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1 Introduction

Analysis of high-frequency returns can provide detailed features of market volatility. A

widely used model in this context is introduced by Andersen and Bollerslev (1997, 1998)

and Andersen et al. (2000), where the volatility is decomposed into a deterministic intraday

component and a conditional daily component. This idea is extended in different ways.

Feng and McNeil (2008) introduced a long-term deterministic component to deal with slowly

changing volatility dynamics in high-frequency returns. Engle and Sokalska (2012), hereafter

E&S, proposed a multiplicative component GARCH with an intraday GARCH (Engle, 1982

and Bollerslev, 1986) component. In this paper the idea of E&S will be extended in different

ways for simultaneous modelling of deterministic long-term volatility dynamics, intraday

variance patterns, daily and intraday conditional variances as well as possible multiplicative

random effects in high-frequency returns, which we have found from the data.

The basic idea is to represent high-frequency returns under a spatial structure with the

trading day defined as one dimension and the trading time on a day as the other. Although

this proposal is just another illustration of the data, it provides a powerful framework for

analyzing high-frequency volatility dynamics. Firstly, the deterministic component under

this model forms a volatility surface, which shows an entire picture of long-term deterministic

volatility dynamics and intraday volatility patterns and can be easily estimated. Note that

the intraday seasonality considered in Andersen and Bollerslev (1997, 1998) and E&S can

be thought of as the average curve of this volatility surface over all trading days, while the

long-term deterministic volatility component in Feng and McNeil (2008) corresponds to the

average curve of the volatility surface over all trading time points. Secondly, the proposed

model also helps us to discover some detailed features of high-frequency returns, which cannot

be found by the other models. Moreover, it is also possible to develop new GARCH models

under this spatial framework.

In the literature, spatial models are usually applied to geological, ecological and social time

series, because they focus on linkages between time series recorded at different locations.

In recent years some spatial extensions of the GARCH model are proposed for modelling

spatial dependence between financial time series. See e.g. Caporin and Paruolo (2006) and

Borovkova and Lopuhaä (2009). Those GARCH models are indeed not intrinsic spatial

models, because the definition of the spatial distance between different time series seems to

be quite subjectively. However, the proposed framework for high-frequency data is a spatial

model in its original sense. Now, the trading time points are considered as locations.
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This paper focuses on estimating the deterministic volatility surface using bivariate kernel

regression (Härdle, 1990, Scott, 1992 and Ruppert and Wand, 1994). Due to the huge number

of observations, the traditional procedure runs very slowly. An equivalent but much quicker

double-conditional smoothing technique is developed, where the data is first smoothed in

one dimension. The intermediate smoothing results are then smoothed again in the other

dimension. This idea adapts the double-smoothing for bandwidth selection in nonparametric

regression (Müller, 1985, Heiler and Feng, 1998 and Feng and Heiler, 2009) to a dimension re-

duction technique. The smoothing results in the first stage also consist of useful information

about some detailed features of the data, which cannot be found by the traditional proce-

dure. In particular, these results indicate that high-frequency returns exhibit multiplicative

random effects. Influence of this phenomenon is first discussed in detail under a simple spec-

ification of the error term with multiplicative random effects. To include possible conditional

heteroskedasticity, a spatial multiplicative component GARCH with random effects is then

proposed by introducing multiplicative random effects into the proposal of E&S. Properties

of the stationary part and those of the conditional and unconditional sample variances of

the stationary part are discussed in detail under this new model. Basic properties on the

stationary part of the multiplicative component GARCH model of E&S are also obtained.

It is shown that spatial stochastic processes (or random fields) with multiplicative random

effects share the feature of a deterministic process. Now, the spatial autocovariances of the

squared process do not decay to zero, if one of the two lags is zero. This in turn affects the

variance of the sample variances. To discuss

The asymptotic variance, the rate of convergence and the optimal bandwidths of the kernel

estimator of the volatility surface are hence all changed strongly. Now, the asymptotic

variance of a kernel estimator converges much slower than that in the case without random

effects. Furthermore, the smoothers in the first stage converge to the product of the true

curves and a random scale and are hence inconsistent. Application to real data examples

shows that the long-term volatility dynamics before, during and after the 2008 financial crisis

at a given trading time point form a volatility arch (volatility bridge) with a very sharp peak,

which together with the daily volatility smiles build a volatility saddle. Proposals in this

paper also provide us new tools for analyzing market microstructures.

The spatial models with random effects are introduced in Section 2. The double-conditional

smoothing is defined in Section 3. Properties of the error processes and the proposed kernel

estimators are studied in Section 4. The application is reported in Section 5. Final remarks

in Section 6 conclude the paper. Proofs of the results are given in the appendix.
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2 The proposed models

This section introduces the multiplicative spatial model for equidistant high-frequency returns

with different specifications on the multiplicative random effects and discusses some possible

extensions of this model.

2.1 The spatial multiplicative component model

Let ri,j denote the high-frequency (log-)returns observed at nt equidistant trading time points

tj, j = 1, ..., nt, on the i-th trading day, where i = 1, ..., nx. Although ri,j can be represented

as a single time series with n = nxnt observations, it is however more convenient to model

ri,j directly based on a matrix form defined by the two indexes. Now, several features of

high-frequency returns, which cannot be found under known models in the literature, can

be easily discovered. Hence, we will introduce the following (lattice) spatial multiplicative

component volatility model for ri,j, where the lattice is defined by the trading days and the

trading time points on a day:

ri,j = n
−1/2
t σ(xi, tj)Yi,j, (1)

i = 1, ..., nx, j = 1, ..., nt, and

Yi,j = ω
1/2
i λ

1/2
j εi,j, (2)

where n
−1/2
t is a standardized factor to avoid the effect of the use of different frequencies,

xi = (i− 0.5)/nx is a re-scaled variable of the trading day, σ2(x, t) > 0 is a slowly changing

deterministic (unconditional) volatility surface, Yi,j denotes the stationary stochastic part,

where ωi > 0 and λj > 0 are i.i.d. random variables with unit means and finite variances,

and εi,j are i.i.d. random variables with zero mean and unit variance. It is also assumed that

ωi, λj and εi,j are mutually independent. We will see that ri,j defined in Model (1) are uncor-

related with each other. Throughout this paper we will define r̃i,j = n
1/2
t ri,j. The volatility

surface illustrates the joint deterministic long-term and the intraday volatility dynamics in

r̃i,j. The two random variables ωi and λj are introduced into the model to deal with possible

multiplicative random effects found by our empirical analysis. It is easy to see that Yi1,j and

Yi2,j are not independent. This is also true for Yi,j1 and Yi,j2 . We will see that the influence

of the random effects are indeed even stronger than it is expected.

