stripping aged
data?

Experiments using kNN, DT, MLP, and SVM algorithms are
conducted with the data mining framework RapidMiner [87].
RapidMiner uses the LIBSVM [88] implementation for sup-
port vector machines and the WEKA [89] implementation for
decision trees and multi-layer perceptrons. In the case of SVM,
multi-class problems are handled by LIBSVM using the one-
against-one method [90]. For the ECGP-based architecture, the
experiments are carried out using the MOVES-toolbox [91].

B. The Day1–3 Benchmark

We use the error rate as a metric to compare the classifica-
tion performances of different approaches. Tab. III summarizes
the error rates, arranged by the particular individual. The test
error rates show the classifiers’ generalization abilities, and
the error rates obtained for the training data sets point to the
classifiers’ approximation abilities. Bold numbers symbolize
the best results. kNN, DT, MLP and SVM are the k-nearest-
neighbor, decision tree, multi-layer perceptron and support
vector machine approaches respectively. EHW1 and EHW2
are the evolvable hardware approaches, where EHW1 refers to
the ECGP-based model (see Section V-A1) and EHW2 denotes
the FU row architecture (see Section V-A2).

TABLE III
Day1–3 EXPERIMENT: APPROXIMATION AND GENERALIZATION ERRORS

IN %. BOLD NUMBERS REPRESENT THE BEST ERROR RATES.

user 1 user 2 user 3
training test training test training test

kNN 3.14 3.96 12.94 17.29 3.64 4.75
DT 1.42 8.68 4.51 25.85 1.72 8.95
MLP 3.09 4.45 23.73 25.44 4.31 5.67
SVM 5.53 5.63 32.22 32.30 6.59 6.68
EHW1 7.50 8.86 38.00 39.57 8.81 8.30
EHW2 9.59 10.02 45.67 46.08 11.03 11.40

The first major observation is that we achieve high training
and test error rates for user 2. Since we carefully configured

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 12

and adjusted the EMG sensor positions and ran tests before
starting the data experiments, we can dismiss the experimental
setup as a reason for the high differences in the error rates.
The day-wise analysis of user 2 data reveals similar bad
recognition rates, separately for each day. Thus, we assume
that the results are due to either a lax tension when performing
the contraction phases or the physiological properties of the
subject. The second observation, and this comes as a surprise,
is the excellent performance of the kNN classifier. This could
be explained by the “bias/variance dilemma”, mentioned in
Sec. V-B1. It states that even a simple classifier can achieve
high accuracy rates, as low model complexity corresponds to
low variance. MLPs come second, followed by SVMs. The
small gaps between training and test accuracy rates imply
correct parametrizations and negligible effects of overfitting.
In contrast to this, and as a third observation, DTs show a
larger distance between training and test accuracies despite
using pruning techniques to prevent overfitting. The EHW-
based classifiers close the comparison being near to DTs. The
accuracy rates are within a 6% margin for user 1 and user 3
benchmarks and within a 29% margin for the user 2. High
and compactly distributed accuracy rates for the user 1 and
2 experiments among all algorithms let us assume that the
task of EMG signal classification using mean average features
tends not to be too complex.

C. The 2of3 Experiment

In this experiment we focus on the real-world situation
in which data of a past time period is used to train the
classifiers and the performance of a prosthesis is measured
on a consecutive time period. To this end, we define, as
described in Subsection VI-A, a 3-fold cross validation scheme
partitioning the data of the folds by the recording day. Since
the EHW classifiers are evolved from random genotypes, each
evolved classifier has a different structure and the classification
rates vary slightly. The EHW experiments generate only three
classifiers when computing the 3-fold cross validation. To
achieve reliable accuracy rates, we evolved 10× 3 classifiers
and averaged the results.

TABLE IV
2of3 EXPERIMENT: APPROXIMATION AND GENERALIZATION ERRORS IN

%. BOLD NUMBERS REPRESENT THE BEST ERROR RATES.

2of3
user 1 user 2 user 3

training test training test training test
kNN 2.70 12.38 12.62 40.46 3.02 18.25
DT 2.28 17.95 7.68 48.28 2.82 23.19
MLP 2.43 14.49 20.93 44.94 2.97 19.25
SVM 4.88 12.10 32.14 45,53 5.64 17.04
EHW1 2.90 19.63 6,88 48.43 1.49 18.05
EHW2 8.75 14.55 42.69 54.13 9.26 20.07

Characteristic of the 2of3 experiments are the higher error
rates and larger distances between training and test rates
compared to the Day1–3 experiment (see Tab. IV). This can
be explained by an insufficient amount of data for prediction
model creation and by a smaller portion of training and
larger portion of test data used in the 3-fold cross validation.

TABLE V
121 EXPERIMENT: AVERAGED ERRORS IN % (GENERALIZATION), WHEN

TRAINED ON FIRST FIVE TRIALS (ROUGHLY DATA RECORDED ON A SINGLE
DAY), FIVE RECENT TRIALS AND ON ALL PRECEDING TRIALS.

first five preceding five all preceding
kNN 26.19 10.45 7.86
SVM 26.23 9.00 8.66

Additionally, data used for testing have been recorded on
a different day than the data used for training. With these
differences in mind, no algorithm consistently dominates this
benchmark. While SVM and kNN still perform well, being
among the three best algorithms and always taking the first
place, MLPs are taking the second place for user 2 and EHW1
for user 3 experiments. Analogous to the Day1–3 experiment,
DTs again demonstrate some overfitting. Additionally, EHW1
shows larger overfitting effects indicating the necessity for
pruning techniques. The ranges for test errors over all algo-
rithms are roughly the same as in the previous benchmark,
lying around 7% for the user 1 and user 3 experiments and
around 14% for the user 2 experiment.

While observed performance behaviors in the 2of3 experi-
ment can be explained by the same reasons mentioned when
analyzing the Day1–3 experiment, the results suggest two
additional conclusions. The closer distances between SVMs,
MLPs and the EHW approaches raise the question whether
the higher decision boundary flexibility of SVMs and MLPs
is really necessary. Additionally, the results support the idea
that periodic retraining may be useful to maintain high clas-
sification rates.

