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Abstract

Realized kernels introduced by Barndor↵-Nielsen et al. (2008) are consistent es-

timators of the daily integrated volatility in the presence of microstructure noise.

A crucial problem by applying realized kernels is the selection of the bandwidth.

This paper proposes an iterative plug-in algorithm to solve this problem under

independent microstructure noise, which adapts the idea of Gasser et al. (1991)

in nonparametric regression to the current context. It is shown that the selected

bandwidth is consistent up to a bias factor due to the use of a biased formula of the

asymptotically optimal bandwidth. The nice practical performance of the proposal

is illustrated by application to data of a few German and French firms within a

period of several years. Further analysis of the obtained realized kernels using a

most recently proposed exponential SEMIFAR model is also discussed.
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1 Introduction

Estimation of the daily integrated volatility (IV) is an important topic in risk management,

portfolio allocation and option pricing. Realized volatility (RV) introduced by Andersen

et al. (2001a, b) is a model-free estimator of this quantity based on high-frequency finan-

cial data. The most simple definition of the RV, called RV0, is the sum of the squared

intraday returns. It is however found that high-frequency data often exhibit microstruc-

ture (MS) noise (Hasen and Lunde, 2006). Strong evidence for the existence of MS noise

is illustrated in Figure 1 in the next section using numerical examples. Now, RV0 is an

inconsistent estimator of the IV (Zhang et al., 2005, Bandi and Russel, 2008). Di↵erent

bias corrected estimators of the IV are introduced into the literature. For instance, Zhou

(1996) proposed an improved estimator, called RVZ, by including the cross-products be-

tween two consequent observations, which is unbiased under i.i.d. MS noise. Bandi and

Russel (2006, 2008, 2011) and Oomen (2006) investigated the use of sparse equidistant

high-frequency data and studied the choice of the optimal frequency to make a trade-o↵

between the variance and bias of the proposed estimators. Zhang et al. (2005) and Ält-

Sahalia et al. (2011) proposed the use of a realized volatility estimator with two time

scales to solve the bias problem caused by MS noise. Hansen and Lunde (2006) and

Oomen (2005) proposed a simple kernel based estimator of the IV. Furthermore, Hansen

et al. (2008) investigated correction of MS bias using moving average-based estimators.

Recently, Barndor↵-Nielsen et al. (2008, 2009, 2011) introduced the realized kernels

(RK), which are consistent estimators of the IV under given conditions. A crucial problem

by applying realized kernels is the selection of the bandwidth, because an RK only works

well, if the bandwidth is selected properly. This is illustrated in Figure 2 in the next

section through the above mentioned numerical examples. Barndor↵-Nielsen et al. (2009)

proposed to select the bandwidth by plugging suitable estimates of two unknowns into

a simplified (but biased) formula of the asymptotically optimal bandwidth of the RK.

However, their proposal is very complex and not fully data-driven. And the selected

bandwidth by this algorithm does not converge to the targeted bandwidth.

In this paper an iterative plug-in (IPI) bandwidth selector for realized kernels is de-

veloped by adapting the idea of Gasser et al. (1991) to the current context. So far as

we know, this is the first IPI algorithm for RK. For simplicity, we also adopt the biased
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targeted bandwidth proposed by Barndor↵-Nielsen et al. (2009). The di↵erence between

RV0 and the RK resulted in each iteration is used to estimate the variance of the MS noise.

And RVZ is used as an initial value of the RK so that the procedure is fully data-driven. It

is shown that the proposed bandwidth selector is consistent in the sense that the relative

error with respect to the targeted bandwidth tends to zero, as n ! 1. Furthermore,

the proposed bandwidth selection rule is very simple and the algorithm runs very fast,

because only a few iterations are required. It is hence suitable to be applied to obtain

data-driven RK in a long observation period. Theoretically, both of the resulted RK and

the selected bandwidth become consistent from the third iteration, while their rate of

convergence can still be improved in the fourth iteration. Thereafter, the resulted RK

achieves its optimal rate of convergence of the order O(n�1/5), which is also shared by the

relative error in the selected bandwidth. The nice practical performance of the proposal

is illustrated by application to data of a few German and French firms. These results

show that in most of the cases the procedure converges within four iterations. And the

distribution of the selected bandwidths is nearly normal. Empirical analysis showed that

the resulted RK performs better than RV0 and RVZ. It seems that both of the bias and

the standard deviation of RV0 and RVZ are clearly reduced by the data-driven RK. But

this fact still needs to be confirmed through simulation. The performance of the proposed

bandwidth selector on a few so-called ‘challenging days’ is discussed in detail.