Models (1) and (2) provide a useful tool for modelling high-frequency returns observed

over a long period, in particular for defining and estimating the high-frequency volatility
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surface. After displaying the data in a 3D illustration we can immediately discover some

interesting features of high-frequency returns, e.g. the effect of the financial crisis 2008 and

the intraday volatility dynamics can already be discovered by eye. These features can be seen

more clearly from the fitted volatility surface. See Figure 1 in Section 5, where the curves

in the direction of the trading time indicate the estimated diurnal volatility patterns over

all trading days. On the other hand, changes of the volatility surface over the observation

period indicate the long-term volatility dynamics. Moreover, it was this model together with

the double-conditional smoothing procedure defined in the next section, which helped us to

discover the multiplicative random effects in high-frequency returns. See Figure 2.

2.2 Spatial multiplicative component GARCH with random effect

The specification in Model (2) allows us to discover the theoretical influences of the multi-

plicative random effects easily. However, possible conditional variance components in high-

frequency data cannot be analyzed by this simple approach. Model (2) is hence extended by

introducing corresponding random effects into that of E&S. This leads to

Yi,j = ω
1/2
i h

1/2
i λ

1/2
j q

1/2
i,j εi,j, (3)

where hi is a daily conditional variance component and qi,j are unit intraday GARCH com-

ponents. Furthermore, we denote the intraday GARCH processes by Zi,j = q
1/2
i,j εi,j. The

daily volatility component hi may be governed by a separate stochastic process. Models (1)

and (3) together extend the multiplicative component GARCH of E&S in different ways.

Firstly, the deterministic diurnal pattern, σ(xi, ·) for given i, is now allowed to change slowly

over the trading days. And a long-term deterministic volatility trend, σ(·, tj) for given j, is

introduced, which is also allowed to change slowly over all trading time points. Secondly,

multiplicative random effects in both dimensions are introduced into the stochastic part of

their model. Following this approach, volatility in high-frequency returns is decomposed into

different deterministic or stochastic components under the spatial framework. The model

defined by (1) and (3) will hence be called a spatial multiplicative component GARCH with

random effects. Note that the two GARCH components and the two random effect compo-

nents in Model (3) play different roles, where ωi and λj occur fully randomly, while hi and

qi,j obey some models and are predictable. If hi ≡ qi,j ≡ 1, Model (3) becomes (2). When

ωi ≡ λj ≡ 1, Model (3) reduces to

Yi,j = h
1/2
i q

1/2
i,j εi,j, (4)
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which is similar to that defined by Eq. (6) and (7) in E&S. Models (1) and (4) hence provide

another simple spatial extension of their model with the intraday seasonality there being

replaced by the entire nonparametric volatility surface, while keeping the stochastic part

unchanged.

2.3 Possible extensions

Model (1) can be first extended by introducing a non-zero deterministic mean surface µ(x, t),

which can be estimated similarly following the proposed procedure in the next section. It

is well known that the error in µ̂(x, t) usually does not affect the asymptotic properties of

σ̂2(x, t). The stochastic part Yi,j can also be specified in other ways. For instance, it may be

of interest to introduce and study different daily GARCH components at different trading

time points.

Although Model (1) is defined for equidistant high-frequency returns, it also applies to

tick-by-tick high-frequency returns. Now, the double-conditional smoothing in the next sec-

tion should be adapted properly and the intraday discrete GARCH components can e.g.

be replaced by suitable continuous-time GARCH processes (Klüppelberg et al., 2004 and

Brockwell et al., 2006). Furthermore, the proposals in this paper also apply to other kinds

of high-frequency financial data, such as average transaction durations or trading volumes

within time intervals with a given length, or non-financial data with suitable structure.

3 The double-conditional smoothing technique

In this paper we mainly focus on discussing the estimation of the volatility surface. Estimation

of the parameters of the stochastic part will be studied elsewhere.

3.1 The proposed algorithm

Due to the huge number of observations the common bivariate kernel estimator of the volatil-

ity surface runs very slowly. An equivalent double-conditional smoothing technique is hence

developed to reduce the computing time. This approach also provides us very useful addi-

tional information about the detailed features of high-frequency returns.
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It is well known that σ2(x, t) can be thought of as a nonparametric regression in r̃2i,j,

because Model (1) can be rewritten as follows

r̃2i,j = σ2(xi, tj) + σ2(xi, tj)(Y
2
i,j − 1)

= σ2(xi, tj) + σ2(xi, tj)ηi,j, (5)

where ηi,j = Y 2
i,j − 1 with E(ηi,j) = 0 and var (ηi,j) = var (Y 2

i,j). The autocorrelations

of ηi,j are also the same as those of Y 2
i,j. Model (5) is a nonparametric regression with

heteroskedastic dependent errors, where σ2(xi, tj) is its regression and scale function at the

same time. Another characteristic of (5) is that, given j, we have repeated observations at

each point (xi, tj), and vice versa. And there is exactly one observation at each point.

For convenience, we assume that tj = (j − 0.5)/nt is the standardized trading time. Now,

the spatial model is defined on an nx ∗nt grid on [0, 1]× [0, 1]. Assume that r̃2i,j are arranged

in the form of a single time series ř2l associated with the coordinates (x̌l, ťl), where l = 1, ..., n

and n = nx ∗ nt is the total number of observations. A well known approach for estimating

σ2(x, t) is the bivariate kernel estimator (Härdle et al., 1998, and Feng and Heiler, 1998),

which is defined by

σ̂2(x, t) =
n∑
l=1

w̌lř
2
l , (6)

where

w̌l = K

(
x̌l − x
bx

,
ťl − t
bt

)[ n∑
l=1

K

(
x̌l − x
bx

,
ťl − t
bt

)]−1
, (7)

where K(ux, ut) is a bivariate kernel function, and bx and bt are the bandwidths for x̌ and ť,

respectively. The volatility surface is then given by σ̂(x, t) =
√
σ̂2(x, t). Under models (1)

or (5), the kernel estimator can however be rewritten as

σ̂2(x, t) =
nt∑
j=1

nx∑
i=1

wi,j r̃
2
i,j, (8)

where

wi,j = K

(
xi − x
bx

,
tj − t
bt

)[ nx∑
r=1

nt∑
s=1

K

(
xr − x
bx

,
ts − t
bt

)]−1
. (9)

Assume that K is a product kernel K(ux, ut) = K1(ux)K2(ut), then σ̂2(x, t) can be further

represented as

σ̂2(x, t) =
nx∑
i=1

nt∑
j=1

wixwjtr̃
2
i,j, (10)
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which is equivalent to

σ̂2(x, t) =
nt∑
j=1

wjtσ̂
2(x|tj) (11)

or

σ̂2(x, t) =
nx∑
i=1

wixσ̂
2(t|xi), (12)

where

σ̂2(x|tj) =
nx∑
i=1

wixr̃
2
ij and σ̂2(t|xi) =

nt∑
j=1

wjtr̃
2
ij (13)

are two univariate kernel estimators with corresponding weights

wix = K1

(
xi − x
bx

)[ nx∑
r=1

K1

(
xr − x
bx

)]−1
,

wjt = K2

(
tj − t
bt

)[ nt∑
s=1

K2

(
ts − t
bt

)]−1
.