D. The 121 Experiment

Fig. 12 and 13 plot the accuracy results for the best-
performing conventional classifiers in our 121 experiment:
kNN and SVM. As described in Subsection VI-A, we evaluate
three validation schemes in this experiment: employing all
preceding trials, preceding five trials, and first five trials
for training and the following one trial for testing. For a
trial i, while using all or five previous trials for training
yields similarly good accuracy rates of roughly about 90%,
training kNN and SVMs with the first five trials result in
degrading accuracy. This accuracy loss became visible after
two to three days of omitted re-training. The averaged error
rates are summarized in Tab. V. Interestingly, there is no
significant indication of a negative influence of “old” data
used for training. For both algorithms, the error rates improve
from the second to the third column of Tab. V. While the
improvement is small for SVM, kNN improves its error rate
by 2.59%. However, fading out old training data for potential
accuracy improvement might make sense considering the real-
world prosthesis usage periods. Large training data bases also
result in high computational effort for SVM training and kNN
classifying.

We limit the evaluation for the remaining classification
algorithms to the “preceding five trials” scheme, as training
became costly with increasing data sizes. We chose this
scheme as it is relevant to the prosthesis controller application.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 13

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100 110 120

ac
cu

ra
cy

measurements

kNN, trained on all preceding trials
kNN, trained on 5 preceding trials

kNN, trained on 5 initial trials

Fig. 12. 121 Experiment: Test accuracy for the kNN algorithm trained on the first five, last five, and all preceding trials.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100 110 120

ac
cu

ra
cy

measurements

SVM, trained on all preceding trials
SVM, trained on 5 preceding trials

SVM, trained on 5 initial trials

Fig. 13. 121 Experiment: Test accuracy for the SVM algorithm trained on the first five, last five an all preceding trials.

The results are summarized in Tab. VI. Similar to the previous
experiments, kNN and SVMs perform best followed by MLPs.
EHW approaches lie between this group and the DTs. The
error rates spread in a 9% interval bounded by SVMs at 9.0%
and DTs at 17.91%. The values are similar to the user 1 and 3
results of the 2of3 experiment. The peak classification rates are
slightly better while being somewhat broadly distributed. The
similarities of the 2of3 and 121 experiments are not surprising.
Both evaluation schemes use data from disjoint recording
sessions for training and testing. The slightly better results of
the 121 experiment can be explained by a larger data portion
used for training. This also is probably an explanation for the
broader accuracy distribution. Data in the 121 experiment were
recorded for user 1. All algorithms are able to improve their
classification accuracies using more training data in the 121
experiment (compare Tab. IV, user 1 test column and Tab. VI).
While for some algorithms the improvements are rather small
(cf. DT with a 0.04%), other algorithms manage to get roughly
3% to 4% improvements, as the EHW1, SVMs and MLPs.

TABLE VI
121 EXPERIMENT: AVERAGED ERRORS IN % (GENERALIZATION), WHEN

TRAINED ON FIVE RECENT TRIALS (ROUGHLY DATA RECORDED ON A
SINGLE DAY). BOLD NUMBERS REPRESENT THE BEST ERROR RATE.

error rate
kNN 10.45
DT 17.91
MLP 10.44
SVM 9.00
EHW1 16.48
EHW2 13.72

VII. DISCUSSIONS

From the experimental results, we can make the following
observations:

• Among the conventional classifiers, kNN yields surpris-
ingly good results. While this approach is likely to be
inapplicable for a real prosthetic hand controller as all the
data have to be stored and evaluated for the classification
decision, it shows that the classification problems posed
by our experiments can be solved with very simple clas-

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 14

sifiers. DT—despite the pruning techniques which have
been applied—are prone to overfitting in this application,
in particular in experiment 2of3. Amongst the conven-
tional classifiers, kNN and SVM yield the best results.
However, similar to kNN, SVM might be susceptible to
a growing training data set.

• The EHW approaches—and this is the main result of
our experiments—also yield a good classification per-
formance. While the Day1–3 experiment turned out to
be tough for both approaches where EHW1 and EHW2
clearly rank at the end, the 2of3 experiment shows a
more compact distribution of accuracies with the EHW
approaches deviating 2%, 8%, and 1% from the best
performing classifier. In the 121 experiment, the distances
to the best performing algorithms amount to 4,7% and
7.5%.

• We observe that the task of EMG signal classification
using mean average features needs online learning. The
classification rates fall by 8%, 23% and 12% from the
Day1–3 experiment, where 10-fold validation was applied
on the shuffled data set, to the 2of3 experiment, where
data of two days was used to classify the data of the
third day. This is an indication that data of few days is
not sufficient to evolve a highly predictive model. In an
additional experiment we observed that the classification
rates degrade when not retraining continuously.

The achieved classification rates, except the results for the
second user in the 2of3 experiment, are high enough for
a prosthetic hand controller. One of the open issues in the
area of prosthesis controllers is the definition of a proper
quality metric. A PHC relies only partly on the accuracy
of the utilized classifier. In recent work, a more holistic
approach has been introduced by Englehart et al. [92] and
Shenoy et al. [38], accounting for the success and execution
time of complex and real-world hand movements. Typical
exercises are, for instance, the grasping and turning of a
door knob, and picking up and relocation of an object. These
kind of metrics implicitly rate the classification accuracy.
Summarizing his results, Englehart states that: “Perhaps most
importantly, these results [92] support clinical observations
that training data which includes transient MES [myoelectric
signal] information can lead to more robust usability and
performance while yielding a seemingly “worse” classifier.
The authors [Englehart et al.] therefore suggest caution in
accepting classification error as the sole measure of a systems
usability and performance” [92]. Englehart et al. found that
accuracy rates below 85% start to impact on the performance
of complex movement executions.

