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Abstract

This paper proposes a new IPI- (iterative plug-in) rule for optimal smoothing for

penalised splines with truncated polynomials. The IPI is based on a closed-form

approximation to the optimal smoothing parameter. In contrast to a DPI- (direct

plug-in) approach the current algorithm is fully automatic and self-contained. Our

proposal is a fixpoint-search procedure and the resulting smoothing parameter is

(theoretically) independent of the initial value. Like the DPI, the IPI-rule can

be employed as a refining stage in order to improve the quality of other selection

methods, e.g. Mallow’s Cp, Cross Validation or Residual Maximum Likelihood.

Some numerical features of P-Splines as well as the performance of the IPI-algorithm

are examined in detail through a simulation study. Our results reveal that our

proposal works very well. Practical relevance of the IPI is illustrated by different

data examples.
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1 Introduction

Non-parametric smoothing methods, especially penalised spline (P-spline) smoothing,

have gained more attention during the last decades due to advancing technology as well as

the increasing complexity and scale of Big Data. P-spline regression offers an appropriate

alternative to parametric and to more common non-parametric methods like kernel re-

gression (Nadaraya, 1964; Watson, 1964) or local polynomial regression (Cleveland, 1979).

So far, the application of P-splines has mainly occurred in the field of natural sciences

and has rarely been applied in the context of empirical economic and financial research.

P-spline estimation was introduced by Parker and Rice (1985) as well as by O’sullivan

et al. (1986), who had the idea to use a set of basis functions in combination with a

penalty controlling for model complexity. Eilers and Marx (1996) followed their approach

and illustrated that penalised spline regression is an applicable and flexible method. It

can be considered as a compromise between regression splines without a penalty and

fewer knots than the sample size and smoothing splines with knots or basis functions

being equal to the number of observations (Schwarz and Krivobokova, 2016). Analogue

to kernel regression and local polynomial regression the smoothness strongly depends on

the smoothing parameter, which controls the trade-off between integrity of the data and

complexity of the model. Consequently, the main challenge in non-parametric regression

is the selection of an optimal smoothing parameter. Well known criteria for determining

this parameter are for instance Mallow’s Cp (MCp
) (Mallows, 1973), Akaike informa-

tion criterion (Akaike, 1974), Cross Validation (CV) (Mosier, 1951) or Generalised Cross

Validation (GCV) (Wahba, 1977; Craven and Wahba, 1978). For an illustration of the

application of some of those criteria in P-spline regression please see Wager et al. (2007),

Kauermann (2005) and Eilers et al. (2015). Theoretical results of the P-spline estimator

were presented by Aerts et al. (2002), Li and Ruppert (2008), Claeskens et al. (2009)

and Wang et al. (2011). Claeskens et al. (2009) investigated both asymptotic scenarios

close to regression splines and smoothing splines. Based on their findings the authors

recommend to reduce the amount of knots in order to obtain a smaller mean squared

error. Krivobokova (2013) conducted a comparative simulation study of the asymptotic

properties of two penalised spline estimators, which are based on MCp
and maximum

likelihood (ML). Their results show, that these estimators usually have a relatively large

variance. The asymptotic behaviour of the P-spline estimator is still very unexplored
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and the development of a fast, simple and reliable method with a small amount of user

intervention to select the appropriate smoothing parameter is of utmost importance.

The main objective of this paper is the development of an iterative plug-in (IPI) algorithm

for P-splines for cross sectional data. Ruppert et al. (1995) proposed an effective band-

width selector for local least squared regression, namely the direct plug in (DPI) method,

which is a special case of the plug-in (PI) method. Wand (1999) adapted the approach

of Ruppert et al. (1995) to P-spline regression and provided a closed-form asymptotic

approximation to the optimal smoothing parameter. Based on this approximation Wand

(1999) derived a fast and simple DPI rule to determine the smoothing parameter directly

from the data. This paper follows the idea of Gasser et al. (1991) and extends the DPI-

rule developed by Wand (1999). Following Wand, 1999 three different approximations

are derived. For each approximation we propose an IPI-rule, namely IPIA, IPIB and