Note that σ̂2(x|tj) for given j is obtained with returns at the trading time point tj over

all trading days and σ̂2(t|xi) for given i is calculated with all intraday returns on the ith

trading day, respectively. Each of the intermediate smoothers σ̂2(x|tj) and σ̂2(t|xi) obtained

in the first stage consists of a panel of univariate kernel estimators obtained over one of the

two explanatory variables conditioning on the other. The final estimators defined in (11)

or (12) are hence called double-conditional kernel estimators, which provide two equivalent

procedures of the double-conditional smoothing approach. It is obvious that the estimators

defined by (6), (8) or (10) to (12) are all equivalent to each other. Note however that the

first estimator applies to any bivariate kernel regression models but the others are only well

defined under Model (1) or (5). Although the final estimate given by the double-conditional

smoothing is exactly the same as that obtained by the standard bivariate kernel regression,

the former exhibits a few important advantages.

3.2 Advantages and possible extensions

The obvious advantage of the double-conditional smoothing technique is that it is a dimension

reduction technique, which transfers a two-dimensional smoothing into two one-dimensional

smoothing procedures. It is easy to see that this approach runs much quicker than the

standard one, in particular if the bandwidths are large and the estimation is carried out at

all observation points. Detailed discussion on the computational advantage of the proposal

is beyond the aim of the current paper.
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Another more important advantage of the double-conditional smoothing technique is that

the intermediate results provide useful information. For instance, σ̂2(x|tj) shows the long-

term volatility trend at the time point tj over all trading days and σ̂2(t|xi) stands for the

estimated intraday volatility seasonality on the ith trading day. From Figure 2 in Section

5 we can see that σ̂2(x|tj) and σ̂2(x|tj+1) differ to each other in a random way and the

conditional smoothing of the intraday volatility patterns exhibits similar phenomenon. This

was the motivation for the introduction of the multiplicative random effects. The fact that

high-frequency returns may exhibit multiplicative random effects is almost impossible to find

by means of the standard bivariate kernel approach.

The double-conditional smoothing can also be applied to estimate the volatility surface

in tick-by-tick high-frequency returns. But now the first stage has to be carried out at nt

equidistant trading time points on each trading day. The second stage is the same as defined

in (11). Some further possible extensions are for instance the adaptation of the algorithm to

the use of non-product bivariate kernel functions, the definition of double-conditional local

polynomial regression, the development of algorithms for further reduction of the computing

time as well as the extension of this technique to high-dimensional data.

4 Main results

In this section properties of the processes defined in (2) and (3) and those of their sample

variances are investigated. These results are then adapted to obtain the asymptotic variances

of the proposed nonparametric estimators of the volatility surface.

4.1 Corresponding sample variances and necessary notations

Note that Yi,j has zero mean. The conditional and unconditional sample variances of Yi,j are

hence the corresponding sample means of the squared observations Y 2
i,j. The sample variances

conditioning on i and j, respectively, are given by

σ̂2
i,• =

1

nt

nt∑
j=1

Y 2
i,j and σ̂2

•,j =
1

nx

nx∑
i=1

Y 2
i,j.

The unconditional sample variance is defined by

σ̂2
Y =

1

nxnt

nx∑
i=1

nt∑
j=1

Y 2
i,j.
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Moreover, we have

σ̂2
Y =

1

nx

nx∑
i=1

σ̂2
i,• =

1

nt

nt∑
j=1

σ̂2
•,j.

To describe the properties of these estimators, different nations, in particular those of the

autocovariance functions (hereafter ACV) of different processes or components, are required.

For instance, the ACV of the random fields Yi,j, Y
2
i,j, Zi,j and Z2

i,j with lag k1 and k2 will be

denoted by γY (k1, k2), γY 2(k1, k2), γZ(k1, k2) and γZ2(k1, k2), respectively, and those of the

components hi, ωi and λj with lag k by γh(k), γω(k) and γλ(k), respectively. Sometimes, we

still need the ACV of some products, e.g. that of hiωi with lag k, which will be denoted

by γhω(k). Variances, second or fourth oder moments of the corresponding processes and

components are e.g. denoted by σ2
Y , σ2

Y 2 , σ2
Z , σ2

Z2 , σ2
ω, σ2

λ, m
h
2 , mω

2 , mλ
2 , mq

2 and mε
4 etc.

4.2 Properties of Yi,j and the sample variances

Those properties will be first derived under Model (2). For this purpose, we need the following

regularity assumptions.

A1. Assumed that Yi,j is defined by (2), where εi,j are i.i.d. random variables with zero

mean, unit variance and finite fourth moment E(ε4i,j) = mε
4 <∞.

A2. ωi and λj are two independent series of positive i.i.d. random variables with unit

mean and finite second moments E(ω2
i ) = mω

2 < ∞ and E(λ2j) = mλ
2 < ∞, respectively.

Furthermore, it is assumed that ωi and λj are also independent of εi,j.

Assumptions A1 and A2 ensure that Yi,j is a stationary random field with finite fourth

moments. Properties of Yi,j, Y
2
i,j, σ̂

2
Y , σ̂2

•,j and σ̂2
i,• are summarized in the following theorem.

Theorem 1. Under assumptions A1 and A2 we have

i) Yi,j is a stationary random field with zero mean, unit variance and ACV γY (k1, k2) = 0,

if k1 6= 0 or k2 6= 0.

ii) Y 2
i,j is also stationary with unit mean, σ2

Y 2 = mω
2m

λ
2m

ε
4 − 1, γY 2(0, k2) = σ2

ω for k2 6= 0,

γY 2(k1, 0) = σ2
λ for k1 6= 0 and γY 2(k1, k2) = 0, if k1 6= 0 and k2 6= 0.

iii) The mean and variance of σ̂2
i,• conditioning on i are given by

E(σ̂2
i,•) = ωi and var (σ̂2

i,•) =
ω2
i

nt
var (λjε

2
i,j|i). (14)
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iv) The mean and variance of σ̂2
•,j conditioning on j are given by

E(σ̂2
•,j) = λj and var (σ̂2

•,j) =
λ2j
nx

var (ωiε
2
i,j|j). (15)

v) The sample variance σ̂2
Y is unbiased with

var (σ̂2
Y ) =

σ2
Y 2 − σ2

ω − σ2
λ

nxnt
+
σ2
ω

nx
+
σ2
λ

nt
. (16)

The proof of Theorem 1 is given in the appendix. Item i) shows that Yi,j is a zero mean

uncorrelated random field. The formula of σ2
Y 2 given in item ii) shows that each of the random

effect components will increase the variance of Y 2
i,j, because mω

2 > 1 and mλ
2 > 1. The other

results in this part indicate that, although Y 2
i,j is stationary, γY 2(k1, 0) and γY 2(0, k2) are two

positive constants and do not decay to zero. This is a feature of a deterministic process and

leads to the fact given in items iii) and iv) that both σ̂2
i,• and σ̂2

•,j are inconsistent. On the

other hand, when Yi,j are i.i.d or when γY 2(k1, k2) tend to zero exponentially, as k1 →∞ or

k2 → ∞. Now, both σ̂2
i,• and σ̂2

•,j are consistent estimators of σ2 with rates of convergence

determined by nx and nt, respectively. Consequentially, the variance of σ̂2 consists now of

three terms. Where the first term corresponds to the variance of the sample variance in the

i.i.d. case, the second and third are caused by random effects on a trading day and at a given

trading time point, respectively. Now, the rate of convergence of σ̂2 is not determined by the

first term on the rhs (right-hand-side) of (16), but by one of the last two terms and is of the

order max[O(n
−1/2
x ), O(n

−1/2
t )].