The accuracy rates in our experiments can certainly be
improved. The goal of our work is not to reach highest
classification rates possible, but to have a fair comparison
of pattern matching algorithms. To this end, we have spent
roughly the same amount of time finding good performing con-
figurations for the different classifiers. We used grid search for
conventional and our expert knowledge for EHW algorithms.
Additionally, the experiments were executed by subjects not
familiar with EMG controlled prostheses. An amputee usually

spends months of training before being able to reliably create
pronounced muscular tensions. He/She also learns how and
which muscles to activate to achieve the desired response from
the prosthesis. Higher recognition rates can be approached by
a model view on prosthesis’ mechanics. A prosthesis cannot
respond to very short misclassifications of some milliseconds.
Elimination of misclassification glitches by a low-pass filter,
while slowing down prosthesis latency, increases the overall
accuracy rate. In our experiments we observed improvements
of 3% to 7%. Furthermore, complex hand movements decom-
pose into basic hand actions. Each action has a typical duration
and some follow-up actions, specified by their probabilities.
Capturing prosthesis’ action space by a Markov-chain based
model, helps reduce misclassification during a single action
and select a correct follow-up action more quickly and reliably.

Incremental learning can help to reduce computational
complexity for situations where online learning is required.
For instance, kNNs need only add labeled data to their data
base to build a new model. There are several elegant methods
to update support vectors of a SVM (see, e.g., [9], [10]).
The update process of a neural network is more complicated,
often demanding a return of complete learning algorithm (see,
e.g., [11]). However, porting software algorithms to hardware
with an option for reconfiguration is not a trivial task. Our
EHW approaches, while being reconfigurable, have not yet
been investigated regarding efficient retraining techniques.

All of the classification approaches are able to provide a
differentiated output of the certainty of the match to a given
class (movement). This implies implementation details being
key to classifier selection for prosthesis control. PHC’s primary
requirements are a secure operation mode with guaranteed
functional and temporal aspects, as well as energy efficiency.
This gives HW approaches an advantage over SW methods for
the following reasons: The exclusive usage of a computational
resource often allows for giving HW approaches precise ex-
ecution time estimations and response time guarantees. HW
solutions also have a somewhat simpler function verifica-
tion. While some modern microcontrollers have low energy
consumption [93], they lack larger memories and floating
point units. Together with limited computational power, often
only simplified classification algorithms can be realized there.
Evolving and retraining classifiers, storing larger data models
and data sets, and acquiring dynamic data is seldom possible
on such small systems. HW approaches, on the other hand,
while also offering energy efficiency and compactness, are
much more capable of solving computationally extensive tasks
and can be designed to efficiently interface large memories.

Although it is hard to state precise comparisons between
possible hardware implementations of the EHW approaches
and the other classifiers in this article, we can make some
general considerations. The kNN is data driven, a hardware
implementation of this approach is therefore expensive in
terms of distributed memory as the number of input vectors
grow [94]. Our EHW approaches operate on a fixed number
of CCs and thus the implementation and classification time
would not grow with the number of training vectors. HW
implementations of SVM face the challenge of a constrained
quadratic programming problem for the training phase, which

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 15

grows in complexity with the number of training vectors.
A fully parallel approach is restricted by the reconfigurable
device size, which also limits the training set [95]. The popular
specialized sequential minimal optimization has recently been
proposed for a hardware SVM system [96]. However, there
are still important resource costs associated with fixed-point
arithmetic operations. As our EHW approaches bear some
similarities to DTs, a DT hardware implementation would be
scalable in terms of the number of training vectors. However,
generated DTs are often complex and care would have to
be taken into generating hardware-friendly trees and avoiding
floating point operations. The straightforward implementation
of ANNs requires much resources because of heavy use of
floating point arithmetic in the nodes. However, there are
alternatives which are better suited for HW implementation.

In summary, we can conclude that the observed results give
us rough classification tendencies for EMG signal classifica-
tion. More representative results require experiments with a
greater number of subjects. The classification rate in a real
prosthesis controller application might be significantly better
because of amputee training, personalization of algorithms’
configurations, fewer number of classes, and more elaborate
online learning.

VIII. CONCLUSION AND FUTURE WORK

In this article, we have compared two EHW approaches
for a multi-motion PHC to state-of-the-art conventional clas-
sification techniques. One of the EHW approaches is rather
general, whereas the second is tailored for online evolution
and classification tasks. We have detailed our method for
acquiring EMG data and extracting feature vectors. Based on
the obtained data, we have defined several experiments and
computed the classification accuracy for the different classi-
fiers. The main results of this article are that EHW classifiers
are at par with conventional techniques and that classification
of EMG signals requires an adaptable classification archi-
tecture with an incremental learning approach. This finding
is of utmost importance, as the appeal of EHW approaches
is rooted in their suitability for self-adaptation, fast training,
and compact system-on-chip implementation. Knowing that
EHW approaches are also competitive in terms of classification
performance motivates future work along several lines:

While the two EHW approaches both provide good clas-
sification results, their strategies are different. The ECGP-
based model of EHW1 is a very general model which allows
for complex structures by applying automatic generation of
building blocks. Since the model is general, it should be
possible to apply it to other tasks with minimal effort. The
FU row-based EHW2 architecture, on the other hand, uses
more a priori knowledge in the form of predefined building
blocks and data buses tailored for classification. It is designed
for direct hardware implementation and this has also made
online reconfigurability possible. It will be of interest for
future experiments to investigate the mapping of the ECGP
model to hardware, and the possibility of increasing the
flexibility of the FU row architecture. For example, in [97]
the authors demonstrated the FUR architecture to be robust to

resource changes, showing fast recovery in case of architecture
reconfiguration.

The modular and scalable structure of our approaches is
well suited to run-time reconfiguration; incremental training
and learning is thus a strong candidate for future research. For
non-stationary data sets comprising variable components over
time, computational complexity reduction of classifier update
is the primary goal for incremental learning. Incremental
learning for the ECGP-based architecture requires re-running
the evolution with the updated data set on previously evolved
classifier. FUR’s incremental learning needs the architecture to
“forget” some learned pattern matching functions. However,
FUR’s category classifiers are hierarchical superpositions of
such functions. Changing or removing a single function may
invalidate the complete hierarchy. Thus, FUR needs to be
evaluated regarding new learning strategies.