Further analysis of the obtained results is of great interest. Andersen et al. (2001a, b,

2011) and Deo et al. (2006) find that the logarithmic RV may exhibit long memory. Choi

et al. (2010) found that the observed long memory may be spuriously generated e.g. by

a nonparametric trend or structural breaks. Hence, long memory, nonparametric trends

and possible structural breaks should be studied simultaneously. We propose to analyze

realized kernels use a piecewise version of the ESEMIFAR (exponential semiparametric

fractional autoregressive, Beran et al., 2015). It is found that realized kernels exhibit long

memory and a significant nonparametric trend at the same time. Estimation results for

the two sub-periods before and after the 2008 financial crisis are clearly di↵erent.

The paper is organized as follows. Some necessary known results are summarized in

Section 2. The data-driven bandwidth selector is proposed and studied in Section 3.

Application to real data is reported in Section 4. In Section 5 modeling of realized kernels

using the ESEMIFAR model is discussed. Final remarks in Section 6 conclude the paper.
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2 Realized volatility and realized kernels

2.1 E↵ect of MS noise on realized volatility

Let p⇤(⌧) denote the logarithmic e�cient asset price on a trading day, where 0  ⌧  T ,

and 0 and T denote the opening and closing time. Assume that p⇤(⌧) are determined by

the stochastic di↵erential equation

dp⇤(⌧) = �(⌧)dW (⌧), (1)

where W (⌧) is a standard Brownian motion and �(⌧) is the spot volatility process. Fur-

thermore, it is assumed that the �(⌧) and W (⌧) processes are independent of each other.

Estimation of the daily integrated volatility

IV =

Z T

0

�2(⌧)d⌧ (2)

is of great interest. Realized volatility is introduced as a model free estimator of the IV

based on high-frequency financial data. Let pi be the logarithmic asset prices observed

at time points 0 = ⌧0 < ⌧1 < . . . < ⌧n < ⌧n+1 = T , where n is the (random) number of

observations happened on that day. It is assumed that ⌧i� ⌧i�1 = Op(n�1). The intraday

returns are given by ri = pi � pi�1. The most simple definition of the realized volatility is

RV0 =
X

r2i , (3)

which is a consistent estimator of the IV, if there is no MS noise such that pi = p⇤i , where

p⇤i stands for p⇤(⌧i). In the presence of MS noise we have however

pi = p⇤i + ui, (4)

where ui represents a stationary noise process with mean zero and var(ui) = !2. It is

assumed that ui is independent of p⇤i . In this paper we will focus on the case with i.i.d.

ui. Let r⇤i = p⇤i � p⇤i�1 be the e�cient returns. The corresponding noise contaminated

observed returns are given by

ri = pi � pi�1 = r⇤i + ei, (5)

where ei = ui � ui�1 is the noise in ri. The observed returns are correlated to each other,

while r⇤i are uncorrelated. Under the i.i.d. assumption on ui, ei follow an MA(1) model.
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It can be shown that, the ACF of ri at lag 1 is ⇢r(1) = �!2/(2!2 + �2
i ) ! �0.5, as

n ! 1, where �2
i = var(r⇤i ). If !

2/�2
i is large, RV0 is clearly overestimated.

Empirical evidence of MS noise can be found by displaying the ACF of high-frequency

returns. Figure 1 shows the correlograms of high-frequency returns on four selected trad-

ing days, one from each of the following German and French companies, Air France (AF),

Allianz (ALV), BMW and Peugeot (PSA), respectively. From Figure 1 we see that ⇢r(1)

is always significantly negative, a clear evidence for the existence of MS noise. The in-

dependence assumption on the noise is about true in the first three cases. Furthermore,

we see the noise on the first selected day is very strong with ⇢̂(1) < �0.4 as can be seen

from Figure 1(a). Figures 1(b) and (c) show that the noise on the second and third se-

lected days is at a middle and a relatively low level, respectively. The fourth example in

Figure 1(d) is chosen to show that strong and dependent noise could also happen. For

this example not only ⇢̂r(1) but also those at lags 2 and 3 are significantly non-zero with

⇢̂r(2) > 0. But the sum of ⇢̂r(1) to ⇢̂r(3) is clearly negative.