IPIC . For IPIA an adaptation of equation (4) in Wand (1999) is implemented. IPIC is

based on a simplified version of equation (4) in Wand (1999) and IPIB is a combination

of both algorithms. In order to assess the goodness and performance of our proposals, we

conduct a comprehensive simulation study where we apply the estimators in 36 different

cases. For the estimation of the variance of the error term, we use a difference based

variance estimator proposed by Gasser et al. (1986). According to our results IPIB is to

be recommended as it clearly outperforms IPIA and IPIC . As the performance of IPIC

is generally very poor and unstable in some cases, results obtained by means of IPIC are

omitted. Moreover, our proposal is applied to various real data examples and it is found

that the IPI delivers satisfying results in this context as well.

In Section 1 the model is introduced as well as asymptotic results of the P-Spline estimator

are presented. The IPI-algorithms are introduced in Section 2. In Section 3 a simulation

study is conducted and the results are analysed. The application to real data examples

is carried out in section 4. Concluding remarks are given in Section 5.

2 The model and asymptotics

In this section the underlying model is defined. Moreover, asymptotic properties of the

P-spline estimator are illustrated and a closed-form asymptotic approximation to the
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optimal smoothing parameter based on the proposal of Wand (1999) is presented. We

consider the following fixed design non-parametric regression model

yi = m(xi) + ϵi, (1)

where m(·) is an unknown smooth function. ϵi are assumed to be i.i.d. (independent

and identically distributed) random variables with E(ϵi) = 0 and a constant variance

var(ϵi) = σ2
ϵ . The observed response in this model is given by yi, i = 1, ..., n, with

the standardized fixed design points x1 < ... < xn, such that xi = (i − 0.5)/n and

m : [0, 1] → R.

2.1 Penalised spline estimation of the trend

In this paper the unknown smooth function is estimated by P-spline regression with trun-

cated polynomial basis functions (xi − κk)
p
+, with a set of K equidistant knots κ1, ..., κK .

Alternatively, one could use a B-spline basis (Eilers and Marx, 1996) or the Demmler-

Reinsch basis (Demmler and Reinsch, 1975). We chose this kind of basis functions in order

to avoid penalising the polynomial coefficients. Let p be an odd integer and r = p + 1

and let m(·) be a r-times continously differentiable function. We can divide the unknown

smooth function into

m(x) =

p
∑

j=0

βjx
j +

p+κ
∑

j=p+1

βj(x− κj)
p
+ba(x),

where ba(x) is defined as the approximation bias. m(·) can now be estimated by minimising

the penalised least squares

n
∑

i=1

(

yi −

p
∑

j=0

βjx
j −

p+K
∑

j=p+1

βj(x−Kj)
p
+

)2

+ nλ2r

K
∑

j=1

β2
p+j, (2)
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where λ denotes the penalty- or smoothing parameter. This minimisation problem can

be expressed in matrix notation. Let Y = (y1, ..., yn)
T ,

Z =









1 x1 · · · xp
1 (x1 − κ1)

p
+ · · · (x1 − κK)

p
+

...
...

. . .
...

. . .
...

1 xn · · · xp
n (xn − κ1)

p
+ · · · (xn − κK)

p
+









and

D = diag{0(p+1)×1,1K×1}.

Then the P-spline estimator of m can be formulated as

m̂λ(x) = Z(ZTZ + nλ2rD)−1ZTY. (3)

Please note that there are many other possibilities to define the penalty matrix D. Our

definition of D has the advantage that the low rank components are not penalised. The

definition of the smoothing parameter in (2) and (3) is chosen to be λ∗ = nλ2r. Other

definitions of the smoothing parameter can be found in Wand (1999), Hall and Opsomer

(2005), Li and Ruppert (2008) and Claeskens et al. (2009). However, please note that all

formulations of λ are equivalent to each other.