The above results will be now extended to the spatial multiplicative component GARCH

with random effects defied in (3). Now, the following regularity assumptions are required.

A1′. Yi,j is defined by (3) and fulfills the other conditions of A1.

A3. For given i, Zi,j follows a GARCH model with unit variance and finite fourth moment

mZ
4 = mq

2m
ε
4. It is assumed that the intraday GARCH processes on different trading days

have the same coefficients. Those processes are however independent of each other.

A4. The daily conditional variance component hi is independent of εi,j, stationary with

unit mean and finite variance, whose ACV decays to zero exponentially.

A5. The components ωi, λj, Zi,j and hi are mutually independent.

Conditions in A3 on the existence of the fourth moments of a GARCH model are well known

(see e.g. Bollerslev, 1986, and He and Teräsvirta, 1999a, b). For instance, if Zi,j follows a

10



GARCH(1, 1) with N(0, 1) innovations, this condition reduces to 3α2 + 2αβ + β2 < 1. The

further requirement that the GARCH coefficients are the same for all i is necessary for the

stationarity of Zi,j. A4 ensures that the daily volatility component hi can be estimated and

eliminated separately. The assumption that the ACV of hi decays exponentially is made for

convenience, which is true, if hi follows a daily GARCH with finite fourth moment.

Properties of Yi,j, Y
2
i,j, σ̂

2
Y , σ̂2

•,j and σ̂2
i,• under Model (3) are given in the following theorem.

Theorem 2. Under assumptions A1′ and A3 through A5 we have

i) Yi,j is a stationary random field with zero mean, unit variance and uncorrelated obser-

vations.

ii) Y 2
i,j is stationary with E(Y 2

i,j) = 1,

var (Y 2
i,j) = mω

2m
λ
2m

h
2m

q
2m

ε
4 − 1, (17)

γY 2(0, k2) = mh
2m

ω
2 [γZ2(0, k2) + 1]− 1

→ σ2
hω, as |k2| → ∞, (18)

where σ2
hω = var (ωihi) = mh

2m
ω
2 − 1,

γY 2(k1, 0) = [γh(k1) + 1]mλ
2 − 1

→ σ2
λ, as |k1| → ∞, (19)

where σ2
λ = mλ

2 − 1 is the variance of λj, and

γY 2(k1, k2) = γh(k1) (20)

for k1 6= 0 and k2 6= 0.

iii) The mean and variance of σ̂2
i,• conditioning on i are given by

E(σ̂2
i,•) = hiωi and var (σ̂2

i,•) ≈
h2iω

2
i

nt
Vt. (21)

iv) The mean and variance of σ̂2
•,j conditioning on j are given by

E(σ̂2
•,j) = λj and var (σ̂2

•,j) ≈
λ2j
nx
Vx. (22)
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v) And the sample variance σ̂2
Y is unbiased with

var (σ̂2
Y ) ≈ V

nxnt
+
mh

2σ
2
ω + Vh
nx

+
σ2
λ

nt
. (23)

Where Vx, Vt, V and Vh are constants defined in the appendix.

Proof of Theorem 2 is given in the appendix. As for a GARCH process, observations following

the spatial multiplicative component GARCH are also uncorrelated. Item ii) shows that qi,j

has a clear effect on var (Y 2) but its effect on γY 2(0, k2) is negligible, when < k2| → ∞.

More detailed formulas of the ACV will be given during the proof, where we will see that, for

fixed k2, γY 2(0, k2) does depend on qi,j. Results in items iii) to v) show that the asymptotic

variances of the sample variances are affected by the daily volatility component but not by

the intraday volatility component. The three terms on the rhs of (23) correspond to those in

(16). We see both the random effects and the daily GARCH component will cause the fact

that sometimes the ACV of the process does not decay to zero. This will in turn affect the

rate of convergence of the conditional and unconditional samples variances.

The above results provide the basis for deriving the asymptotic variances of the proposed

nonparametric estimators, where we will see that the variances of the nonparametric estima-

tors of the volatility surface also share similar features shown in Theorem 2 iii) to v).

Note that the model defined by Eq. (6) and (7) in E&S has the spatial representation (4)

without the random effects ωi and λj. We can hence obtain the spatial ACV of this process

from Theorem 2 ii). The assumptions should now be adjusted accordingly.

A1′′. Assumed that Yi,j is defined by (4) with i.i.d. N(0, 1) random variables εi,j.

A3′. Let Zi,j = q
1/2
i,j εi,j. For given i, we have qi,j = (1− α − β) + αZ2

i,j−1 + βqi,j−1, where

α, β ≥ 0 and 3α2 + 2αβ + β2 < 1.

Under A1′′ and A3′ we have E(ε4i,j) = 3 and

mq
2 =

[1− (α + β)]2

1− 3α2 − 2αβ − β2
. (24)

Corollary 1. Let A1′′, A3′ and A4 hold. The squared multiplicative component GARCH of

E&S, Y 2
i,j say, is stationary with E(Y 2

i,j) = 1, var (Y 2
i,j) = 3mh

2m
q
2− 1, γY 2(0, k2) = [var (hi) +

1][γq(0, k2) + 1]→ var (hi), as |k2| → ∞, and γY 2(k1, 0) = γh(k1) for k1 6= 0 and any k2.

We see, the exogenous daily volatility component in Model (4) will also cause the fact that

the ACV of the squared process does not always decay to zero. This will in turn affect the

asymptotic variance of the kernel estimators of the volatility surface.

12



4.3 Asymptotic properties of the nonparametric estimators

To investigate the asymptotic properties of the proposed kernel estimators of the volatility

surface the following additional regularity conditions are required.

B1. K(u) is a product kernel K(u) = K1(ux)K2(ut). For simplicity assume that K1 and

K2 are the same Lipschitz continuous symmetric density in the support [−1, 1].

B2. σ2(x, t) is a smooth function with absolutely continuous second derivatives.

B3. The bandwidths bx and bt fulfill bx, bt → 0, nxbx, ntbt →∞ as nx, nt →∞.

The above assumptions are suitable adaptations of the regularity conditions used in the

literature for deriving the asymptotic properties of bivariate kernel regression estimators.

The discussion of the effect of the autocovariances on the variance of a kernel estimator in

a nonparametric regression with dependent errors is of general interest. In the following

we will introduce a common tool, called the ACV response function of a kernel function,

for investigating this, which will then be applied to obtain the asymptotic variances of the

proposed estimators of the volatility surface in this paper.