In the presence of MS noise, RV0 can be rewritten as

RV0 =
nX

i=1

(r⇤i )
2 + 2

nX

i=1

r⇤i ei +
nX

i=1

e2i . (6)

It is well known that the bias of RV0 is B(RV0) = 2n!2 and the asymptotic variance of

RV0 is var (RV0) ⇡ 4nE(u4
i ), as n ! 1. Di↵erent approaches are introduced into the

literature to improve the performance of RV0. Under the i.i.d. assumption on ui, Zhou

(1996) proposed to correct the bias in RV0 by introducing the cross-products of lag 1 into

RV0. In this paper his proposal is slightly modified as follows:

RVZ =
n�1X

i=2

(r2i + riri+1 + riri�1). (7)

Under independent MS noise RVZ is unbiased and its variance is approximately 8n!4, as

n ! 1. That is this estimator is still inconsistent.

2.2 Realized kernels

To overcome the above mentioned problems of well known estimators of the IV, Barndor↵-

Nielsen et al. (2008, 2009, 2011) introduced the realized kernels, which are consistent
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estimators of the IV in the presence of MS noise under regularity conditions. A RK is

defined by

RK =
HX

h=�H

k

✓
h

H + 1

◆
�h, �h =

nX

j=|h|+1

rjrj�|h|, (8)

where k(u) is a kernel weight function, H is the bandwidth and �h is the h-th realized

autocovariance. To ensure the non-negativity of the RK, it is assumed that k(u) satisfies

the Condition K in Barndor↵-Nielsen et al. (2011). This implies in particular that the

kernel is with a non-flat top such that k00(0), the second derivative of k(u) at the origin, is

non-zero. A variety of kernel functions in this class may be found in Table 1 of Barndor↵-

Nielsen et al. (2011). The authors indicated that the use of the Parzen kernel is more

preferable. For u � 0, the Parzen kernel is defined by

k(u) =

8
>><

>>:

1� 6u2 + 6u3, 0  u  1/2,

2(1� u)3, 1/2 < u  1,

0 u > 1.

(9)

This kernel will be used in the numerical part of this paper.

Asymptotic properties of the RK are studied by Barndor↵-Nielsen et al. (2008, 2011).

See also Ikeda (2013). Assume that the bandwidth H is of the order H = O(n↵) with

0 < ↵ < 1, asymptotic bias and variance of an RK are given by

B(RK) ⇡ [k00(0)]2!2 n

H2
(10)

and

var (RK) ⇡ 4Tk0.0
•

Z T

0

�4(⌧)d⌧
H

n
+ C1

n

H3
+ C2

1

H
, (11)

where k0.0
• =

R1
0 k2(u)du, and C1 and C2 are two constants. The quantity

R T

0 �4(⌧)d⌧

is called the daily integrated quarticity. These results indicate that variance of an RK

is asymptotically negligible, if ↵ > 1/3, and both of its asymptotic variance and bias

are negligible, if ↵ > 1/2. The asymptotic variance is dominated by the second term on

the right-hand-side of (11), if 1/3 < ↵ < 1/2, and by the first term, if ↵ > 1/2. The

asymptotically optimal bandwidth (Barndor↵-Nielsen et al., 2009, 2011), which minimizes

the dominating part of the MSE (mean squared error) of an RK, is given by

HA = c0⇠
4/5n3/5 with (12)
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c0 =

⇢
k00(0)2

k0.0
•

�1/5

and ⇠2 =
!2

q
T
R T

0 �(⌧)4d⌧
.

For the Parzen kernel we have c0 = 3.5134. We see the optimal bandwidth for an RK with

a non-flat top kernel is of the order O(n3/5). If a bandwidth of this order is employed, the

resulted RK will achieve its optimal convergence rate of the order O(n�1/5).