2.2 Asymptotic properties

The IPI-algorithm proposed in this paper is based on minimising an asymptotic approx-

imation of the MASE (mean averaged squared error) of m̂ obtained by Wand (1999). A

well known decomposition of the MASE is the division into its bias and variance. Let W

denote the Hat-matrix with

Wλ = Z(ZTZ + nλ2rD)−1ZT . The finite sample MASE of m̂λ is then given by

MASE(m̂λ) =
σ2
ϵ

n
tr(WλW

T
λ ) +

1

n
||(Wλ − I)m||2, (4)

where the first term on the right side represents the average variance and the second term

the average squared bias. The theoretical optimal smoothing parameter given by

λopt = argmin MASE(m̂λ)
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can be obtained by numerical minimisation of (4). A useful approximation for the MASE

is the AMASE (asymptotic mean averaged squared error). Following Wand (1999) the

AMASE is given by

AMASE(m̂λ) = σ2
ϵ

(

(p+K + 1)− n2λ2rtr[(W TW )−1D] (5)

+ n2λ4rtr{[(W TW )−1D]2}
)

+ n2λ4r||W (W TW )−1D(W TW )−1W Tm||2.

Differentiating with respect to λ leads to

λA =
( 1

n

σ2
ϵ tr{(W

TW )−1D}

||W (W TW )−1D(W TW )−1W Tm||2 + σ2
ϵ tr[{(W

TW )−1D}2]

) 1
(2r)

. (6)

Please note that (5) and (6) differ from the corresponding equations in Wand (1999) as

the penalty term in this paper is written as nλ2r. This definition has the advantage

that the smoothing parameter does not tend to infinity under increasing sample size, i.e.

λA = O(1). Throughout this paper the following expression for estimating the optimal

smoothing parameter is mainly considered:

λB =
(λA + λC)

2
, (7)

where

λC =

(

1

n

σ2
ϵ tr{(W

TW )−1D}

||W (W TW )−1D(W TW )−1W Tm||2

) 1
(2r)

. (8)

Please note that equation (8) is a result of dropping the second term in the denominator

of equation (6), as this term is asymptotically negligible. Based on (6), (7) and (8) two

data-driven IPI-procedures are proposed.

3 The proposed iterative plug-in algorithms

The unknown parameters in (6) are σϵ and m. With appropriate estimates of these two

quantities we can obtain a suitable smoothing parameter by plugging these estimates into

(6) or (7). For a given smoothing parameter, m̂ can be directly obtained with (3). Note

that σ̂ϵ might possibly depend on λ0 within the first two to three iterations. Therefore,
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the variance estimator proposed by Gasser et al. (1986) is used, which is given by

σ2
ϵ =

2

3(n− 2)

n−2
∑

i=1

[yi+1 −
1

2
(yi + yi+2)]

2 =: σ2
G, (9)

in order to obtain a suitable estimate for σϵ already within the first iteration. Note that

this estimator is based on a local linearity assumption for a possible trend. Following

the original idea of Gasser et al. (1991) and extending this approach to the P-Spline

framework, we propose two IPI-algorithms for independent data. Namely, IPIA and IPIB

based on equations (6) and (7), respectively. Let λ0 be the starting smoothing parameter.

The IPI-algorithms process as follows:

i) Choose an initial value λ0. Estimate σ2
ϵ with (9) and set σ̂2

ϵ = σ2
G.

ii) In the jth iteration insert λ̂j−1 into (3) and obtain m̂j .

iii) Obtain σ̂ϵ,j from the trend-adjusted residuals.

iv) Plug m̂j and σ̂2
ϵ,j into (6) or (7) and obtain λ̂j.

v) Repeat steps ii) to iv), until the Jth iteration or convergence is reached and set

λ̂A = λ̂J or λ̂B = λ̂J .

