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Abstract—In recent years, advances in electromyographic
(EMG) sensor technology and machine learning algorithms have
led to an increased research effort into high density EMG based
pattern recognition methods for prosthesis control. With the goal
set on an autonomous multi-movement prosthesis that is capable
of performing training and classification of an amputee’s EMG
signals, the focus of this paper lies in the acceleration of the
embedded signal processing chain. Using the Xilinx Zynq as
a low-cost off-the-shelf reconfigurable processing platform, we
present a solution that is able to compute prosthesis control
signals from multi-channel EMG input with up to 256 channels
with a maximum processing delay of less than a single millisecond.
While the presented system is able to perform training as well as
classification, most of our efforts were focused on the acceleration
of the feature extraction units, achieving a speed-up of 6.7 for
feature extraction alone, and 4.8 for the total processing time as
compared to a software only solution.

I. INTRODUCTION

Modern myoelectric upper-limb prostheses enable the user
to perform activities of daily living, restore independence and
increase quality of life. The use of electromyography (EMG)
has been studied as a control source for active prostheses
for decades. EMG signals are physiological signals gener-
ated during muscular contraction and can be measured as
electrical potentials on the skin surface above the remaining
muscles. Common myoelectric prostheses use measures like
mean absolute value of the EMG amplitude [1] or the signal’s
rate of change [2] at each electrode site and map them to
proportionally control one degree of freedom (DOF). Select-
ing a different prosthesis function is often achieved by co-
contraction of muscles or utilizing hardware switches [3] and
is often cited as cumbersome and counter-intuitive [4].

An active area of research are pattern recognition-based
control schemes, potentially enabling the user to control mul-
tiple DOF intuitively. They operate on the assumption that a
set of features extracted from the EMG signal is repeatable for
a specific muscle contraction and distinguishable from a set
of features taken from different contractions. In literature, the
pattern recognition processing chain is often broken down to
four components: data preprocessing, data windowing, feature
extraction and classification [5]. Common preprocessing steps
are removal of power-line harmonics or electrode movement
artefacts. Due to its stochastic nature, raw EMG signals are
not suitable as input to pattern recognition-based classifiers.
Instead, descriptive features are extracted from overlapping

data window segments to increase information density. For
this reason, the usage of linear discriminant analysis (LDA)
in combination with time-domain (TD) features is a popular
choice in recent literature. Due to its algorithmic simplicity and
low consumption of resources, this combination is predestined
for implementation on embedded hardware.

Despite many successfully conducted studies under labo-
ratory conditions, pattern recognition-based control still lacks
robustness in a real-world setup [5]. Effects like electrode
shifts following donning and doffing [6] or variations in
limb position [7] decrease accuracy and usability significantly.
These effects have been studied but remain an open problem.
User acceptance strongly depends on the pattern recognition
method’s robustness against non-stationary conditions.

Research on myoelectric control has focused on a small
number of EMG channels for low computational delay and
better clinical applicability. Due to advances in EMG sensor
technology, high density EMG (HD EMG) sensor arrays are
available today, offering hundreds of signal sources. Current
desktop HD EMG amplifiers can already acquire up to 256
channels, an updated version with up to 384 channels is
announced [8]. It has been shown that increasing the number
of input channels can improve robustness in non-stationary
conditions for traditional EMG signal classification [9] or
combinations of HD EMG-based features and classifiers like
experimental variogram [10] or structural similarity [11]. How-
ever, processing hundreds of EMG channels poses a challenge
for an embedded system. Microprocessors used in current
prostheses are not suitable for HD EMG data processing in
real-time.

The main objective of our work is implementing a con-
troller for autonomous multi-movement prostheses capable of
classifying HD EMG signals. Our application scenario dictates
that a prosthesis controller must be an embedded system able to
perform the computation autonomously inside the prosthesis.
Since classification performance strongly depends on a small
controller delay, off-loading the computation to external de-
vices like smartphones over wireless communication channels
is unsuitable. Furthermore, embedded prosthesis controllers
must also be small in size and show a moderate energy
consumption because they are operated by batteries which are
typically recharged once a day. These characteristics make HD
EMG prosthesis controllers an appealing application domain
for FPGAs. Since the classification algorithm’s runtime is
dominated by a feature extraction process applied to indepen-



dent signal sources, it can potentially be efficiently performed
in parallel on an FPGA. Another argument for an FPGA-
based approach over a CPU-based one is the potentially better
energy-efficiency for the signal processing tasks. Compared
to an ASIC solution, the FPGA approach features the re-
quired reprogrammability. In particular, the inherently different
working modes of the controller (training the classifier and
classification of unknown data) could even be a use case for
partial reconfiguration.