Definition 1. For a univariate kernel function K(u) with support [−1, 1], its ACV response

function ΓK(u) is a non-negative symmetric function with support [−2, 2]:

ΓK(u) =

∫ u+1

−1
K(v)K(v − u)dv (25)

for u ∈ [−2, 0],

ΓK(u) =

∫ 1

u−1
K(v)K(v − u)dv (26)

for u ∈ [0, 2] and zero otherwise.

The ACV response function of a kernel function measures the asymptotic contribution of

the ACV of certain lag to the variance of a kernel estimator. Consider a univariate kernel

regression with n observations, bandwidth b and stationary errors with ACV γ(k). Then

the weight of γ(k) in the variance of the kernel estimator is asymptotically ΓK(uk) with

uk = k/(nb). In particular, the weight of the innovation variance σ2 is always asymptotically

ΓK(0) = R(K). Hence, ΓK(u) provides a powerful tool for deriving the asymptotic variance

of kernel estimators with dependent errors. For the product bivariate kernel function K(u) =

13



K(u1)K(u2) considered in this paper we define ΓK(u) = ΓK(u1)ΓK(u2), which will help us to

obtain the asymptotic variance of the proposed double-conditional kernel variance estimator.

Furthermore, define µ2(K) =
∫
u2K1(u)du, R(K) =

∫
K2

1(u)du and I(ΓK) =
∫

ΓK(u)du.

Our main findings on the double-conditional kernel estimator σ̂2(x, t) and the two associate

intermediate smoothers in the first stage are summarized in the following theorem.

Theorem 3. Consider the estimation at an interior point (x, t) with 0 < x, t < 1. Under

the same assumptions of Theorem 2 and the additional assumptions B1 through B3 we have

i) The mean and variance of the conditional smoother σ̂2(t|xi) are given by

E[σ̂2(t|xi)] ≈ hiωi

{
σ2(xi, t) +

µ2(K)

2
b2t [σ

2(x, t)]′′t

}
, (27)

var [σ̂2(t|xi)] ≈ h2iω
2
i

σ4(xi, t)Vt
nxbx

R(K). (28)

ii) The mean and variance of the conditional smoother σ̂2(x|tj) are given by

E[σ̂2(x|tj)] ≈ λj

{
σ2(x, tj) +

µ2(K)

2
b2x[σ

2(x, t)]′′x

}
, (29)

var [σ̂2(x|tj)] ≈ λ2j
σ4(x, tj)Vx

nxbx
R(K). (30)

iii) The bias and the variance of σ̂2(x, t) are given by

B[σ̂2(x, t)] ≈ µ2(K)

2

{
b2x[σ

2(x, t)]′′x + b2t [σ
2(x, t)]′′t

}
, (31)

var [σ̂2(x, t)] ≈ σ4(x, t)

[
V R2(K)

nxbxntbt
+

(
mh

2σ
2
ω + Vh
nxbx

+
σ2
λ

ntbt

)
R(K)I(ΓK)

]
. (32)

Where Vx, Vt and V1 are the same as defined in Theorem 2.

The proof of Theorem 3 is given in the appendix. Items i) and ii) show that the two interme-

diate smoothers converge to two random functions, respectively, and are inconsistent. Their

asymptotic variances are also random variables. When the errors are i.i.d., the asymptotic

variance of σ̂2(x, t) is of the order O(nxbxntbt)
−1, which is the order of the first term on

the rhs of (32). But item iii) shows that the asymptotic variance of σ̂2(x, t) is of the order

max[O(nxbx)
−1, O(ntbt)

−1], which is much lower than the order O(nxbxntbt)
−1.

The proof of item iii) in the appendix shows that var [σ̂2(x, t)] is determined by different

kinds of the ACV of Y 2
i,j. As far as we know, asymptotic results of bivariate kernel estimators

14



with dependent errors are not yet studied in the literature. Results in Theorem 3 iii) can be

adapted to fill this blank. Assume for instance that Model (1) holds but Yi,j is defined without

the random effects and the daily volatility component. Now, we can assume further that the

ACV of Y 2
i,j is absolutely summable. In this case the variance of σ̂2(x, t) will be dominated

by the first term on the rhs of (32) with V to be the sum of all γY 2(k1, k2). However, the

asymptotic variances of σ̂2(x, t) under Models (1) and (3) with multiplicative random effects

and a daily GARCH component are quite different.

Let bAx and bAt denote the asymptotically optimal bandwidths which minimize the dom-

inating part of the MSE (mean squared error) of σ̂2(x, t). For simplicity, we assume that

nt is proportional to nx such that nt = cnnx for any nx, where cn > 0 is a constant. Now,

it is easy to show that both bAx and bAt are of the order O(n
−1/5
x ) = O(n−1/10). Note that

the asymptotically optimal bandwidths for bivariate kernel regression with i.i.d. errors are

of the order O(n−1/6) (see e.g. Herrmann et al., 1995). That is bivariate kernel regression

under multiplicative random effects requires much larger bandwidths. This fact will results

in a much lower rate of convergence of the kernel estimator of the volatility surface. The

explicit formulas of bAx and bAt are now also very complex. Detailed discussion on this and on

the development of a plug-in bandwidth selector for double-conditional smoothing based on

those formulas is beyond the aim of the current paper and will be studied elsewhere.

5 Application

The proposal is illustrated using 1-minute returns of Allianz AG from Jan. 2006 to Sep.

2011 with observations on nx = 1442 trading days and nt = 510 returns on each day. The

data represented under the spatial model are illustrated in Figure 1 (left). From this figure

the long-term volatility dynamics can be easily discovered by eye. In particular, the returns

during 2008 and 2009 are much larger in absolute value indicating the effect of the 2008

financial crisis on volatility. If we look in the direction of the trading time exactly, it is even

possible to discover a rough picture of the intraday volatility pattern. We see the spatial

representation can help us to discover some interesting features of high-frequency returns.

The estimated volatility surface using bandwidths bx and bt such that bx ∗ nx = 200 and

bt ∗ nt = 100 is shown in Figure 1 (right). In the dimension of the trading day we can see

that the volatility before the financial crisis was very low. It became much higher during the

financial crisis and reduced again to a low level thereafter. However, the volatility after the
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financial crisis is still clearly higher than that before it. Furthermore, the form of the long-

term volatility tendency is similar at all trading time points, which looks like the form of an

“arch” (bridge). On the other hand, the daily volatility pattern is indicated by the curve on

the volatility surface for a given trading day. On each day it looks like a volatility smile. The

long-term volatility tendency and the daily volatility smiles together form a volatility saddle.

Intermediate smoothing results conditioning on the trading time are displayed in Figure 2

(left). The randomness in these results can be seen clearly. Again, the long-term volatility

patterns at different time points are quite similar. This indicates that the assumption of

a random scale at each trading time point seems to be quite reasonable. The intermediate

smoothing results conditioning on the trading day are displayed in Figure 2 (right). We

see that these results also exhibit clear randomness. Comparing the right panels of Figures

1 and 2, we see that although the average daily volatility patterns show a smooth form,

which change however from one day to another very strongly, if they are estimated using

observations on a single trading day. This indicates that not only the scale but also the form

of the daily volatility patterns might be affected by some random effect.