The above theoretical results show that realized kernels work well, only if the bandwidth

is chosen properly. To show this, the dependence of the RK on the bandwidth H is

displayed in Figure 2 for the four selected examples, where the vertical line in each panel

highlights the bandwidth selected by the procedure proposed in the next section with

Ĥ = 55, 20, 13 and 24, respectively. Figure 2 shows that an RK is very sensitive to the

change of the used bandwidth, if H is small. In a common case, like those in Figures 2(a),

(b) and (d), the change in H usually does not have a clear e↵ect on the resulted RK, if

the used bandwidth is large. However, Figure 2(c) indicates that sometimes both of a too

large or a too small bandwidth can lead to a clearly wrong estimation result. Detailed

discussion on the selected bandwidths will be given in Section 4.

3 Bandwidth selection for realized kernels

Examples in Figure 2 show that the selection of the bandwidth is a crucial problem for

the application of the RK. In the current context the number of observations on a trading

day is very large and one usually would also like to estimate the RK for a number of firms

within a long observation period. Hence, we aim at the development of a quick bandwidth

selector for the RK with nice theoretical and practical performance. An plug-in bandwidth

selector can be obtained by inserting estimates of !2 and
R T

0 �4(⌧)d⌧ into HA. However,

the estimation of
R T

0 �4(⌧)d⌧ is not yet well solved in the literature. Barndor↵-Nielsen et

al. (2009) proposed a plug-in bandwidth selector based on the following formula:

HB = c0⇠
4/5
B n3/5 (13)

with ⇠2 in HA being replaced by ⇠2B = !2/IV, which is of the same order as HA but with a

biased factor in the constant. The reason is that T
R T

0 �4(⌧)d⌧ can be well approximated

through IV2, if �(⌧) does not vary too much. This biased version of the optimal bandwidth
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will also be employed in the current paper. Now, assume that cIV is an at least unbiased

estimator of IV, it is easy to show that

!̂2 =
RV0 � cIV

2n
(14)

is an consistent estimator of !2. Furthermore, if cIV is a consistent estimator, HB can be

estimated consistently by replacing ⇠2B with

⇠̂2B = !̂2/cIV. (15)

The di↵erence between HA and HB is an constant factor HB/HA = (T
R T

0 �4
udu/IV

2)1/5,

which is usually slightly bigger than one. In the following a consistent bandwidth selector

of HB is proposed by adapting the IPI idea of Gasser et al. (1991) to the current context

with RV0 and RVZ as the initial values. The proposed algorithm reads as:

Step 1. In the first iteration let cIV1 = RVZ. Calculate !̂2
1 and ⇠̂21 following (14) and (15).

Insert the latter into (13) to obtain Ĥ1. Put j = 2.

Step 2. In the jth iteration with j > 1, calculate cIVj with Ĥj�1. Then calculate !̂2
j and

⇠̂2j , and obtain Ĥj similar to Step 1.

Step 3. Increase j by 1 and carry out Step 2 repeatedly. The procedure will be ended, if

convergence is achieved or some stopping criterion is fulfilled, or a maximal number

of iterations J is carried out. Put Ĥ = Ĥj.

We will see that Ĥ1 is an inconsistent bandwidth selector. But after a few iterations, Ĥj

will become a consistent estimate of HB. The detailed behavior of Ĥj in each iteration and

the theoretical properties of the finally selected bandwidth are discussed in the following

theorem and its proof.

Theorem 1. Assume that Conditions K, SH, D and U in Theorem 2 of Barndor↵-

Nielsen (2011) hold. Assume further that ui are i.i.d. and that the end-e↵ect as indicated

in that paper is treated suitably, so that it does not a↵ect the asymptotic performance of

cIVj in the proposed procedure. Then we have

i) Ĥj selected by the proposed procedure with j � 3 is a consistent estimator of HB in

the sense that (Ĥj �HB)/HB = op(1).
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ii) For j � 4 the selected bandwidth is consistent with a relative convergence rate of the

order n�1/5, i.e. (Ĥj �HB)/HB = Op(n�1/5).

A sketched proof of Theorem 1. The following proof is carried out conditioning on

given number of observations n on a trading day.

i) In the first iteration, we have cIV1 = IVZ = IV + Op(n1/2). Furthermore, it can be

shown that !̂2
1 is

p
n-consistent such that !̂2

1 = !2[1 + Op(n�1/2)] and ⇠̂21 = Op(n�1/2).