Classification accuracy influences the acceptance of a EMG-
driven prosthesis only to some extent. Englehart et al. [92]
found that accuracies over roughly 85% can lead to “robust
usability and performance”, when considering real-world com-
posite hand movements. Our results can be improved by a
model-driven approach. To this end, upper limb action space
needs to be captured by a model considering movements’
durations and the likeliness of typical movement sequences.
Another issue is the prosthesis mechanics latency. A prosthesis
cannot react to classification impulses below some threshold.
Filtering out these misclassifications also improves the accu-
racy. An amputee is constantly learning how to work with the
prosthesis’ classifier to get the right response. With amputee’s
visual feedback, a sufficiently good classifier may be the right
choice for reliable and intuitive prosthesis control. A holistic
approach considering more facets of prosthesis control and
employing a model-based approach needs to be evaluated, to
allow conclusive insights into this area of human interfaces.

The application of prosthesis control relies on temporal and
functional security aspects. HW solutions exclusively using
computational resources can often guarantee execution times.
When compared to HW implementations of conventional SW
classifiers, our EHW architectures have further advantageous
elements: While compact and energy efficient, they are able
to operate at very high frequencies and reuse the classification
architecture for training. EHW architectures do not require
complex functional units, like floating point ALUs, and have
a plain structure. Being inherently reconfigurable and utilizing
a simple local-search like (1 + λ)-ES, a complete run-time
adaptable system can be implemented efficiently within a
compact footprint.

Generally, we can state that the presented EHW architec-
tures do not have as high peak accuracy rates as today’s best
pattern matching algorithms on EMG signal classification, but
can compete with well know approaches such as decision
trees. The observed classification accuracies are close to each
other, suggesting that implementation details become dominant
when selecting a classifier for a prosthetic control system.
Additionally, the requirement of dynamic learning makes the
run-time adaptable EHW system one of the most promising
candidates for application in prosthesis control.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 16

ACKNOWLEDGMENT

This work was supported by the German Research Founda-
tion under project numbers PL 471/1-2 and SI 674/3-2 within
the priority program Organic Computing, the Research Coun-
cil of Norway through the project Biological-Inspired Design
of Systems for Complex Real-World Applications under project
number 160308/V30, the German Academic Exchange Ser-
vice / Research Council of Norway through the collaborative
project Autonomously Adaptable System-on-Chip under project
number D/06/12740 and by the European Union Seventh
Framework Program under grant agreement 257906: “EPICS:
Engineering Proprioception in Computing Systems”.

REFERENCES

[1] T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. de Garis, and T. Furuya,
“Evolving Hardware with Genetic Learning: a First Step Towards
Building a Darwin Machine,” in From Animals to Animats. MIT Press,
1993, pp. 417–424.

[2] H. de Garis, “Evolvable Hardware: Genetic Programming of a Darwin
Machine,” in Intl. Conf. on Artificial Neural Nets and Genetic Algo-
rithms. Springer, 1993, pp. 441–449.

[3] M. Tanaka, H. Sakanashi, M. Salami, M. Iwata, T. Kurita, and
T. Higuchi, “Data compression for digital color electrophotographic
printer with evolvable hardware.” in Intl. Conf. on Evolvable Systems
(ICES), ser. LNCS, M. Sipper et al., Eds. Springer, 1998, vol. 1478,
pp. 106–114.

[4] J. Koza, M. Keane, and M. Streeter, “Routine high-return human-
competitive evolvable hardware,” NASA/DoD Conference on Evolvable
Hardware, pp. 3–17, June 2004.

[5] L. Sekanina, “Evolutionary Design Space Exploration for Median Cir-
cuits,” in Applications of Evolutionary Computing, ser. LNCS, vol. 3005.
Springer, 2004, pp. 240–249.

[6] J. Lohn, G. Hornby, and D. Linden, “Evolutionary antenna design for
a NASA spacecraft,” in Genetic Programming Theory and Practice II,
U.-M. O’Reilly, T. Yu, R. L. Riolo, and B. Worzel, Eds. Springer,
13-15 May 2004, ch. 18, pp. 301–315.

[7] P. Kaufmann, C. Plessl, and M. Platzner, “EvoCaches: Application-
specific Adaptation of Cache Mappings,” in Adaptive Hardware and
Systems (AHS). IEEE CS, 2009, pp. 11–18.

[8] C. Giraud-Carrier, “A note on the utility of incremental learning,” AI
Communications, vol. 13, no. 4, pp. 215 – 223, 2000.

[9] A. Shilton, M. Palaniswami, D. Ralph, and A. C. Tsoi, “Incremental
training of support vector machines,” IEEE Transactions on Neural
Networks, vol. 16, no. 1, pp. 114 – 131, 2005.

[10] P. Laskov, C. Gehl, S. Krüger, and K.-R. Müller, “Incremental support
vector learning: Analysis, implementation and applications,” Journal of
Machine Learning Research, vol. 7, pp. 1909 – 1936, 2006.

[11] R. Polikar, L. Upda, S. S. Upda, and V. Honavar, “Learn++: an
incremental learning algorithm for supervised neural networks,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews, vol. 31, no. 4, pp. 497 – 508, 2001.

[12] K. Glette, T. Gruber, P. Kaufmann, J. Torresen, B. Sick, and M. Platzner,
“Comparing Evolvable Hardware to Conventional Classifiers for Elec-
tromyographic Prosthetic Hand Control,” in Adaptive Hardware and
Systems (AHS). IEEE, 2008, pp. 32–39.

[13] D. S. Childress and M. V. Podlusky, “Letter To The Editor,” in Medical
and Biological Engineering and Computing, vol. 7, no. 3. Springer,
1969, p. 345.

[14] R. Reiter, “Eine neue Elektrokunsthand,” in Grenzgebiete der Medizin,
vol. 4, 1948, pp. 133–135.

[15] D. S. Dorcas and R. N. Scott, “A Three-state Myoelectric Control,” in
Medical & Biological Engineering, vol. 4, 1966, pp. 367–370.