The number of total iterations J depends on the convergence rate of the IPI. According to

our definition, convergence is reached for j > 1, if |λ̂j− λ̂j−1| = o(n−1) or 20 iterations are

achieved. IPIA is usually not affected by the initially chosen smoothing parameter, which

could be chosen from a suitable and logical interval, for example 0 ≤ λ0 ≤ 2. However

IPIB is not independent from the initially chosen smoothing parameter due to (8) being

more sensitive to λ0. Therefore, we suggest to set the initial smoothing parameter to

λ0 = 0.2 for p = 3. Both algorithms usually converge within a few iterations. Moreover,

in comparison with the properties of the IPI-algorithm for local polynomial regression

developed by Feng and Beran (2013), our proposal has one major advantage. Namely,

that only a pilot estimation of m is needed rather than estimations of the first and second

order derivatives m′ and m′′.
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4 A simulation study

In this section a comprehensive simulation study is conducted. Different cases are con-

structed to investigate the practical performance of IPIA and IPIB. Both algorithms are

compared with each other in terms of quality of the selected smoothing parameter and

the goodness of fit. Moreover, it is investigated how the number of knots impact the finite

sample MASE of m̂λ.

4.1 Design of the simulation study

To ensure comparability and to demonstrate the applicability of the IPI-algorithms, six

trend functions are chosen which have already been used in other simulation studies. The

trend functions f1 = tanh(4(x−0.5)), f2 = 2.9(sin(2(x−0.5))2), f3 = sin(2(x−0.5)π) and

f5 = x + 1.5 exp(−100(x − 0.5)2) were already subject to a simulation study conducted

by Beran et al. (2009), who developed and compared the asymptotic performance of a

modified double smoothing bandwidth selector with various similar approaches. The trend

functions f4 = (sin(2xπ))2 exp(x) and f6 = sin(6xπ) were employed within the scope of

an empirical study by Schwarz and Krivobokova (2016). For each trend function data is

generated with different sample sizes and variances. The IPI-algorithms for independent

data are then applied in 1000 Monte-Carlo simulations for each trend function. The

simulation is carried out with sample sizes n1 = 250, n2 = 500 and n3 = 1000. Variances

of the error terms are set to σ2
ϵ,1 = 0.01 and σ2

ϵ,2 = 0.25. The number of knots is fixed in

the main part of the simulation study with K = 40 for each trend function. In Section

4.3 it is exemplified that the number of knots only has a negligible effect on the goodness

of fit if the number of knots is sufficiently large. In total, 36 cases are tested. Please note

that throughout this paper different cases of n and σ2
ϵ are classified with a case number.

For instance, the case with sample size n1 and σ2
ϵ,1 is referred to as Case 11 and the case

with sample size n3 and σ2
ϵ,2 is referred to as Case 32. Simulated data for Case 31 and

Case 32 are exemplified in Figures 1 and 2.
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4.2 Simulation results

In this section the performance of IPIA and IPIB is examined and numerical results are

presented. The asymptotic (optimal) values are denoted by λA and λB and are calculated

by means of (6) and (7). Moreover, the theoretically optimal smoothing parameter, λopt,

is obtained by numerical minimisation of (4). In Figure 3 the results for Case 31 are

illustrated. The theoretical values for λA, indicated by the blue line, λB, indicated by the

red line and λopt, indicated by the green line, are approximately equal for f4, f5 and f6.

For f1, f2 and f3 the deviation from λopt of λA is significantly larger than the deviation

of λB. The results for Case 32 are shown in Figure 4. Here we observe larger deviations

from λopt of λA for f1, f2 and f3 due to the larger variance σϵ,2. However, σϵ,2 has almost

no impact on λB. Across all cases and for all trend functions λB nearly coincides with

λopt, except for f2 (Figures 3 b and 4 b). For f2 the MASE, indicated by the black line,

is approximately constant around λopt, consequently, the relatively small deviation of λA

is negligible in this case and would not have a strong effect on the estimation quality of

m. These findings give us a first indication that approximation (7) could perform better

than (6). Graphical analyses for all other cases (Cases 11, 12, 21 and 22 ) are enclosed in

the Appendix

In Figure 5 and Figure 6 boxplots are shown for the estimated smoothing parameters

obtained by IPIA and IPIB for all trend functions with σ2
ϵ,2 and for each sample size.