This results in an estimate Ĥ1 = Op(n↵1) with ↵1 = 2/5 > 1/3. Following the asymptotic

results summarized in (10) and (11), the use of Ĥ1 in the second iteration will lead to an

estimate with an asymptotically negligible variance and a random bias term of the order

O
⇣

n
H2

1

⌘
= Op(n1/5). That is we have cIV2 = IV +Op(n1/5) + op(1). Now, it can be shown

that !̂2
2 = !2[1 + Op(n�1/2) + Op(n�4/5)] with an additional term caused by the bias in

cIV2, which is still
p
n-consistent. Furthermore, we have ⇠̂22 = Op(n�1/5). Insert these

results into the proposed algorithm we obtain Ĥ2 = Op(n↵2) with ↵2 = 13/25 > 1/2. The

estimates cIV3, !̂2
3 and ⇠̂23 in the third iteration obtained with Ĥ2 are all consistent. Hence,

Ĥ3 is a consistent estimate of HB in the relative sense.

ii) Note that the error of Ĥj is dominated by that of cIVj. Using Taylor expansion of a

random function it can be shown that the rate of convergence of Hj is the same as that of

⇠̂2j . From the fourth iteration onwards, Ĥj achieves its optimal rate of convergence of the

order Op(n�1/5) in a relative sense with (Ĥj �HB)/HB = Op(n�1/5) for any j � 4. 3

The proof above shows that, theoretically, at least three steps are required to achieve a

consistent selector of HB. Asymptotically, the performance of Ĥ4 might be slightly better

than that of Ĥ3, because cIV4 is obtained with a consistent bandwidth selector. The

proposed data-driven algorithm and the above theoretical results can be easily adapted

to the case, if an unbiased estimate of
R
�4(⌧)d⌧ is used. Furthermore, note that the

bandwidth for an RK is an integer. Small changes in the involved quantities often do

not have any e↵ect on the finally selected bandwidth. Hence, the proposed algorithm

converges very quickly. This is also confirmed by the application in the next section.

An R code is developed for practical implementation of the proposed bandwidth se-

lector. The procedure will be stopped, if Ĥj = Ĥj�1 is achieved. It is also found that

sometimes the selected bandwidths take two consequent integers alternatively. If this hap-

pens, the procedure will also be ended. Now, the larger of the two selected bandwidths
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will be used. Both cases will be considered as regular cases (Reg. Case). Furthermore,

the following three special cases can also happen. The first special case (Sp. Case 1) is

that with RVZ < 0. This indicates that the MS noise should be very strong (and maybe

correlated). Now, Ĥ1 can not be calculated according to the proposed algorithm, because

we have cIV1 < 0. In this case we will manually set ⇠̂21 = 100/(2n), which will lead to a big

starting bandwidth Ĥ1. Nevertheless the procedure runs very well and, after a few iter-

ations, Hj will converge to the selected optimal bandwidth, which is independent of Ĥ1.

The second special case (Sp. Case 2) is that with RVZ > RV0, which indicates probably

that there is no MS noise on that day. Now, the procedure cannot be carried out, because

we have !̂2
1 < 0. In this case, we will set Ĥ = 0 and simply use RV0. The last special

case (Sp. Case 3) will happen, when RK becomes bigger than RV0 in some iteration with

j > 1. This means again that there is no strong MS noise in the observed prices on that

day. And now the proposed algorithm cannot be carried out further. Hence, we will put

Ĥ = Ĥj as the selected optimal bandwidth.

Note that the optimal bandwidth for an RK under independent and dependent MS

noise is of the same order of magnitude. The proposal bandwidth selector can hence be

applied to the case with dependent MS noise. The example in Figure 2(d) also indicates

that the proposal works in this case. But now, the selected bandwidth is only sub-optimal,

because it is only of a correct order but with a clearly biased constant.

4 Application

The proposed algorithm is applied to the datasets of AF, ALV, BMW and PSA from 2.