[16] D. A. Childress, “A Myoelectric Three State Controller Using Rate
Sensitivity,” in 8th ICMBE, vol. S4–5, 1969.

[17] P. Herberts, “Myoelectric Signals in Control of Prostheses,” in Acta Orth.
Scand., vol. 40, 1969, p. 124.

[18] D. S. Childress, “An Approach of Powered Grasp,” in 4th Intl. Sympo-
sium on External Control of Human Extremities., 1973.

[19] J. Graupe and K. Cline, “Functional separation of emg signals via
arma identification methods for prosthesis control purposes.” in IEEE
Transactions on Systems, Man, and Cybernetics, vol. 5. IEEE Press,
1975, pp. 252–259.

[20] A. E. Kobrinski, S. V. Bolkovitin, D. M. Voskoboinikova, L. M. Ioffe,
E. P. Polyan, B. P. Popov, Y. L. Slavutski, Y. A. Sysin, and Y. S.
Yakobson, “Problems of Bioelectric Control,” in Automatic and Remote
Control, vol. 2, 1960, pp. 619–629.

[21] R. R. Finley and R. W. Wirta, “Myocoder Studies of Multiple Myocoder
Response,” in Arch Phys Med Rehabil, vol. 48, 1967, p. 598.

[22] B. Hudgins, P. Parker, and R. Scott, “A New Strategy for Multifunction
Myoelectric Control,” in Biomedical Engineering, vol. 40(1). IEEE,
1993, pp. 82–94.

[23] K. Englehart, B. Hudgins, and P. A. Parker, “Time-Frequency Based
Classification of the Myoelectric Signal: Static vs. Dynamic Contrac-
tions,” in Engineering in Medicine and Biology Society (EMBS). IEEE,
2000.

[24] M. Zardoshti-Kermani, B. Wheeler, K. Badie, and R. Hashemi, “EMG
Feature Evaluation for Movement Control of Upper Extremityprosthe-
ses,” in IEEE Transactions on Rehabilitation Engineering, vol. 3(4).
IEEE Press, 1995, pp. 324–333.

[25] S. Park and S. P. Lee, “EMG Pattern Recognition Based on Artificial
Intelligence Techniques,” in IEEE Transactions on Rehabilitation Engi-
neering, vol. 6. IEEE Press, 1998, pp. 400–405.

[26] A. Boschmann, P. Kaufmann, M. Platzner, and M. Winkler, “Towards
Multi-movement Hand Prostheses: Combining Adaptive Classification
with High Precision Sockets,” in Technically Assisted Rehabilitation
(TAR), 2009.

[27] I. Kajitani, M. Murakawa, D. Nishikawa, H. Yokoi, N. Kajihara,
M. Iwata, D. Keymeulen, H. Sakanashi, and T. Higuchi, “An evolvable
hardware chip for prosthetic hand controller,” microneuro, vol. 0, p. 179,
1999.

[28] K. A. Farry and I. D. Walker, “Myoelectric Teleoperation of a Complex
Robotic Hand,” in IEEE Intl. Conf. on Robotics and Automation (ICRA),
vol. 3. IEEE, 1993, pp. 502–509.

[29] S. Karlsson, J. Yu, and M. Akay, “Time-frequency Analysis of Myo-
electric Signals During Dynamic Contractions: a Comparative Study,”
in Biomedical Engineering, vol. 47(2). IEEE, 2000, pp. 228–238.

[30] P. Sparto, M. Parnianpour, E. Barria, and J. Jagadeesh, “Wavelet and
Short-time Fourier Transform Analysis of Electromyography for Detec-
tion of Back Muscle Fatigue,” in Rehabilitation Engineering, vol. 8(3).
IEEE, Sep 2000, pp. 433–436.

[31] K. Englehart, B. Hudgins, P. A. Parker, and M. Stevenson, “Improving
Myoelectric Signal Classification Using Wavelet Packets and Principal
Components Analysis,” in 21st Intl. Conf. of the IEEE Engineering in
Medicine and Biology Society. IEEE Press, October 1999.

[32] S. Micera, A. M. Sabatini, P. Dario, and B. Rossi, “A Hybrid Approach
to EMG Pattern Analysis for Classification of Arm Movements Using
Statistical and Fuzzy Techniques,” in Medical engineering & physics,
vol. 21(1350–4533). Butterworth-Heinemann, 1999, pp. 303–311.

[33] J.-U. Chu, I. Moon, Y.-J. Lee, S.-K. Kim, and M.-S. Mun, “A Supervised
Feature-Projection-Based Real-Time EMG Pattern Recognition for Mul-
tifunction Myoelectric Hand Control,” Transactions on Mechatronics,
IEEE/ASME, vol. 12, no. 3, pp. 282–290, 2007.

[34] A. Hiraiwa, N. Uchida, N. Sonehara, and K. Shimohara, “EMG Pattern
Rcognition by Neural Networks for Prosthetic Fingers Control - Cyber
Finger,” in Measurement and control in Robotics, 1992, pp. 535–542.

[35] D. Nishikawa, W. Yu, H. Yokoi, and Y. Kakazu, “EMG Prosthetic
Hand Controller Discriminating Ten Motions Using Real-time Learning
Method,” in Intelligent Robots and Systems (IROS), vol. 3. IEEE, 1999,
pp. 1592–1597.

[36] H.-P. Huang, Y.-H. Liu, L.-W. Liu, and C.-S. Wong, “EMG Classification
for Prehensile Postures Using Cascaded Architecture of Neural Net-
works With Self-organizing Maps,” in Robotics and Automation (ICRA),
vol. 1. IEEE, Sept. 2003, pp. 1497–1502.

[37] S. Bitzer and P. van der Smagt, “Learning EMG Control of a Robotic
Hand: Towards Active Prostheses,” in Intl. Conf. on Robotics and
Automation, 2006, pp. 2819–2823.

[38] P. Shenoy, K. Miller, B. Crawford, and R. Rao, “Online Electromyo-
graphic Control of a Robotic Prosthesis,” IEEE Transactions on Biomed-
ical Engineering, 2008.