Boxplots for the case with σ2
ϵ,1 are to be found in the Appendix. The poor behaviour of

the IPIA estimator for the first three trend functions f1, f2 and f3 (see Figure 5, a, b and

c) becomes very obvious. The median slightly increases with increasing sample size and

the variance does not decrease with increasing sample size. We observe a lot of outliers

for each sample size below the bottom whisker and the distribution of λ̂A is left-skewed

for all three trend functions. On the contrary, the performance of IPIB-estimator for the

first three trend functions (see Figure 6, a, b and c) is better. We observe a decreasing

variance with increasing sample size, less outliers are observed and the distribution of λ̂B

is not skewed. For trend functions f4, f5 and f6 (see Figures 5 and 6, d, e and f) one

can clearly recognize that the values of both IPI-estimators in the 25% and 75% quartiles

are distributed closer around the median with increasing sample size, i.e. the variance of

λ̂A and λ̂B decreases. The boxplots for f4 and f6 (see Figures 5 and 6, d and f) are very

similar for IPIA and IPIB. For f5 (see Figure 6, f) the deviation from the median is quite
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large for n = 250, which is due to (8) being too unstable for this relatively small sample

size. The deviation diminishes with increasing sample size.

Numerical results for σ2
ϵ,1 and σ2

ϵ,2 are presented in Table 1 and 2. The arithmetic means

of the MASE values of m̂λA
and m̂λB

multiplied with 10000 are denoted by MASEA and

MASEB, respectively. MASEopt stands for the theoretical optimal MASE. The average

of the MSE values of λ̂A and λ̂B multiplied with 1000 are denoted by MSEA and MSEB,

the means of the estimated smoothing parameters are denoted by
¯̂
λA and

¯̂
λB, as well

as the mean of the variance of the error term multiplied with 100, denoted by ¯̂σϵA and

¯̂σϵB. The results confirm our expectation that IPIB performs better than IPIA. For the

first three trend functions IPIA seems to perform much worse than IPIB, in particular for

σ2
ϵ,2 = 0.25 (see Table 2). In this case the values of MASEA and especially MSEA are much

higher than the corresponding values obtained with IPIB. Overall, IPIB performs better

or at least equally as good in all cases. The MASE and MSE values of both estimators

strongly decrease with increasing sample size, which implies that both IPI-estimators are

consistent. The means of the estimated variances ¯̂σϵA as well as ¯̂σϵB are already very

close to the true variances for the smallest sample size and converge to σ2
ϵ,1 = 0.01 and

σ2
ϵ,2 = 0.25 with increasing sample size.

4.3 Knot selection

Selecting an appropriate number of knots can be done manually by visually analysing the

complexity of the data. The number of knots are neither to be too small, as there would

not be enough observations between two knots, nor too big, in order to save computing

time. Ruppert (2002) developed a myopic and a fullsearch algorithm for automatically

determining the optimal amount of knots. Based on his findings the author suggests

to use a default number of knots for large data sets from 20 to 40 knots (see Ruppert

et al. (2003)). In this part of the simulation study we illustrate that the amount of

knots does not have a strong effect on the efficiency of the estimation results, at least

for the trend functions which are examined in this paper. More specifically, we inves-

tigate how the MASE is impacted by various selected numbers of knots. This part of

the simulation is carried out with a steadily increasing sequence of numbers of knots

Ki ∈ {10, 12, ..., 20, 30, ..., 100, 150, 200, 250, n}. For each Ki a sequence of smoothing
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parameters in the interval λj ∈ {0.0030, 0.0031, 0.0032, ..., 0.4998, 0.4999, 0.5} is defined.

Then for each Ki the theoretically optimal smoothing parameter with the lowest MASE,

denoted by λKi

opt and MASEKi

opt, respectively, is determined by plugging λj into (4). Let the

ratio of λKi

opt to λ̄opt =
1
n

∑n

i=1 λ
Ki

opt as well as MASEKi

opt to MASEopt =
1
n

∑n

i=1 MASEKi

opt be

defined by

φλ,i =
λKi

opt

λ̄opt

and φMASE,i =
MASEKi

opt

MASEopt

.