Jan. 2006 to 30. Jun. 2012, downloaded from the ”Thomson Reuters” Corporation. The

total number of trading days for the two German Stocks is 1655 and that for the two

French Stocks is 1664. The numbers of days in the four cases with di↵erent behavior of

the algorithm as described in the last section are listed in Table 1. We see the proposed

algorithm converged for more than 99% of those datasets. The three special cases only

happened with a very small chance. Sp. Case 1 occurred only once by PSA. Sp. Case 2

and Sp. Case 3 for AF and ALV also occurred rarely. For BMW and PSA, Sp. Case 3

occurred on 11 and 8 days, respectively. Now, the ratio of Sp. Case 3 is still clearly smaller

than 1%. Therefore, the three special cases can be considered as some rare extreme events.
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Trading days on which Sp. Cases 2 or 3 happened will be called challenging days. Now,

the proposed algorithm does not work well. This will be discussed in Section 4.2 in detail.

4.1 Summary of the general findings

Figure 3 shows the histograms of the selected optimal bandwidths for the four compa-

nies. It seems that the proposed bandwidth selector is nearly asymptotically normally

distributed. For finite samples the distribution is sometimes slightly skewed to the right

with very fewer extremely large selected bandwidths. The selected bandwidths are usu-

ally between 5 and 25. The largest selected bandwidth is 55 by AF on 18. Jul. 2007 as

indicated in Figure 3(a). As defined before, the selected bandwidth is 0, if Sp. Case 2

happened. From Figure 2 we can see that the use of the selected bandwidth leads to an

estimate, which is at a very low level, but not the lowest value of all possible RK. This

feature is as expected and shows that the proposed bandwidth selector works very well

in practice. This nice property is particularly highlighted by Figure 2(c). Note that the

bandwidth selected by the procedure of Barndor↵-Nielsen et al. (2009) is usually very

large. This is not only caused by the use of di↵erent algorithms, but also by the di↵erent

features of the used datasets. It is of great interest to carry out a comparative study

between the two proposals theoretically and through simulation. This is however beyond

the aim of the current paper and will be discussed elsewhere. The histograms of the num-

bers of iterations for all companies are displayed in Figure 4. In the R code a maximal

number of iteration J = 15 is used. For the datasets under consideration this limit is

never achieved. The maximal number of iterations occurred is 11 by PSA on one day. The

maximal numbers of iterations by AF, ALV and BMW are 6, 5 and 6, respectively. And

the most possible number of iterations for all of the four companies is 3. Furthermore, in

most of the cases the proposed algorithm converges within four iterations. This confirmed

the results of Theorem 1.

The estimated RV0, RVZ and RK are summarized in Table 2, where the t statistic for

the di↵erences between RV0 and RVZ, and those between RVZ and RK are also given in the

second and third rows, respectively. These t values are calculated under the assumption

that those di↵erences in a given case are i.i.d. We see that for each of the four companies

the mean of RV0 is much larger than those of RVZ and RK. The mean of RVZ is also
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bigger than that of RK. The di↵erences between those mean values are always very highly

significant. The di↵erence between the means of RV0 and RVZ indicates the part of the

bias caused by the MS noise, which can be discovered by ⇢̂(1) of the returns. And the

di↵erence between the means of RVZ and RK indicates additional bias caused by possible

dependent MS noise, which can not be reflected by ⇢̂(1) of the returns. The di↵erences

between the standard deviations of those estimators are similar to that mentioned above.

It can also be shown that those di↵erences are always significant. Details to this end are

omitted to save space. In summary, the use of the proposed data-driven RK will lead

to a clear reduction of the bias and the variation, comparing with the two well known

estimators RV0 and RVZ. These empirical findings show that the proposed approach

works well in practice. However, the practical performance of the proposed data-driven

algorithm for RK still need to be confirmed by means of a simulation study.

The results of RV0, RVZ and RK for AF after logarithmic transformation are shown

in Figure 5. From this figure we can see that, in addition to the di↵erences among the

estimates obtained by these di↵erent approaches, they also exhibit quite similar common

patterns. In particular all of these series seem to have a non-stationary trend component

and possible structural breaks caused by two financial crises, i.e. the global financial

crisis in 2008 and the European debt crisis in 2011, respectively. The results of the

data-driven RK for ALV, BMW and PSA, again in log-scale, are displayed in Figure 6.

We see, these series also share similar patterns as those displayed in 5(c). Moreover, an

interesting empirical finding is that, in addition to the common general tendency of those

RK series, they seem also correlated to each other strongly. This feature is helpful for

further modeling and forecasting of RK.