[39] K. Englehart and B. Hudgins, “A Robust, Real-time Control Scheme for
Multifunction Myoelectric Control,” in IEEE Transactions on Biomedi-
cal Engineering, vol. 50(7). IEEE Press, 2003, pp. 848–854.

[40] K. Englehart, B. Hudgins, and P. A. Parker, “A Wavelet Based Contin-
uous Classification Scheme for Multifunction Myoelectric Control,” in
Biomedical Engineering, vol. 48(3). IEEE Press, 2001, pp. 302–331.

[41] B. Karlik, M. Osman Tokhi, and M. Alci, “A Fuzzy Clustering Neu-
ral Network Architecture for Multifunction Upper-limb Prosthesis,” in
Biomedical Engineering, vol. 50(11). IEEE, Nov. 2003, pp. 1255–1261.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 17

[42] F. Chan, Y.-S. Yang, F. Lam, Y.-T. Zhang, and P. Parker, “Fuzzy EMG
Classification for Prosthesis Control,” in Rehabilitation Engineering, vol.
8(3). IEEE, Sep 2000, pp. 305–311.

[43] Y. Huang, K. Englehart, B. Hudgins, and A. Chan, “Optimized Gaussian
Mixture Models for Upper limb Motion Classification,” in Engineering
in Medicine and Biology Society (IMBS), vol. 1. IEEE Press, Sept.
2004, pp. 72–75.

[44] A. Chan and K. Englehart, “Continuous Myoelectric Control for Pow-
ered Prostheses Using Hidden Markov Models,” in Biomedical Engi-
neering, vol. 52(1). IEEE Press, 2005, pp. 121–124.

[45] M. Zecca, S. Micera, M. C. Carrozza, and P. Dario, “Control of
Multifunctional Prosthetic Hands by Processing the Electromyographic
Signal,” in Critical Reviews in Biomedical Engineering, 2002, pp. 459–
485.

[46] P. A. Parker, K. B. Englehart, and B. S. Hudgins, Electromyography
: Physiology, Engineering, and Non-Invasive Applications, ser. IEEE
Press Series on Biomedical Engineering. IEEE, 2004, ch. Control of
Powered Upper Limb Prostheses.

[47] T. Higuchi, M. Iwata, I. Kajitani, H. Iba, Y. Hirao, B. Manderick, and
T. Furuya, “Evolvable Hardware and its Applications to Pattern Recog-
nition and Fault-Tolerant Systems,” in Towards Evolvable Hardware:
The evolutionary Engineering Approach, ser. LNCS. Springer, 1996,
vol. 1062, pp. 118–135.

[48] I. Kajitani, T. Hoshino, D. Nishikawa, H. Yokoi, S. Nakaya, T. Ya-
mauchi, T. Inuo, N. Kajihara, M. Iwata, D. Keymeulen, and T. Higuchi,
“A Gate-Level EHW Chip: Implementing GA Operations and Reconfig-
urable Hardware on a Single LSI,” in Intl. Conf. on Evolvable Systems
(ICES), ser. LNCS, vol. 1478. Springer, 1998, pp. 1–12.

[49] I. Kajitani, I. Sekita, N. Otsu, and T. Higuchi, “Improvements to
the Action Decision Rate for a Multi-Function Prosthetic Hand,” in
Measurement, Analysis and Modeling of Human Functions (ISHF),
2001, pp. 84–89.

[50] J. Torresen, “Two-Step Incremental Evolution of a Digital Logic Gate
Based Prosthetic Hand Controller,” in Intl. Conf. on Evolvable Systems
(ICES), ser. LNCS. Springer, 2001, vol. 2210, pp. 1–13.

[51] ——, “Evolving Both Hardware Subsystems and the Selection of
Variants of Such Into An Assembled System,” in European Simulation
Multiconference (ESM). SCS Europe, June 2002, pp. 451–457.

[52] ——, “A scalable approach to evolvable hardware,” Journal of Genetic
Programming and Evolvable Machines, vol. 3, no. 3, pp. 259–282, 2002.

[53] ——, “Incremental Evolution of a signal Classification Hardware Ar-
chitecture for Prosthetic Hand Control,” Int. J. Know.-Based Intell. Eng.
Syst., vol. 12, pp. 187–199, 2008.

[54] M. Murakawa, S. Yoshizawa, I. Kajitani, T. Furuya, M. Iwata, and
T. Higuchi, “Hardware Evolution at Function Level,” in Parallel Problem
Solving from Nature (PPSN), ser. LNCS, vol. 1141. Springer, 1996,
pp. 62–71.

[55] M. Yasunaga, T. Nakamura, and I. Yoshihara, “Evolvable Sonar Spec-
trum Discrimination Chip Designed by Genetic Algorithm,” in Systems,
Man and Cybernetics, vol. 5. IEEE, 1999, pp. 585–590.

[56] M. Yasunaga, T. Nakamura, I. Yoshihara, and J. Kim, “Genetic
Algorithm-based Design Methodology for Pattern Recognition Hard-
ware,” in Intl. Conf. on Evolvable Hardware (ICES), ser. LNCS, vol.
1801. Springer, 2000, pp. 264–273.

[57] L. Sekanina and R. Ruzicka, “Design of the Special Fast Reconfigurable
Chip Using Common FPGA,” in Design and Diagnostics of Electronic
Circuits and Systems (DDECS), 2000, pp. 161–168.

[58] A. Upegui and E. Sanchez, “Evolving hardware by dynamically recon-
figuring xilinx fpgas,” Evolvable Systems: From Biology to Hardware,
pp. 56–65, 2005.

[59] F. Cancare, M. Santambrogio, and D. Sciuto, “A direct bitstream manip-
ulation approach for virtex4-based evolvable systems,” in Circuits and
Systems (ISCAS), Proceedings of 2010 IEEE International Symposium
on. IEEE, 2010, pp. 853–856.

[60] G. Tufte and P. C. Haddow, “Biologically-inspired: A rule-based self-
reconfiguration of a virtex chip.” in Proc. of International Conference on
Computational Science 2004, ser. Lecture Notes in Computer Science,
vol. 3038, May 2004, pp. 1249–1256.