In Figure 17 the ratios φλ,i and φMASE,i, indicated by the solid red line and solid blue line,

for Case 12 are shown. Graphical analyses for all other cases are enclosed in the Appendix.

Overall, our results coincide with the findings of Ruppert (2002), who proposed to use a

minimum number of knots of K = min{N/4, 35}. Our findings confirm that if the number

of knots is sufficiently large, then the effect on the MASE is negligible and it remains

constant. Within the scope of our simulation study it is found that this is already the

case for K > 10.

5 Application

In this section the IPI-algorithm is applied to real data examples for uncorrelated data,

in order to present that the IPI-algorithm can be applied to a wide range of data sets

from different fields of science.

The first data set used in this section is the LIDAR✯ data set with 221 observations. The

independent variable is range which stands for the distance a laser light travels when

illuminating a target. The dependent variable is logratio, which stands for the logarithm

of the ratio of light received from two laser sources. The above mentioned regression

methods are applied to this data set and compared with each other in Figure 8 (a), where

the fitted P-spline obtained by applying IPIA is indicated by the black solid line and the

fitted P-spline obtained by IPIB is indicated by the red dashed line. The performance

of both estimators is quite well. The finally selected smoothing parameters for IPIA and

IPIB are approximately equal with λ̂A ≈ λ̂B ≈ 0.098. A further descriptive analysis is

beyond the scope of this paper.

✯The data set is implemented in the R-package SemiPar.
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As the second data set the California❸ test score data set is chosen, which contains data on

the test performance, characteristics of the school and the demographic backgrounds of

students from 420 districts in California from 1998 to 1999. For the purpose of this paper

test score is chosen to be the dependent variable and income the independent variable.

Test score is defined as the average of reading and math scores in standardized tests

designed for 5th grade students. Income is defined as the average income per capita in a

district. Figure 8 (b) illustrates the fitted P-spline, indicated by the black solid line, the

fitted local polynomial, indicated by the purple dashed line, cubic regression by the light

blue dashed line and simple linear regression by the red dashed line. Again, the P-spline

smoother delivers very satisfying results. By analysing both fitted splines, first a strong

upward trend is observed, which indicates a strong positive correlation between income

and test score. This upward trend steadily decreases and turns into a slightly negative

trend. These findings confirm our expectations that the relation between income and test

score is nonlinear with a strong positive correlation at the beginning. The finally selected

smoothing parameter for IPIA and IPIB are λ̂A = 0.105 and λ̂B = 0.132, respectively.

The third data set is the German Socio-Economic Panel (SOEP), seeWagner et al., 2007.

We use the wave of 2006 which contains measures of physical fitness, mental fitness and

body mass index, each on a scale from 1 to 100. The population polled consists of more

than 21, 000 citizens characterised by their age, their place of residence and their gender.

Physical fitness is defined as the dependent variable and age as the independent variable.

Furthermore, the observed individuals are separated into categories of gender and place of

residence (West- or East-Germany). The individuals’ age is limited, the minimum age is

18 and the maximum age is 65, and the maximum of working hours per week are 50 hours.

Figure 8 shows the fitted P-splines for both algorithms, indicated by the black and red

solid line. It can be seen that the relation between age and physical fitness is apparently

non-linear. From the age of 18 to 25 years only a slightly negative or no correlation can

be observed. Between the age of 25 to 35 years the negative correlation starts to increase

steadily. This trend continues until the age of 65 in all groups in West and East Germany.

For West Germany the P-spline fit shows a slightly different curvature. Unlike in East

Germany the physical fitness of the male and female group members (c) and (d) seem to

stabilize around the age of 55. Neither a significant negative nor positive correlation can

be observed between the ages of 60 and 65. Interestingly enough, there is a difference

❸The data set is implemented in the R-package AER.
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between the male and female group in West Germany concerning the downward tendency.