The novel contribution of this work is an architecture for
accelerating the classification chain for HD EMG data. While
the classification chain consists of a well-studied combination
of TD feature extraction and LDA classification, we present
a Xilinx Zynq-based system capable of processing up to 256
channels with a maximum processing delay of less than one
millisecond, which to our knowledge is the fastest embedded
HD EMG implementation to date.

The remainder of this work is structured as follows. In
Section II we give background information about EMG signal
processing, ReconOS and the Zynq platform. In Section III we
discuss related work, in particular other approaches to real-time
EMG processing. In Section IV we describe the architecture
of our proposed system. In Section V we validate our system
in a real world online experiment with an amputee. Section VI
contains experimental results and finally we draw a conclusion
in Section VII.

II. BACKGROUND

In this section, we first give relevant background informa-
tion on the widely-used windowed approach to real-time EMG
signal processing and its implications on the controller delay.
Then, we describe the features we compute and the subsequent
pattern learning and classification process. Afterwards, we give
a short outline on the ReconOS multi-threaded approach to
hardware acceleration and the Zynq system on chip.

A. Real-time EMG signal processing

The EMG signal’s stochastic nature makes it necessary to
extract a set of descriptive features from an analysis window.
In order to maximize the amount of classifier decisions over
time, an overlapping window approach proposed by Englehart
[12] is often implemented. Figure 1 illustrates the approach.

Features are extracted from the analysis window Ta. Sub-
sequently, the system uses the signal processing time Td to
perform the pattern recognition algorithm. In order to remove
misclassifications in the decision stream, the classifier decision
is added to a decision queue with the last n decisions. The
majority vote winner is then passed to the movement controller.
To make the decision stream as dense as possible, a new
analysis window is calculated each Tinc period. Evidently, Td
has to be smaller or equal to Tinc.

Farrell and Weir [13] define the delay between the user’s
change of movement and the first correct controller output as
controller delay D, as shown in Figure 1 (grey area). D is
influenced by Ta, Tinc, Td and n:

D =
1

2
· Ta +

(n+ 1

2

)
· Tinc + Td (1)

Ta Td

Ta Td

Ta Td

Ta

TdTa

Td

movement class 2movement class 1

decision 
queue

controller
output

1

1

1

2
Tinc

{1, 1, 1}

{1, 1, 1}

{2, 1, 1}

{2, 2, 1}

1{1, 1, 1}

EMG raw data 
stream

time

Tinc Tinc Tinc
D

Fig. 1. Windowed approach to EMG classification. One channel of EMG data
from two movement classes is shown on top. Below, five analysis windows Ta

with subsequent signal processing time Td and window increments of Tinc

are illustrated. The decision queue (n = 3) and controller output are displayed
on the right side. The controller delay D extends between the user’s change
in EMG signals and the first correct controller output, depicted as grey area.

In order to minimize D, one has to minimize Ta, Tinc, Td and
n. Minimizing Ta would be beneficial for controller delay but
comes at the expense of classification accuracy. According to
Smith et al. [14], the optimal value for Ta is between 150 ms
and 250 ms. Another tradeoff is minimizing n: a smaller value
improves controller delay while a larger value eliminates more
misclassifications. In this work, we use Ta = 150 ms and n = 5,
hence the optimal controller delay for our implementation is
79 ms (based on sampling rate of 1000 Hz, Tinc = Td = 1 ms).

B. Time-domain features

In our EMG signal processing, we extract the well-
established time-domain (TD) [15] feature set, as described
by Hudgins et al. For each channel, one of the following
features is calculated from the EMG signal: mean average
value (MAV), length of the waveform (WFL), the amount
of zero-crossings (ZC) and the amount of slope-sign-changes
(SSC).