6 Concluding remarks

This paper introduced a spatial multiplicative component GARCH model for high-frequency

returns with a nonparametric volatility surface. A double-conditional smoothing is developed

for estimating the volatility surface, which leads to equivalent estimates as a common bivariate

kernel estimator but runs much faster. This approach also helps us to find that high-frequency

returns exhibit multiplicative random effects. Suitable models are introduced to deal with

this phenomenon. Basic probabilistic properties of the proposed processes and asymptotic

properties of the proposed estimators of the volatility surface are investigated in detail. It

is in particular shown that in the presence of random effects, the rate of convergence of

the nonparametric variance estimators will be strongly affected. There are still many open

questions in this area. For instance, it will be worthwhile to study different extensions and

further applications of the spatial multiplicative component GARCH model. Moreover, the

proposals in this paper can also be employed for discussing market microstructures.
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Appendix. Proofs of the results

Proof of Theorem 1.

i) The results E(Yi,j) = 0 and var (Yi,j) = 1 follow from the definition. Moreover,

γY (k1, k2) = E(
√
ωiωi+k1λjλj+k2)E(εi,jεi+k1,j+k2),

which is zero, if k1 6= 0 or k2 6= 0, because εi,j are zero mean independent random variables.

ii) Note that E(Y 2
i,j) = var (Yi,j) = 1. This leads to var (Y 2

i,j) = E(Y 4
i,j) − 1. Since

E(Y 4
i,j) = E(ω2

i )E(λ2j)E(ε4i,j), we have var (Y 2
i,j) = mω

2m
λ
2m

ε
4 − 1. For given i and k2 6= 0,

γY 2(0, k2) = E(Y 2
i,jY

2
i,j+k2

)− 1

= E(ωiλjε
2
i,jωiλj+k2ε

2
i,j+k2

)− 1

= E(ω2
i )E(λjε

2
i,jλj+k2ε

2
i,j+k2

)− 1

= E(ω2
i )− 1

= σ2
ω. (A.1)

Similarly, it can be shown that, for given j and k1 6= 0, γY 2(k1, 0) = var (λj). Furthermore,

it can be shown that, for k1 6= 0 and k2 6= 0, E(Y 2
i,jY

2
i+k1,j+k2

) = 1 and hence γY 2(k1, k2) = 0.

iii) For the conditional sample variance given i, we have

E(σ̂2
i,•) = E

(
1

nt

nt∑
j=1

ωiλjε
2
i,j

)

=
ωi
nt

nt∑
j=1

E(λj)E(ε2i,j)

= ωi.

The variance of the conditional sample variance given i is

var (σ̂2
i,•) = E

( 1

nt

nt∑
j=1

ωiλjε
2
i,j

)2
− ω2

i

=
ω2
i

n2
t

nt∑
j1=1

nt∑
j2=1

[E(λj1λj2ε
2
i,j1
ε2i,j2)− 1].

Note that E(λj1λj2ε
2
i,j1
ε2i,j2) is equal to mλ

2m
ε
4, for j1 = j2, and 1, otherwise. Also note that
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var (λjε
2
i,j|i) = mλ

2m
ε
4 − 1. We have

var (σ̂2
i,•) =

ω2
i

n2
t

[ntm
λ
2m

ε
4 + nt(nt − 1)− n2

t ]

=
ω2
i

nt
[mλ

2m
ε
4 − 1]

=
ω2
i

nt
var (λjε

2
i,j|i).

iv) Proof of the results in this part is similar to that of iii) and is omitted.

v) It is easy to see that E(σ̂2
Y ) = 1, i.e. σ̂2

Y is unbiased. For the variance of σ̂2
Y we have

var (σ̂2
Y ) = var

(
1

nxnt

nx∑
i=1

nt∑
j=1

Y 2
i,j

)

=
1

n2
xn

2
t

[
nx∑
i1=1

nt∑
j1=1

nx∑
i2=1

nt∑
j2=1

γY 2(i2 − i1, j2 − j1)

]

=
1

n2
xn

2
t

(T1 + T2 + T3), (A.2)

where

T1 =
nx∑
i1=1

nt∑
j1=1

nx∑
i2=1

nt∑
j2=1

γ∗Y 2(i2 − i1, j2 − j1) (A.3)

with γ∗Y 2(0, 0) = σ2
Y 2 − σ2

ω − σ2
λ and γ∗Y 2(k1, k2) = 0, if k1 6= 0 or k2 6= 0,

T2 =
nx∑
i=1

nt∑
j1=1

[
σ2
ω +

∑
j2 6=j1

γY 2(0, j2 − j1)

]
(A.4)

and

T3 =
nx∑
i1=1

nt∑
j=1

[
σ2
λ +

∑
i2 6=i1

γY 2(i2 − i1, 0)

]
. (A.5)

Here γ∗Y 2(k1, k2) are defined to show the performance of var (σ̂2
Y ), when Y 2

i,j were uncorrelated.

We have T1 = nxnt(σ
2
Y 2 − σ2

ω − σ2
λ). Following (A.1), it can be shown that T2 = nxn

2
tσ

2
ω.

Similarly, we have T3 = n2
xntσ

2
λ. Inserting these results into (A.2) leads to

var (σ̂2
Y ) =

σ2
Y 2 − σ2

ω − σ2
λ

nxnt
+
σ2
ω

nx
+
σ2
λ

nt
σ2
λ. (A.6)

Theorem 1 is proved. 3

Remark A.1. Although there is a close relationship between the results in items iii) and

iv), and those in item v), it is however not easy to prove the results in v) based on those in

iii) and iv), because results in the latter cases are obtained conditioning on i or j.
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Proof of Theorem 2.

Firstly, under the assumptions of Theorem 2, all of the autocovariances of hi, qj and Zi,j|i
tend to zero exponentially, as the lag tends to infinite.

i) The proof of results in this part is straightforward and is omitted.

ii) Following the results in i) we have E(Y 2
i,j) = var (Yi,j) = 1. Hence,

var (Y 2
i,j) = E(Y 4

i,j)− 1

= E(ω2
i λ

2
jh

2
i q

2
i,jε

4
i,j)− 1

= mh
2m

ω
2m

λ
2m

q
2m

ε
4 − 1.