4.2 Detailed analysis of two challenging cases

Now, we will discuss briefly, why the proposed data-driven algorithm does not work well

in Sp. Cases 2 and 3. The dataset of AF on the 15. Sept. 2011 was chosen as an example

of Sp. Case 2 and that of BMW on the 21. May 2009 was chosen as an example of Sp.

Case 3. Figure 7 shows the ACF of the intraday returns on those two challenging days.

As shown in Figure 1, usually, MS noise will cause a clearly significant negative ACF at

lag 1. From Figure 7 we can see that this is not true in both examples selected here.
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Figure 7 (a) shows that almost all of the estimated ACF in this case are insignificant.

But the ACF at lag 1 happens to be slightly positive. This results in turn in the fact that

RVZ is slightly larger than RV0. In this case we proposed the use of Ĥ = 0, because now

the e↵ect of the MS noise seems to be unclear. One problem can arise in the presence

of dependent MS noise. Now, it can happen that although the ACF at lag 1 is positive,

but some ACF at higher lags can be negative so that RV0 is still biased. This kind of

e↵ect of MS noise can however not be corrected by the proposed data-driven RK. The

problem in Sp. Case 3 is di↵erent. As we can see, now the ACF at lag 1 is negative

and hence the proposed bandwidth selection algorithm can be started. However, some

other ACF are clearly positive so that the sum of the ACF is now positive. This indicates

again the existence of possible dependent MS noise. This kind of noise could however

cause a negative bias in RV0. Following our proposal, the resulted RK in this special

cease is always slightly bigger than RV0. The e↵ect of this kind of possibly dependent

MS noise can also not be captured by the proposed algorithm. Both examples indicate

that the proposed algorithm should still be improved and it is worthy to development a

data-driven RK by taking possibly dependent microstrucutre noise into account.

5 Further analysis using the Semi-FI-Log-ACD

Further analysis of the obtained RK is of great interest. Ebens (1999) showed that the

distribution of the logarithmic volatility is approximately normal. Anderson et al. (2003),

Corsi (2009) and Koopman et al. (2005) showed that logarithmic realized volatility may

exhibit high persistence. From Figures 5 and 6 we can see that the logarithmic RK may

also exhibit a deterministic nonparametric trend. The well known SEMIFAR (Beran

and Feng, 2002) is a nonparametric regression model with long-range dependence. Most

recently, Beran et al. (2015) proposed to apply the SEMIFAR model to logarithmic

transformation of nonnegative financial time series. Their proposal is hence called an

ESEMIFAR model, which can be applied to RK. See also Feng and Zhou (2015) for

discussion on forecasting based on this approach. Assume that Zt, the log-transformed

RK, follow a SEMIFAR model

(1� B)d�(B)[Zt � µ(⌧t)] = "t, (16)
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where B denotes the backshift operator, �(B) is the AR-characteristic polynomial, "t

are i.i.d. normally distributed random variables with E("t) = 0 and var ("t) = �2
" ; d 2

(�0.5, 0.5) and ⌧ = t/n denotes the rescaled time. The existing data-driven algorithms

of the SEMIFAR can be used to fit (16), where the AR model is selected by the BIC. A

very nice property of this proposal is that, if d > 0, the long memory parameter in the

original and the log-data is the same. See Beran et al. (2015) for more details.

In the following, the RK series of Air France is used as an example. Like the nonpara-

metric trend, a financial crisis will also cause spurious long memory, if long memory is

estimated without taking possible structural breaks into account. Hence, we will apply

the ESEMIFAR model to the whole series as well as to the two sub-series from 2. Jan.

2006 to 30. Sept. 2008, and from 1. Oct. 2008 to 30. Apr. 2011. These sub-periods are

defined manually. Discussion on the detection of structural breaks under the SEMIFAR

model is beyond the purpose of this paper. The sub-series after May 2011 is very short

and is hence not considered.