[61] K. Glette, J. Torresen, and M. Yasunaga, “An Online EHW Pattern
Recognition System Applied to Face Image Recognition,” in Applica-
tions of Evolutionary Computing (EvoWorkshops), ser. LNCS. Springer,
2007, vol. 4448, pp. 271–280.

[62] ——, “An Online EHW Pattern Recognition System Applied to Sonar
Spectrum Classification,” in Intl. Conf. on Evolvable Systems (ICES),
ser. LNCS. Springer, 2007, vol. 4684, pp. 1–12.

[63] ——, “Online Evolution for a High-Speed Image Recognition System
Implemented On a Virtex-II Pro FPGA,” in Adaptive Hardware and
Systems (AHS). IEEE, 2007, pp. 463–470.

[64] K. Glette, J. Torresen, and M. Hovin, “Intermediate level FPGA recon-
figuration for an online EHW pattern recognition system,” in Adaptive
Hardware and Systems, 2009. AHS 2009. NASA/ESA Conference on.
IEEE, 2009, pp. 19–26.

[65] K. Glette, J. Torresen, P. Kaufmann, and M. Platzner, “A Comparison
of Evolvable Hardware Architectures for Classification Tasks,” in Intl.
Conf. on Evolvable Systems (ICES), ser. LNCS, vol. 5216. Springer,
2008., pp. 22–33.

[66] Biovision, “EMG Amplifier,” www.biovison.eu.
[67] National Instruments, “USB-6009,” www.ni.com.
[68] Sonowin, “USI-01 USB Isolator,” www.sonowin.de.
[69] MindMedia, “Nexus 10,” www.mindmedia.nl.
[70] H. Gray, “Anatomy of the human body,” Wikimedia Commons, 1918.
[71] I. Kajitani, T. Hoshino, M. Iwata, and T. Higuchi, “Variable Length

Chromosome GA for Evolvable Hardware,” in Intl. Conf. on Evolution-
ary Computation (ICEC). IEEE, 1996, pp. 443–447.

[72] J. F. Miller, P. Thomson, and T. Fogarty, “Designing Electronic Circuits
Using Evolutionary Algorithms. Arithmetic Circuits: A Case Study,”
in Genetic Algorithms and Evolution Strategy in Engineering and
Computer Science. John Wiley and Sons, 1998, pp. 105–131.

[73] J. Koza, Genetic Programming: On the Programming of Computers by
Means of Natural Selection. MIT Press, 1992.

[74] J. A. Walker and J. F. Miller, “Evolution and Acquisition of Modules
in Cartesian Genetic Programming,” in European Conf. on Genetic
Programming (EuroGP), ser. LNCS, vol. 3003. Springer, 2004, pp.
187–197.

[75] P. Kaufmann and M. Platzner, “Advanced Techniques for the Creation
and Propagation of Modules in Cartesian Genetic Programming,” in
Genetic and Evolutionary Computation (GECCO). ACM Press, 2008,
pp. 1219 – 1226.

[76] D. Goldberg, Genetic Algorithms in search, optimization, and machine
learning. Addison–Wesley, 1989.

[77] T. K. Ho, “Random Decision Forests,” in Intl. Conf. on Document
Analysis and Recognition (ICDAR), vol. 1. IEEE, 1995, p. 278.

[78] D. Fisch, B. Kühbeck, S. J. Ovaska, and B. Sick, “So near and yet so far:
New insight into properties of some well-known classifier paradigms,”
Information Sciences, vol. 180, no. 18, pp. 3381–3401, 2010.

[79] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. John
Wiley & Sons, Chichester, New York, 2001.

[80] J. H. Friedman, “On bias, variance, 0/1-loss, and the curse-of-
dimensionality,” Data Mining and Knowledge Discovery, vol. 1, no. 1,
pp. 55–77, 1997.

[81] P. Domingos, “A unified bias-variance decomposition for zero-one and
squared loss,” in Artificial Intelligence and Innovative Applications of
Artificial Intelligence, 2000, pp. 564–569.

[82] J. R. Quinlan, C4.5 Programs for Machine Learning. Morgan Kauf-
mann Publishers, San Mateo, California, 1993.

[83] C. J. C. Burges, “A tutorial on support vector machines for pattern
recognition,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp.
121–167, 1998.

[84] L. Hamel, Knowledge Discovery With Support Vector Machines. John
Wiley & Sons, 2009.

[85] C. M. Bishop, Neural Networks for Pattern Recognition. Clarendon
Press, 1995.

[86] R. Rojas, Neural Networks – A Systematic Introduction. Springer, 1996.
[87] I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler, “YALE:

Rapid Prototyping for Complex Data Mining Tasks,” in Intl. Conf. on
Knowledge Discovery and Data Mining (KDD), 2006, pp. 935 – 940.

[88] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector
machines, 2001.

[89] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The WEKA Data Mining Software: An Update,” in SIGKDD
Explor. Newsl., vol. 11(1). ACM, 2009, pp. 10–18.

[90] C.-W. Hsu and C.-J. Lin, “A Comparison of Methods for Multi-class
Support Vector Machines,” IEEE Transactions on Neural Networks,
vol. 13, no. 2, pp. 415–425, 2002.

[91] P. Kaufmann and M. Platzner, “MOVES: A Modular Framework for
Hardware Evolution,” in Adaptive Hardware and Systems (AHS). IEEE,
2007, pp. 447–454.

[92] L. Hargrove, Y. Losier, B. Lock, K. Englehart, and B. Hudgins, “A Real-
Time Pattern Recognition Based Myoelectric Control Usability Study
Implemented in a Virtual Environment,” in Engineering in Medicine
and Biology Society (EMBS). IEEE, 2007, pp. 4842–4845.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 18

[93] Texas Instruments Inc., 16-Bit Ultra-Low Power MSP430 Microcon-
trollers, Texas Instruments, Dallas, Texas, USA, 2011.

[94] E. Manolakos and I. Stamoulias, “IP-cores Design for the kNN Classi-
fier,” in Proc. Intl. Sym. Circuits and Systems (ISCAS). IEEE, 2010,
pp. 4133 –4136.