MAV =
1

N

N∑
n=1

xn (2)

WFL =

N−1∑
n=1

|xn+1 − xn| (3)

ZC =

N−1∑
n=1

(
sgn (xn · xn+1) ∩ |xn| ≥ threshold

)
(4)

SSC =

N−1∑
n=2

(
sgn
(
(xn − xn−1) · (xn − xn+1)

))
(5)

sgn(x) =

{
1, if x ≥ threshold
0, otherwise

}
C. Classification

For classification of movements, we make use of a multi-
class LDA as described by [16]. In the training phase (Al-
gorithm 1), the algorithm is provided with a set of ex-
tracted feature vectors from training data and class labels
for each class incrementally. A covariance matrix Σk and



mean vector µk are calculated and the samples are discarded
before proceeding with the next class to save memory space.
Finally, all covariance matrices are averaged to Σ and inverted
using Cholesky decomposition. Multiplied with the matrix µ
containing all mean vectors, we obtain the projection matrix
W. Additionally, we compute an offset vector C using the
projection matrix W, the mean matrix µ and the number of
classes. In the classification phase (Algorithm 2), the feature
vector is projected to a k-dimensional space (k being the
number of classes) using W and added to the offset vector C.
The index of the element with the maximum value represents
the predicted class.

Algorithm 1 LDA training
1: procedure TRAINING(feature vectors, class labels)
2: for all classes k do
3: Σk ← covariance(feature vectorsk )
4: µk ← mean(feature vectorsk )
5: end for
6: µ← concatenation(µk )
7: Σ← mean(Σk)
8: W← inverse(Σ) · µ
9: C ← 1

2 · dot(µ,W) + log( 1
#classes )

10: end procedure

Algorithm 2 LDA prediction
1: procedure PREDICTION(feature vector )
2: Y ← feature vector ·W + C
3: class ← argmaxk (Yk )
4: return class
5: end procedure

D. ReconOS

The proposed architecture follows the ReconOS multi-
threaded approach to hardware acceleration, as detailed in [17].
In this approach, ReconOS acts as a run-time environment
on top of an existing POSIX compliant operating system.
By utilizing well known operating system abstractions, the
application is first partitioned into multiple software threads
that communicate and synchronize using standard methods
like mutexes and message boxes. Performance critical threads
are then moved to hardware where the ReconOS run-time
environment provides a seamless integration into the existing
multi-threaded application. A key aspect of this integration
is handled by ReconOS by providing the same programming
model abstractions to both, hardware and software threads.
The reason we chose this approach is that (a) the ReconOS
design methodology allows for easy design space exploration
by making hardware and software threads interchangeable,
and (b) that ReconOS lends itself well to a shared memory
approach as it is used in the proposed application architecture.

E. Zynq

The Zynq-7000 systems on chip comprise a processing
system (PS) based on a dual-core ARM Cortex-A9 processor
and a Xilinx 7 series FPGA programmable logic (PL). The
major functional blocks of the PS are the application processor
unit, on-chip memory and external memory interfaces, various

I/O interfaces, and several interconnect types to allow fast com-
munication between the different blocks. The PL provides con-
figurable logic blocks, block RAM, digital signal processors
and analog-to-digital converters. Most of the communication
between the PS and PL take place on the AXI interconnect
which is also capable of connecting to user-designed IP blocks
in the PL [18].

III. RELATED WORK

An extensive range of feature sets, including time-
domain [15], frequency-domain [12] or autoregressive coef-
ficients [19] has been investigated for use in EMG pattern
recognition-based control schemes. The computed features
are fed as input into a classifier in order to determine the
motion class. Various statistical and learning classifiers like
linear discriminant analysis (LDA) or support vector machines
(SVM) have been investigated, a vast comparison is given in
[20]. Hargrove et al. [21] demonstrate that if a suitable feature
set is used, most modern classifiers will have comparable
performance. In this work, we use well-studied TD features
in combination with LDA as pattern recognition algorithm to
classify EMG data.

Borbely et al. [22] introduced an LDA-based classification
design for a Zynq-7000 platform. In this work, an ANSI C
implementation was developed to process offline EMG data
on a PC as well as on the ARM cores of a Zynq-7020.
Further, a hardware implementation for an FPGA, including a
preprocessor unit for feature extraction and a vector processor
unit for vector and matrix operations was designed. While
the proposed software system was tested processing up to 8
channels, the performance of their hardware design, considered
only the synthesis results of the preprocessor unit for feature
extraction. Based on these results, the authors state that their
hardware system is able to process HD EMG data, which
was not confirmed by an existing system implementation. Our
approach is to process HD EMG data both, on software and
accelerated on hardware, and to present results for tests of the
implemented system.