For given i and k2 6= 0, we have

γY 2(0, k2) = E(h2iω
2
i λjλj+k2Z

2
i,jZ

2
i,j+k2

)− 1

= mh
2m

ω
2 [γZ2(0, k2) + 1]− 1

→ mh
2m

ω
2 − 1 = σ2

hω, (A.7)

because λj and λj+k2 are independent, and γZ2(0, k2)→ 0, as |k2| → ∞. Similarly, for given

j and k1 6= 0, we have

γY 2(k1, 0) = E(hihi+k1ωiωi+k1λ
2
jZ

2
i,jZ

2
i+k1,j

)− 1

= mλ
2 [γh(k1) + 1]− 1

→ mλ
2 − 1 = σ2

λ, (A.8)

because Z2
i,j and Z2

i+k1,j
are independent, and γh(k1) → 0, as |k1| → ∞. Furthermore, for

k1 6= 0 and k2 6= 0, we have

γY 2(k1, k2) = E(hihi+k1ωiωi+k1λjλj+k2Z
2
i,jZ

2
i+k1,j+k2

)− 1

= E(hihi+k1)− 1

= γh(k1). (A.9)

iii) The proof of E(σ̂2
i,•) = ωihi is straightforward and is omitted. For given i, the variance

of σ̂2
i,• can be written as

var (σ̂2
i,•) = E

( 1

nt

nt∑
j=1

hiωiλjZ
2
i,j

)2
− h2iω2

i

=
h2iω

2
i

n2
t

nt∑
j1=1

nt∑
j2=1

[E(λj1λj2Z
2
i,j1
Z2
i,j2

)− 1].
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It can be shown that E(λj1λj2Z
2
i,j1
Z2
i,j2

)−1 = σ2
λm

Z
4 +σ2

Z2 , if j1 = j2, and E(λj1λj2Z
2
i,j1
Z2
i,j2

)−
1 = γZ2(0, j2− j1), otherwise. To discuss the asymptotic variance of the estimator, we define

J such that J →∞ and J/nt → 0. For any J < j1 < nt − J , we have

nt∑
j2=1

[E(λj1λj2Z
2
i,j1
Z2
i,j2

)− 1] → σ2
λm

Z
4 +

∞∑
k=−∞

γZ2(k).

For j1 ≤ J or j1 ≥ nt − J , the above sum may tend to different constants depending on j1.

But this will not affect the asymptotic analysis, as nt →∞. This leads to

var (σ̂2
i,•) =

h2iω
2
i

n2
t

ntVt81 + o(1)]

≈ h2iω
2
i

nt
Vt,

where

Vt = σ2
λm

Z
4 +

∞∑
k=−∞

γZ2(k).

iv) Results in this part can be proved similarly. And the constant Vx in (22) is given by

Vx = σ2
λZ2 +

∞∑
k=−∞

γh(k).

v) Again, we will only focus on the derivation of var (σ̂Y 2). Similarly to the proof of

Theorem 1 v), the variance of σ̂2
Y can be split into four parts as follows

var (σ̂2
Y ) =

1

n2
xn

2
t

(T1 + T2 + T2a + T3), (A.10)

where σ2
Y 2 is divided into T1, T2, T2a and T3 respectively, with the quantities γ∗Y 2(0, 0) =

σ2
Y 2 −mh

2σ
2
ω−σ2

h−σ2
λ, m

h
2σ

2
ω, σ2

h and σ2
λ as well. For k2 6= 0, γY 2(0, k2) is divided into T2, T2a

and T1 respectively, with the quantities mh
2σ

2
ω, σ2

h and the remaining part. And for k1 6= 0,

γY 2(k1, 0) is divided into T3, T2a and T1 respectively, with the quantities σ2
λ, γh(k1) and the

remaining part. For k1 6= 0 and k2 6= 0, we define γ∗Y 2(k1, k2) = γY 2(k1, k2). Hence γ∗Y 2(k1, k2)

are either γY 2(k1, k2), when they converge to zero, or the differences between γY 2(k1, k2) and

their constant limits, such that

V =
∞∑

k1=−∞

∞∑
k2=−∞

γ∗Y 2(k1, k2) (A.11)

exists. And T1 is defined by

T1 =
nx∑

i1,i2=1

nt∑
j1,j2=1

γ∗Y 2(i2 − i1, j2 − j1) (A.12)
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with T1 = nxntV [1 + o(1)].

The term T3 is the same as in the proof of Theorem 1 v). According to the above decom-

position of the ACV we have T2 = nxn
2
tm

h
2σ

2
ω. To obtain an approximation of T2a, choose I

such that I →∞ and I/nx → 0, as nx →∞. For I ≤ i1 ≤ nx − I and any k2 6= 0 we have∑
i2 6=i1

γY 2(k1, k2) + σ2
h ≈ Vh, (A.13)

where Vh is the sum of all ACV of the daily GARCH component hi. This leads to V2a =

nxn
2
tVh[1 + o(1)]. Inserting these results into (A.10) we have

var (σ̂2
Y ) ≈ V

nxnt
+
mh

2σ
2
ω + Vh
nx

+
σ2
λ

nt
. (A.14)

This finishes the proof of Theorem 2. 3

A sketched proof of Theorem 3.

In the following only a sketched proof of the results in Theorem 3 will be given. Note that

the formulas of the bias in the conditional and unconditional kernel variance estimators can

be proved easily by adapting known results in the literature, because they are not affected

by the dependence structure. In the following we will hence mainly focus on investigating

the formulas of the asymptotic variances of the proposed estimators.

i) Under the assumptions of Theorem 3 and conditioning on i, Eq. (5) can be written as

r̃2i,j|i = hiωiσ
2(xi, tj) + hiωiσ

2(xi, tj)η
∗
i,j, (A.15)

where η∗i,j = λjZ
2
i,j − 1 with E(η∗i,j) = 0 and var (η∗i,j) = mλ

2m
Z
4 − 1. This is a heteroskedastic

nonparametric regression with conditional variance of Yi,j given i, i.e. hiωiσ
2(xi, t), to be its

(conditional) mean and volatility functions at the same time. Following related study in the

literature (Feng, 2004), it can be shown that the asymptotic variance of σ̂2(t|xi) is

var [σ̂2(t|xi)] ≈ h2iω
2
i

σ4(xi, t)Vt
nxbx

R(K), (A.16)

where Vt is as defined before. Although it is also not difficult to prove (A.16) by means of

the ACV response function ΓK(u), this will be omitted to save space.

ii) Conditioning on j, Eq. (5) can be represented as

r̃2i,j|j = λjσ
2(xi, tj) + λjσ

2(xi, tj)η
∗∗
i,j, (A.17)
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where η∗∗i,j = hiωiZ
2
i,j−1. Similar analysis as above will lead to the formula of the asymptotic

variance of σ̂2(x|tj), where Vx is as defined in the proof of Theorem 2 iv).

iii) Now, consider the kernel estimator of the variance of the stationary part Yi,j

σ̂2
Y (x, t) =

nt∑
j=1

nx∑
i=1

wi,jY
2
i,j, (A.18)

where wi,j are the same as in σ̂2(x, t). Then the following lemma holds.

Lemma 1. Under the conditions of Theorem 3 we have

var [σ̂2(x, t)] ≈ σ4(x, t)var [σ̂2
Y (x, t)]. (A.19)

Proof. Note that wi,j is only positive, if |xi − x| < bx and |tj − t| < bt. This implies that

σ2(xi, tj) = σ2(x, t)[1 + o(1)] for wi,j > 0. We have

var [σ̂2(x, t)] = var

[
nt∑
j=1

nx∑
i=1

wi,j r̃
2
i,j

]

= var

[
nt∑
j=1

nx∑
i=1

wi,jσ
2(x, t)[1 + o(1)]Y 2

i,j

]

≈ σ4(x, t)var

[
nt∑
j=1

nx∑
i=1

wi,jY
2
i,j

]
= σ4(x, t)var [σ̂2

Y (x, t)]. (A.20)

Lemma 1 is proved.