[95] D. Anguita, A. Boni, and S. Ridella, “A Digital Architecture for Sup-
port Vector Machines: Theory, Algorithm, and FPGA Implementation,”
Transacrions on Neural Networks, vol. 14, no. 5, pp. 993–1009, 2003.

[96] K. Cao, H. Shen, and H. Chen, “A Parallel and Scalable Digital
Architecture for Ttraining Support Vector Machines,” J Zhejiang Univ-
Sci C (Comput & Electron), vol. 11, no. 8, pp. 620–628, 2010.

[97] T. Knieper, P. Kaufmann, K. Glette, M. Platzner, and J. Torresen,
“Coping with Resource Fluctuations: The Run-time Reconfigurable
Functional Unit Row Classifier Architecture,” in Intl. Conf. on Evolvable
Systems (ICES), ser. LNCS, vol. 6274. Springer, 2010, pp. 250–261.

Paul Kaufmann received diplomas in computer
science and mathematics from the University of
Paderborn, Germany, in 2005. Currently, he is work-
ing towards a Ph.D. degree in computer science
at the Faculty for Electrical Engineering, Computer
Science and Mathematics of the University of Pader-
born. There, he is conducting research and develop-
ment in the areas of automatic digital circuit design,
evolutionary multi-objective optimization and opti-
mization of adaptable systems with applications in
processor design, adaptable controller evolution and

recognition of electromyographic signals.

Kyrre Glette received his M.Sc. in Computer Engi-
neering (2004) from the Norwegian University of
Science and Technology, Norway, and his Ph.D.
in Evolvable Hardware (2008) from the University
of Oslo, Norway, with stays at the French Space
Agency (CNES) in Toulouse, France, and the Uni-
versity of Tsukuba in Japan. He is currently em-
ployed at the University of Oslo as a Postdoctoral
Research Fellow. His research interests are artificial
intelligence and biologically-inspired systems, with
a special focus on embedded and runtime evolvable

hardware systems. A second research interest is evolutionary robotics with an
emphasis on design and prototyping of biologically inspired robots.

Thiemo Gruber received a diploma in computer
science from the University of Passau, Germany, in
2007. Currently, he is working towards a Ph.D. de-
gree in computer science at the Intelligent Embedded
Systems Lab of the University of Kassel, Germany.
There, he is conducting research and development in
the areas of machine learning (in particular, real-time
time series analysis) with applications in gesture
spotting and activity recognition, on-line signature
verification and identification as well as medical
applications of biometric writing systems.

Marco Platzner is Professor for Computer Engi-
neering at the University of Paderborn. Previously,
he held research positions at the Computer Engineer-
ing and Networks Lab at ETH Zurich, Switzerland,
the Computer Systems Lab at Stanford University,
USA, the GMD - Research Center for Informa-
tion Technology (now Fraunhofer IAIS) in Sankt
Augustin, Germany, and the Graz University of
Technology, Austria. Marco Platzner holds diploma
and PhD degrees in Telematics (Graz University of
Technology, 1991 and 1996), and a “Habilitation”

degree for the area hardware-software codesign (ETH Zurich, 2002). His
research interests include reconfigurable computing, hardware-software code-
sign, and parallel architectures. He is a senior member of the IEEE, a member
of the ACM, serves on the program committees of several international
conferences (eg. FPL, FPT, RAW, ERSA, DATE), and is an associate editor
of the International Journal of Reconfigurable Computing, the EURASIP
Journal on Embedded Systems, and the Journal of Electrical and Computer
Engineering. Marco Platzner is member of the board of the Paderborn Center
for Parallel Computing and served on the board of the Advanced System
Engineering Center of the University of Paderborn. He is faculty member
of the International Graduate School Dynamic Intelligent Systems of the
University of Paderborn, and of the Advanced Learning and Research Institute
(ALaRI) at Universita’ della Svizzera Italiana (USI), in Lugano.

Jim Torresen Jim Torresen received his M.Sc. and
Dr.ing. (Ph.D) degrees in computer architecture and
design from the Norwegian University of Science
and Technology, University of Trondheim in 1991
and 1996, respectively. He has been employed as a
senior hardware designer at NERA Telecommuni-
cations (1996-1998) and at Navia Aviation (1998-
1999). Since 1999, he has been a professor at the
Department of Informatics at the University of Oslo
(associate professor 1999-2005). Jim Torresen has
been a visiting researcher at Kyoto University, Japan

for one year (1993-1994) and four months at Electrotechnical laboratory,
Tsukuba, Japan (1997 and 2000).

His research interests at the moment include reconfigurable hardware,
machine learning, bio-inspired computing, robotics and applying this to
complex real-world applications. Several novel methods have been proposed.
He has published a number of scientific papers in international journals,
books and conference proceedings. 10 tutorials and several invited talks have
been given at international conferences. He is in the program committee
of more than ten different international conferences as well as a regular
reviewer of a number of international journals (mainly published by IEEE
and IET). He has also acted as an evaluator for proposals in EU FP7.
A list and collection of publications can be found at the following URL:
http://www.ifi.uio.no/∼jimtoer/papers.html

Bernhard Sick received a diploma (1992), a Ph.D.
degree (1999), and a “Habilitation” degree (2004),
all in computer science, from the University of
Passau, Germany. Currently, he is professor for
Intelligent Embedded Systems at the Faculty for
Electrical Engineering and Computer Science of
the University of Kassel, Germany. There, he is
conducting research and development in the areas
of theory and application of soft-computing tech-
niques, organic computing, collaborative data min-
ing, intrusion detection, and biometrics. Bernhard

Sick authored more than 80 peer-reviewed publications in these areas. He
is a member of IEEE (Systems, Man, and Cybernetics Society, Computer
Society, and Computational Intelligence Society) and GI (Gesellschaft fuer
Informatik). Bernhard Sick is associate editor of the IEEE Transactions on
Systems, Man, and Cybernetics – Part B; he holds one patent and received
several thesis, best paper, teaching, and inventor awards.