While time-domain (TD) features are commonly used in
upper-limb pattern recognition, they are unsuitable for lower-
limb application due to the non-stationary leg EMG signals.
Time-frequency-domain (TFD) features are outperforming TD
features in this context. However, current embedded prosthetic
controllers are not sufficient for TFD feature extraction in
real-time. Xiao et al. [23] used an NVIDIA 8800 GTX GPU
to accelerate this processing step and achieved impressive
speedups compared to a P4 CPU. While their accelerator
implementation is an interesting preparatory work, we believe
that acceleration must take place locally on the prosthesis.
Also, the authors only utilize one channel of EMG, while it
was our goal to process hundreds of channels in parallel.

IV. ARCHITECTURE

As illustrated by Figure 2, the proposed application re-
ceives multi-channel HD EMG data from a sensor array
and periodically computes prosthesis movement commands.
The embedded prosthetics controller is responsible for pattern
learning, pattern recognition, and prosthesis movement. In this
section we give a short overview on the hardware/software
architecture of the prosthetics controller.
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Fig. 2. Top level view on the proposed application. HD EMG data from
up to 256 channels are acquired periodically each millisecond, illustrated as a
heat-map for the current (time t0) and two following samplings. One channel
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We use a ReconOS based architecture under a Linux
operating system on the Xilinx Zynq processing platform. The
application is divided into hardware and software threads, with
the software threads executed on the ARM CPUs and the
hardware threads running on the programmable logic (PL)
- the FPGA part of the Zynq. Threads communicate using
shared memory and messages boxes - a service provided by
the ReconOS runtime environment. Message boxes can be
seen as 32 bit wide FIFO buffers with synchronous (blocking)
access semantics, managed by the operating system. Threads
interact with message boxes by posting or receiving single
word messages.

Figure 3 shows a conceptual thread-level view of the
system architecture. The partitioning into threads follows the
EMG processing chain as described in Section II with data
acquisition, feature projection, and classification running as
software threads and feature extraction running as either hard-
ware or software thread, or both. During training, an additional
software thread for LDA is run on the CPU. While it is possible
to pipeline data through the processing chain and run the
threads concurrently, at present the processing of the individual
stages is done sequentially, so that only a single thread is active
at any time. Data flow and synchronization between threads
is facilitated by shared memory buffers and pointers to these
buffers exchanged via message boxes.
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Fig. 3. Partitioning of the application into hardware and software threads.

Figure 4 gives a more detailed view on system architecture

with the focus on the feature extraction hardware thread (FE-
HWT). The thread possesses two interfaces provided by the
ReconOS runtime environment. One interface, the operating
system interface (OSIF), allows the thread access operating
system services. In the FE-HWT this interface is used for
message passing. The second interface, the memory interface
(MEMIF) handles accesses to main memory. It is fully burst
capable and provides address translation into the virtual ad-
dress space of the main application process.

The thread executes in three sequential phases. First, a
pointer to the location of the sample window is received from
a message box and the sample window is read from main
memory to a thread-local memory. In the second phase, feature
extraction runs on all features in parallel. In the third phase,
the extracted feature vector is written back to main memory
and a message is sent to the next thread in the processing
chain - the feature projection thread. The operation of the FE-
HWT is controlled by two state-machines. One state machine
- the operating system finite state machine (OS-FSM) - is an
integral part to any ReconOS hardware thread. It handles the
communication with the software system as well as all memory
accesses. In the feature extraction thread, the OS-FSM handles
sending and receiving of messages, reading of the sample data
into a local memory, moving the sample data to the individual
feature extraction units and writing back the resulting feature
vectors to shared memory. A second state machine (AUX-
FSM) is responsible for storing the computed feature values
into a local memory buffer. Sample data is provided for two
channels at a time (two samples per 32 bit word). Computed
feature values are 32 bit integers.

The feature extraction units are implemented as separate
modules that are instanced from the top-level module of the
FE-HWT and connected via one incoming and one outgoing
32 bit wide FIFO. Due to this design, the feature extraction
units are streaming processors that lend themselves well to a
high level synthesis approach.

V. FUNCTIONAL VALIDATION

To validate our system, all results were checked for nu-
meric correction against a reference implementation in MAT-
LAB. Additionally, we conducted two real-time experiments
with an 18 years old male trans-radial amputated test person.
The test setup is depicted in Figure 5. A MindMedia Nexus
16 [24] was used to acquire 8 channel EMG data which were
sent to the ZedBoard via TCP/IP. Since there are currently no
prosthetic arms available capable of executing 8 movements,
we implemented a virtual prosthesis that can be seen in a 3d
Augmented Reality (AR) scene by the test person wearing an
Oculus Rift DK2 [25].