Apparently, physical fitness seems to decrease more rapidly in the female group than in

the male group. Overall algorithm IPIB is to be preferred for this data example as IPIA

produces a too responsive fit.

6 Final remarks

This paper proposes new IPI-rules for selecting the smoothing parameter in the P-spline

framework. A comprehensive simulation study is conducted. Based on our results we

recommend to use the IPIB algorithm in most cases. The application to real data examples

illustrates the wide applicability of our proposal and that it works very well in practice.

A further improvement of our proposal could be the innovation of the estimation of σ2
ϵ . In

our paper we estimated σ2
ϵ in the first iteration with a difference based variance estimator.

A possible improvement could be the repeated estimation of σ2
ϵ in each iteration based

on the residuals. A combination of both methods might also perform well. Moreover,

the development of a P-spline IPI-algorithm for time series data could offer an interesting

possibility for future research. Possible extensions of our proposal could be the short-

memory and long-memory case.

13



References

Aerts, M., G. Claeskens, and M. P. Wand (2002). “Some theory for penalized spline

generalized additive models”. In: Journal of statistical planning and inference 103.1,

pp. 455–470.

Akaike, H. (1974). “A new look at the statistical model identification”. In: IEEE trans-

actions on automatic control 19.6, pp. 716–723.

Beran, J., Y. Feng, and S. Heiler (2009). “Modifying the double smoothing bandwidth

selector in nonparametric regression”. In: Statistical Methodology 6.5, pp. 447–465.

Claeskens, G., T. Krivobokova, and J. D. Opsomer (2009). “Asymptotic properties of

penalized spline estimators”. In: Biometrika 96.3, pp. 529–544.

Cleveland, W. S. (1979). “Robust locally weighted regression and smoothing scatterplots”.

In: Journal of the American statistical association 74.368, pp. 829–836.

Craven, P. and G. Wahba (1978). “Smoothing noisy data with spline functions”. In:

Numerische Mathematik 31.4, pp. 377–403.

Demmler, A and C Reinsch (1975). “Oscillation matrices with spline smoothing”. In:

Numerische Mathematik 24.5, pp. 375–382.

Eilers, P. H. and B. D. Marx (1996). “Flexible smoothing with B-splines and penalties”.

In: Statistical science, pp. 89–102.

Eilers, P. H., B. D. Marx, and M. Durbán (2015). “Twenty years of P-splines”. In: SORT-

Statistics and Operations Research Transactions 39.2, pp. 149–186.

Feng, Y. and J. Beran (2013). “Optimal convergence rates in non-parametric regression

with fractional time series errors”. In: Journal of Time Series Analysis 34.1, pp. 30–39.
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Figure 1: Case 31 - Simulated data and true trend functions.
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Figure 2: Case 32 - Simulated data and true trend functions.
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Figure 3: Case 31 - MASE. λA, λB and λopt are indicated by the blue-dashed, red and
green lines, respectively.
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Table 1: Numerical results for all trend functions and sample sizes with σ2
ϵ,1.

n f MASEopt MASEA MASEB MSEA MSEB
¯̂
λA

¯̂
λB

¯̂σϵ,A
¯̂σϵ,B

250

f1 2.609 3.280 3.676 2.632 1.714 0.119 0.188 0.966 0.984
f2 2.193 3.176 2.521 9.233 2.562 0.119 0.172 0.966 0.974
f3 2.827 3.258 3.497 1.135 0.630 0.119 0.158 0.960 0.972
f4 3.933 4.081 4.073 0.049 0.044 0.091 0.091 0.959 0.958
f5 5.785 5.937 5.935 0.009 0.009 0.058 0.058 0.934 0.936
f6 5.863 6.220 6.220 0.063 0.063 0.053 0.053 0.931 0.931