Now, define kx = [nxbx] and kt = [ntbt], where [·] denote the integer part. By means of the

ACV response function of K(u1, u2) we have

Lemma 2. Under the conditions of Theorem 3 the variance of σ̂2
Y (x, t) is dominated by

var [σ̂2
Y (x, t)] ≈ 1

nxbx

1

ntbt

2kx∑
k1=−2kx

2kt∑
k2=−2kt

ΓK(u1k1 , u2k2)γY 2(k1, k2), (A.21)

where u1k1 = k1/nx, u2k2 = k2/nt and ΓK(·, ·) is the ACV response function of K(·, ·).

Proof. The non-zero weights at an interior observation point (x0, t0) with x0 = (i0−0.5)/nx

and t0 = (j0 − 0.5)/nt are the same and will be denoted by w̃r,s, r = −kx, ..., 0, ..., kx and
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s = −kt, ..., 0, ..., kt, for observations Yi,j, i = i0 − kx, ..., i0, ..., i0 + kx and j = j0 − kt, ...,

j0, ..., j0 + kt. It can be shown that w̃r,s = w̃xr w̃
t
s with

w̃xr ≈
1

nxbx
K(vr) and w̃ts ≈

1

ntbt
K(vs), (A.22)

where vr = r/(nxbx) and vs = s/(ntbt). Under these notations we have

var [σ̂2
Y (x, t)] =

kx∑
r1,r2=−kx

kt∑
s1,s2=−kt

K(vr1)K(vr2)

n2
xb

2
x

K(vs1)K(vs2)

n2
t b

2
t

γY 2(r1 − r2, s1 − s2). (A.23)

Note that the range of r1 − r2 is from −2kx to 2kx and that of s1 − s2 is from −2kt to 2kt.

The above formula can hence be rewritten as

var [σ̂2
Y (x, t)] =

1

nxbx

1

ntbt

2kx∑
k1=−2kx

2kt∑
k2=−2kt

β(k1, k2)γY 2(k1, k2), (A.24)

where

β(k1, k2) =
∑

r1−r2=k1

∑
s1−s2=k2

K(vr1)K(vr2)

nxbx

K(vs1)K(vs2)

ntbt
. (A.25)

Furthermore, note that the two restrictions r1− r2 = k1 and s1− s2 = k2 are independent of

each other. We have

β(k1, k2) =
∑

r1−r2=k1

K(vr1)K(vr2)

nxbx

∑
s1−s2=k2

K(vs1)K(vs2)

ntbt
. (A.26)

Consider the case with −2kx ≤ k1 ≤ 0 in detail. Now, we have r2 = r1 − k1 and the range of

r1 is from −kx to kx + k1. Define u1 = k1/kx. We have u1 ∈ [−2, 0], vr2 = vr1 − u1 and the

range of vr1 is from −1 to u1 + 1. This leads to, for k1 ≤ 0,∑
r1−r2=k1

K(vr1)K(vr2)

nxbx
=

∑
−1≤vr1≤u1+1

K(vr1)K(vr1 − u1)
nxbx

≈
∫ u1+1

−1
K(vr)K(vr − u1)dvr. (A.27)

Similarly, define u2 = k2/kt. We have, for k2 ≤ 0,∑
s1−s2=k2

K(vs1)K(vs2)

ntbt
≈

∫ u2+1

−1
K(vs)K(vs − u1)dvs. (A.28)

Results for k1, k2 ≥ 0 can be proved analogously. This indicates that β(k1, k2) ≈ ΓK(u1k1 , u2k2).

Lemma 2 is proved by inserting this into (A.24).

Further calculation leads to the following decomposition

var [σ̂2
Y (x, t)] ≈ 1

nxbx

1

ntbt
(S1 + S2 + S2a + S3), (A.29)
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where S1, S2, S2a and S3 correspond to the four ACV-components defined in the proof of

Theorem 2 v) and are given by

S1 =
2kx∑

k1=−2kx

2kt∑
k2=−2kt

ΓK(u1k1 , u2k2)γ
∗
Y 2(k1, k2), (A.30)

S2 = mh
2σ

2
ω

2kt∑
k2=−2kt

ΓK(0, u2k2), (A.31)

S2a =
2kx∑

k1=−2kx

2kt∑
k2=−2kt

ΓK(u1k1 , u2k2)γh(k1) (A.32)

and

S3 = σ2
λ

2kx∑
k1=−2kx

ΓK(u1k1 , 0). (A.33)

Firstly, choose Kx and Kt so that Kx, Kt →∞, Kx/nx → 0 and Kt/nt → 0, as nx, nt →∞.

It can be shown that ΓK(u1k1 , u2k2) ≈ ΓK(0, 0) = R2(K) for |k1| ≤ K1 and |k2| ≤ K2, and the

sum of γ∗Y 2(k1, k2) in this case tends to the sum of all γ∗Y 2 , because γ∗Y 2(k1, k2) are absolutely

summable. Consequently, the remaining part of S1 converges to zero, because ΓK(u1, u2) is

bounded. We have

S1 =
∑
|k1|≤K1

∑
|k2|≤K2

ΓK(u1k1 , u2k2)γ
∗
Y 2(k1, k2)

+
∑
|k1|>K1

∑
|k2|>K2

ΓK(u1k1 , u2k2)γ
∗
Y 2(k1, k2)

≈ R2(K)V, (A.34)

where V is the same as in Theorem 2. Note that ΓK(0, u2k2) = R(K)ΓK(u2k2). We have

S2 ≈ ntm
h
2σ

2
ωR(K)I(ΓK). (A.35)

Note that ΓK(u1k1 , u2k2) = ΓK(u1k1)ΓK(u2k2) and γh(k1) sum up to Vh. We have

S2a =
2kt∑

k2=−2kt

2kx∑
k1=−2kx

ΓK(u1k1)ΓK(u2k2)γh(k1)

≈
2kt∑

k2=−2kt

ΓK(u2k2)R(K)Vh

≈ R(K)I(ΓK)Vh. (A.36)

Finally, note that ΓK(u1k1 , 0) = R(K)ΓK(u1k1), we have S3 ≈ nxbxσ
2
λR(K)I(ΓK). Theorem

3 is proved by inserting these results into (A.29) and then inserting (A.29) into (A.19). 3
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Härdle, W. (1990). Applied Nonparametric Regression. Cambridge University Press, New

York.
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Figure 1: Spatial representation of the 1-minute Allianz returns (left) and the finally esti-

mated volatility surface (right).

Figure 2: Intermediate smoothing results conditioning on trading time (left) and those con-

ditioning on trading day (right).
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