We implemented an application based on the Unity 5
game engine to display the video stream from the stereoscopic
camera on the Oculus Rift display. A conical marker worn by
the test person on his amputation stump was used to place the
virtual prosthesis in the video stream. The virtual prosthesis
was controlled by control signals from the ZedBoard.

Two experiments were conducted to validate our embedded
prosthesis controller under real-world conditions. In the first
experiment, the LDA classifier was trained with EMG data
of 8 movements (hand open, lateral grip, wrist extension and
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flexion, pronation and supination, index finger extension and
rest.) Each movement was repeated 3 times for 5 seconds. The
amputee could then move and control the virtual prosthesis
freely. In the second experiment, the LDA classifier was trained
similar to Experiment 1. Then, the target achievement control
(TAC) test [26] was conducted, as implemented in [27]. Instead
of moving and controlling the virtual prosthesis freely, the user
was prompted to move the virtual arm to predefined target pos-
tures. We measured real-time performance in terms of trials the
user successfully completed. The TAC test is a well-established
tool for evaluating real-time myoelectric pattern recognition
control of upper-limb prosthesis. The experiments showed that
our system performs well under real-time conditions.

VI. EXPERIMENTAL RESULTS

We implemented the architecture described in Section IV
on the ZedBoard [18] development platform. The ZedBoard
features a Xilinx Zynq XC7Z020 device, 512 MB DDR system
memory and various IO interfaces, such as USB (for UART

and JTAG) and Ethernet. While our setup supports both,
training and classification, the classification of the EMG signal
is more time critical because data must be processed in real
time and large controller delays (above 100 ms) are deemed
inadequate for sustained prosthesis use.

Generally, there is no data dependence in the computational
path of our application. For the evaluation of the application
recorded real-world HD EMG data was used for tests using up
to 192 channels. When more channels were needed, synthetic
data was used.

Starting from a pure software implementation, we observe
that the majority of time spent during classification is used
for feature extraction. This is shown in Figure 6 where we
measured the processing time over the classification chain.
Calculation times for feature extraction, feature projection,
classification and communication were measured for up to
256 channels. As suggested by these results, our acceleration
efforts focused on the feature extraction component.
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For classification we have evaluated three different setups:
First, we tested a software only design, running exclusively on
the ARM processor, without hardware acceleration. Then, we
tested a hardware accelerated system with feature extraction
units implemented by Vivado high level synthesis (HLS). In
the third setup, we replaced the HLS generated cores with
modules designed by hand in VHDL. Each setup was tested
with a varying number of input channels ranging from 4 to
a maximum of 256. Figure 7 shows our results in terms of
total processing delay (full processing chain) for a complete
sample window. All data points were acquired using a window
size of 150 samples and averaged over 1600 individual mea-
surements. A processing delay of 1 ms is highlighted because
this corresponds to the lowest achievable controller delay of
79 ms with a window shift of 1 ms given our setup with
1000 Hz sampling rate. Our results also show the expected
linear increase of processing delay with respect to the number
of input channels. While the maximum controller delay for the
software-only solution is still acceptable (smaller than 100ms)
over the complete tested range of up to 256 channels, only
the accelerated design achieves the minimum delay of 79 ms.
It is generally accepted that a smaller controller delay (with
all other relevant factors being equal) correlates with better
usability of the prosthesis. An extrapolation of the results
suggests, that the unaccelerated application will surpass a
controller delay of 100 ms when more than 380 channels
are used. In comparison, the accelerated design is expected
to handle over 2200 input channels with less than 100 ms
controller delay.

We also see that there is a noticeable difference between the
HLS generated accelerators and the VHDL implementations.
This is magnified when we take a look at the execution
times for feature extraction alone. Figure 8 shows processing
times for the individual feature extractors, MAV, SSC, WFL,
ZC, and the combined time for extracting all four features.
Measurements were taken for the three different implemen-
tations: software, hardware generated by HLS, and hardware
specified in VHDL. The results reveal two major observations:
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Fig. 7. Total processing delay for a complete sample window and three
different feature extraction implementations: software, hardware HLS, hard-
ware VHDL. Values were acquired with Ta = 150 ms, and averaged over 1600
individual measurements. Decision queue depth for controller delay calculation
was n = 5.