An ESEMIFAR model with a third order local polynomial is fitted to the whole series

and to each of the two sub-series mentioned above. The fitted trends together with the

data are displayed in Figure 8(a) to (c), respectively. The trend in Figure 8(a) indicates

clear e↵ect of the two financial crises on the market volatility. However, it seems that

there is no more structural breaks in the two sub-series. And now the ESEMIFAR fits

the data well. The selected bandwidths (b̂), the estimated long memory parameters (d̂)

and the selected AR model, if applicable, are listed in Table 3, where the 95%-confidence

intervals and the results of the significant test of the fitted trend are also given. From

this table we can see that in both sub-periods realized kernels exhibit significant long

memory and a significant non-parametric trend simultaneously. In the second sub-period,

the short memory part of this model is also significant. Comparing the results for the

whole series with those for the two sub-periods, we can see that possible structure breaks

cause by the two financial crises exhibit at least the following e↵ects on the estimated

ESEMIFAR model: The possible structure breaks resulted in clear overestimation of the

long memory parameter, which in turn caused the wrong conclusion, that the estimated

trend were insignificant.
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6 Final remarks

An IPI algorithm for realized kernels under independent MS noise was proposed. To

our knowledge this is the first IPI algorithm in the current context. It is shown that

this proposal has some nice theoretical properties, runs very quickly and works usually

very well in practice. Possible problems which can happen on some challenging days are

discussed in detail. It is also proposed to analyze the resulted RK using the most recently

proposed ESEMIFAR model. We also tried to apply this model to di↵erent pieces of the

whole series. There are still some open questions in this context. Firstly, it is better, if one

can find more reasonable solutions to the problems on the challenging days. Secondly, it

is worthy to extend the current proposal to cases with dependent MS noise. Thirdly, the

proposed bandwidth selector can also be improved, if an unbiased estimator of the daily

integrated quarticity can be developed. Furthermore, to apply the idea of the piecewise

ESEMIFAR model properly, a suitable approach for detecting structural breaks under the

SEMIFAR model should also be developed. Finally, the development of a multivariate

semiparametric long memory time series approach for jointly modeling of di↵erent RK

series is also of great interest.
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Table 1: Numbers of days in di↵erent cases for the four companies

PPPPPPPPPPFirms

Cases
Reg. Case Sp. Case 1 Sp. Case 2 Sp. Case 3

AF 1662 0 1 1

ALV 1652 0 1 2

BMW 1643 0 1 11

PSA 1653 1 3 8

Table 2: Statistics of RV0, RVZ and RK; t between RV0 & RVZ, and RVZ & RK

AF ALV BMW PSA

mean s.d. t mean s.d. t mean s.d. t mean s.d. t

RV0 12.74 14.60 — 10.18 24.03 — 7.71 11.35 — 12.11 14.02 —

RVZ 8.05 8.84 26.79 6.82 16.25 17.27 5.54 8.26 26.09 8.28 9.39 27.20

RK 6.29 6.62 23.48 5.28 10.02 9.41 5.16 6.55 6.90 7.07 7.57 19.03

Table 3: Results of ESEMIFAR for realized kernels of Air France

Series ĥ d̂ & %-CI p̂ �̂1 & 95%-CI trend

Jan. 2006 - Jun. 2012 0.191 0.437 [0.399, 0.475] 0 — insign.

Jan. 2006 - Sep. 2008 0.269 0.380 [0.322, 0.438] 0 — sign.

Oct. 2008 - Apr. 2011 0.149 0.285 [0.175, 0.395] 1 0.152 [0.014, 0.290] sign.
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(b) ACF of ALV−returns on 04. Jan. 2010
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(c) ACF of BMW−returns on 09. Jan. 2012
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(d) ACF of PSA−returns on 30. Mar. 2007

Figure 1: Examples of ACFs of high-frequency returns on four selected days
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Figure 2: Realized kernels against H obtained on the four selected days
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Figure 3: Histograms of selected bandwidth for all examples.
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Figure 4: Histograms of the number of iterations for all examples.
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Figure 5: Logarithmic transformation of all realized volatility estimators for Air France

21



2006 2007 2008 2009 2010 2011 2012

−1
0

−9
−8

−7
−6

−5
−4

Year

(a) Log−RK for ALV estimated by the proposed data−driven approach
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Figure 6: Logarithmic transformation of realized kernels for the other three companies
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(a) ACF of AF−returns on 15. Sept. 2011
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(b) ACF of BMW−returns on 21. May 2009

Figure 7: ACF of the high-frequency returns on the two challenging days
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Figure 8: Estimated trend by ESEMIFAR together with the log-data
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