500

f1 1.366 1.670 1.862 1.790 1.047 0.119 0.174 0.987 0.994
f2 1.129 1.623 1.344 7.627 2.573 0.119 0.161 0.982 0.985
f3 1.479 1.664 1.666 0.689 0.378 0.117 0.143 0.980 0.983
f4 2.059 2.132 2.128 0.071 0.067 0.084 0.084 0.977 0.977
f5 3.033 3.150 3.150 0.020 0.020 0.054 0.054 0.962 0.963
f6 3.087 3.363 3.363 0.066 0.066 0.049 0.049 0.960 0.960

1000

f1 0.718 0.825 0.856 0.995 0.589 0.119 0.160 0.991 0.994
f2 0.582 0.808 0.693 6.161 2.365 0.119 0.153 0.991 0.993
f3 0.774 0.840 0.836 0.341 0.212 0.116 0.134 0.992 0.994
f4 1.082 1.146 1.145 0.099 0.096 0.077 0.077 0.990 0.990
f5 1.586 1.678 1.678 0.023 0.023 0.049 0.049 0.979 0.979
f6 1.626 1.824 1.824 0.082 0.082 0.045 0.045 0.978 0.978

Table 2: Numerical results for all trend functions and sample sizes with σ2
ϵ,2.

n f MASEopt MASEA MASEB MSEA MSEB
¯̂
λA

¯̂
λB

¯̂σϵ,A
¯̂σϵ,B

250

f1 51.237 81.147 61.753 32.623 7.679 0.119 0.238 24.154 24.477
f2 48.248 80.287 60.901 22.979 8.294 0.119 0.237 24.151 24.448
f3 58.998 80.549 70.301 5.958 1.947 0.119 0.209 24.058 24.409
f4 82.299 84.800 87.793 0.058 0.110 0.115 0.127 24.152 24.296
f5 111.930 116.784 118.922 0.068 0.121 0.090 0.091 24.060 24.067
f6 115.731 119.089 119.076 0.004 0.004 0.080 0.080 23.812 23.843

500

f1 28.060 39.689 31.948 9.612 3.618 0.119 0.231 24.544 24.719
f2 24.834 41.691 32.828 18.537 5.704 0.119 0.215 24.582 24.719
f3 30.604 40.455 38.974 4.224 2.003 0.119 0.203 24.483 24.681
f4 42.695 44.607 45.777 0.031 0.068 0.112 0.119 24.511 24.556
f5 59.569 59.932 60.064 0.022 0.025 0.081 0.081 24.469 24.470
f6 60.872 61.051 61.032 0.005 0.005 0.073 0.073 24.367 24.371

1000

f1 14.648 20.194 18.053 6.395 3.400 0.119 0.218 24.744 24.834
f2 12.753 20.136 15.562 15.100 3.907 0.119 0.199 24.779 24.843
f3 15.871 20.192 21.994 3.142 1.854 0.119 0.195 24.810 24.919
f4 22.160 22.899 23.056 0.025 0.032 0.108 0.111 24.814 24.826
f5 31.561 32.381 32.388 0.006 0.006 0.074 0.074 24.678 24.680
f6 32.011 32.896 32.889 0.015 0.014 0.067 0.067 24.593 24.594
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Figure 9: Case 11 - MASE. λA, λB and λopt are indicated by the blue-dashed, red and
green lines, respectively.
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Figure 10: Case 12 - MASE. λA, λB and λopt are indicated by the blue-dashed, red and
green lines, respectively.
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Figure 11: Case 21 - MASE. λA, λB and λopt are indicated by the blue-dashed, red and
green lines, respectively.
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Figure 12: Case 22 - MASE. λA, λB and λopt are indicated by the blue-dashed, red and
green lines, respectively.
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Figure 13: Case 11 - φλ and φMASE are indicated by the red and blue line, respectively.
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Figure 14: Case 21 - φλ and φMASE are indicated by the red and blue line, respectively.
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Figure 15: Case 22 - φλ and φMASE are indicated by the red and blue line, respectively.
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Figure 16: Case 31 - φλ and φMASE are indicated by the red and blue line, respectively.
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Figure 17: Case 32 - φλ and φMASE are indicated by the red and blue line, respectively.
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