One is that the bulk of savings in processing time comes
not so much from the acceleration of the individual features,
but for the most part from the features being computed in
parallel in hardware, rather than sequentially in software. The
other observation is that, again, the hand-written accelerators
perform much better than the HLS generated ones. The reason
for that is that, with the exception of MAV, the HLS tool
was not able to pack all computations needed to process a
sample into a single cycle, in contrast to the VHDL specified
feature extractors. Still, even the HLS generated cores deliver
good speed-ups, and for more complex feature extractors, and
depending on the time and effort one is willing to spend on
the implementation, HLS might even be a better option.
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hardware HLS, hardware VHDL) of the feature extractors MAV, SSC, WFL,
ZC, and all features combined. Values have been acquired with 256 channels,
Ta = 150 ms, and averaged over 9852 individual measurements.

Although the speed-up achieved so far is significant, a look
at the utilization of the Zynq PL shows that we are only
using a small fraction of the available area. Table I shows
the utilization of the Zynq FPGA for the individual HLS and



VHDL feature extraction units, as well as for the complete
hardware thread. The small utilization numbers indicate that
on the one hand we could use a much smaller FPGA for
an embedded prosthetics controller, thereby reducing costs
and power consumption, and on the other hand we could
theoretically achieve better speed-ups on the existing platform
by utilizing the complete FPGA.

TABLE I. ZYNQ PL UTILIZATION

MAV ZC SSC WFL Total Utilization

VHDL

LUTs 207 251 383 216 2376 1.58 %
FFs 76 80 139 107 1138 0.38 %

BRAMs 0 0 0 0 33 7.93 %
DSPs 0 0 0 0 4 0.52 %

HLS

LUTs 218 351 337 286 2377 1.58 %
FFs 74 130 214 179 1351 0.45 %

BRAMs 0 0 0 0 33 7.93 %
DSPs 0 0 2 0 6 0.78 %

Figure 6 shows that even after speeding up feature extrac-
tion by a factor of 6.7, still most of the time for classification
is spent there, even though feature projection and communi-
cation begin to play a bigger part. This suggests that further
improvements of the feature extraction hardware thread may
be worth looking at. Figure 9 shows how the time is currently
spent in the hardware thread. While feature write-back is
negligible, reading in the sample window and feature vector
computation are dominating. The current implementation reads
in the complete sample window in every cycle, even for a
window shift of 1 sample. This stage could be much improved
by reading in only the new samples at every time step. Also,
currently only two channels are processed at a time in the
feature extraction units. As the utilization shown in Table I
indicates, there should be enough room to process over 100
channels in parallel.
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Figure 10 examines LDA training times and the share of
prominent parts during the training phase. Displayed is the ac-
cumulated value of all 1600 extracted windows with hardware
feature extractors implemented in VHDL. Processing time of
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Fig. 10. Time spent for training over the number of channels (red curve)
and the relative duration of the individual phases. Given Ta = 150 ms with
Tinc = 50 ms and 80000 samples, features of 1600 windows are extracted.
Training times were measured with different numbers of channels.

covariance (see line 3 of Algorithm 1) is the accumulated time
of 8 covariance calculations (one per class), the duration for
inverse calculation (see line 8 of Algorithm 1) is measured
at the end of the training phase. The entry “Miscellaneous”
comprises times for communication and additional calculations
during training. Looking at the partial execution times, both,
covariance and inverse matrix calculations increase substan-
tially with increasing number of channels. To decrease overall
training time acceleration of both matrix operations is desirable
and can be achieved by parallelization in hardware as shown
for inverse matrix calculation in [28] and covariance in [29].

VII. CONCLUSION

We have presented an architecture for an embedded HD
EMG prosthetics controller based on the ReconOS multi-
threading approach to hardware acceleration. The system was
implemented on a Xilinx Zynq platform and validated in
a real-life situation by an amputated test person who was
able to use a virtual prosthesis controlled by our device.
The system was then evaluated in terms of performance and
reconfigurable resource utilization. The hardware accelerated
design achieved speed-ups of up to 4.8 over the software-only
solution, allowing for a processing delay lower than the sample
period of 1 ms, effectively reducing the total controller delay
to 79 ms.

In future work, we plan to further utilize the available area
on the Zynq PL for the computation of more complex features.
Also, we are working on a design that reconfigures between
training and classification, allowing to use the complete FPGA
for each phase.
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