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Abstract

The paper at hand provides a detailed description of the esemifar R-package, which

is an extension of the already published smoots package, enabling the data-driven

local-polynomial smoothing of time series with long-memory. In this regard a sim-

ple data-driven algorithm is proposed based on the well-known iterative plug in

algorithm for SEMIFAR (semiparametric fractional autoregressive) models. Two

new functions for data-driven estimation of the trend and its derivatives under the

presence of long-memory are introduced. esemifar is applied to various environ-

mental and financial time series with long memory, e.g. mean monthly Northern

Hemisphere changes, daily observations of the air quality index of London (Britain),

quarterly G7-GDP and daily trading volume of the S&P500. It is worth mentioning

that this package can be applied to any suitable time series with long memory.
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1 Introduction

This paper introduces a new R-package coined esemifar designed to supplement the al-

ready published smoots package (smoothing time series, version 1.1.1, Feng, Schulz and

Letmathe, 2021). The latter considers data-driven local polynomial smoothing of trend-

stationary time series with short-range dependence. However, the literature suggests that

many time series, for instance squared returns, trade durations, temperature and air pol-

lution data, exhibit long memory (see e.g. Ding et al., 1993, Ding and Granger, 1996,

Andersen and Bollerslev, 1997, Andersen et al., 1999, Baillie and Chung, 2002, Cotter,

2005, Beran et al., 2015, Beran, 2017 and Gil-Alana et al., 2020 among others).

Against this background the esemifar package is developed enabling the data-driven trend

estimation under long memory. Analogously to smoots the estimation of the trend and its

first and second derivative is carried out by means of a data-driven IPI (iterative plug-in

Gasser et al., 1991) method based on the IPI for SEMIFAR (semiparametric fractional

autoregressive, Beran and Feng, 2002c) models introduced by Beran and Feng (2002a).

The SEMIFAR and its exponential version the ESEMIFAR model (Beran et al., 2015),

which is applicable to non-negative time series following a semiparametric multiplicative

model form, are designed for simultaneous modelling of stochastic trends, deterministic

trends and stationary short- and long-memory components in a time series.

The theoretical background of the esemifar package and its implementation in R are

briefly exemplified. For further details on the theoretical properties of the (E)SEMIFAR

model and the corresponding IPI-algorithm we refer the reader to Beran and Ocker (1999),

Beran and Feng (2002c), Beran and Feng (2002a), Beran and Feng (2002b), Beran et al.

(2015), Beran et al. (2016) and references therein. The main objective of this paper is the

introduction of the esemifar package and the illustration of its usefulness in particular

for non-stationary time series exhibiting a long-memory dependence structure. That is

achieved by employing our package to different environmental as well as financial time

series. We partly exploit data that was already used by Feng et al. (forthcoming), namely

monthly Northern Hemisphere temperature changes, as the authors already indicated that

this data might exhibit long range dependence. In addition to that esemifar is applied to

daily observations of the (composite) air quality index of London (Britain). And, analo-

gously to Feng et al. (forthcoming) esemifar is used in the context of a semiparametric
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log-local-linear growth model for analysing quarterly G7 GDP data. Moreover, it was

first indicated by Beran et al. (2015) that the (type 1) Log-ACD model introduced by

Bauwens and Giot (2000), Bauwens et al. (2008) and Karanasos (2008) can be represented

as an EFARIMA model. Subsequently, it was shown by Feng and Zhou (2015) that the

EFARIMA and ESEMIFAR can be redefined as a FI-Log-ACD and a Semi-FI-Log-ACD,

respectively. We illustrate the use of esemifar in regards to the Semi-FI-Log-ACD by

modelling log-transformed trading volume of the S&P500.

The paper is organised as follows. In Section 2 the definitions of the (E)FARIMA and

(E)SEMIFAR are given and the methodological background as well as the IPI-algorithm

incorporated in esemifar are elaborated. The implementation in R is exemplified in

Section 3. The application of our proposal to environmental data is illustrated in Section

4. The use of esemifar within the scope of the Semi-FI-Log-ACD is investigated in Section

5. In Section 6 final remarks are given.

2 Smoothing long memory time series

In the sequel, the definitions of the well known (E)FARIMA and (E)SEMIFAR models

(see Beran and Ocker, 1999, Beran and Feng, 2002c and Beran et al., 2015) and local

polynomial smoothing for long memory time series are briefly exemplified. Moreover, a

modified version of the IPI for SEMIFAR models (see Beran and Feng, 2002a) is proposed.

2.1 The (E)FARIMA and (E)SEMIFAR

A well-established model for analysing financial time series data is the multiplicative error

model (MEM) (Engle, 2002) which is given by

Xt = sλtηt, (1)

where the scale parameter is denoted by s > 0, λt > 0 denotes the conditional mean of

X∗ = Xt/s, and ηt are i.i.d. random variables with ǫt = ln(ηt) such that E(ǫt) = 0 and

σ2
ǫ = var (ǫt) . Following Feng and Zhou (2015) we can rewrite (1) as a semiparametric
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MEM given by

Xt = s(τt)λtηt, (2)

where τt = t/n denotes the rescaled time and where the scale parameter s in (1) is replaced

with a nonparametric scale function denoted by s(τt). By taking the logs of (2) we have

Yt = g(τt) + Zt, (3)

where Yt = ln(Xt), g(τt) = ln[s(τt)], Zt = ln(λt) + ǫt. Following Beran and Feng (2002c)

we assume that Zt follows a zero mean FARIMA (p, d, q) process, which is given by

(1− B)dφ(B)Zt = ψ(B)ǫt, (4)

where d ∈ (0, 0.5) is the long-memory parameter, B is the backshift operator, φ(z) =

1 −
∑p

i=1 φiz
i and ψ(z) = 1 +

∑q
i=1 ψiz

i are AR- and MA-polynomials with all roots

outside the unit circle. The long-memory parameter d was introduced by Granger and

Joyeux (1980) and Hosking (1981) and is defined by

(1− B)d =
∞
∑

k=0

bk(d)B
k, (5)

where bk(d) = (−1)k
(

d
k

)

= (−1)k Γ(d+1)
Γ(k+1)Γ(d−k+1)

and Γ(·) denotes the Gamma function.

Equation (4) defines a stationary and invertible FARIMA process with E(ǫt) = 0 and

var(ǫt) = σ2
ǫ . Model (3) is equivalent to a SEMIFAR process (Beran and Feng, 2002c)

with no integer differencing (m = 0) and an additional MA-part. Subsequently, model

(2) is an ESEMIFAR introduced by Beran et al. (2015).

2.2 Local polynomial regression for long memory time series

In the following local polynomial estimation of the scale function g(ν), the ν-th derivative

of g, is exemplified briefly (see e.g. Beran and Feng, 2002a, Beran and Feng, 2002b,

Beran and Feng, 2002c, and Beran et al., 2013). Under the assumption that g is at least

(l+1)-times differentiable at a point t0, g(τt) can be approximated by a local polynomial

of order l for τt in a neighbourhood of τ0. Following Gasser and Müller (1979), the weight

function is determined to be a second order kernel with compact support [−1, 1] having
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the polynomial form K(u) =
∑r

i=0 aiu
2i, for (|u| ≤ 1),where K(u) = 0 if |u| > 1 and

ai are such that
∫ 1

−1
K(u)du = 1 holds. Here, r ∈ {0, 1, 2, 3} denotes the kernel used

for estimating g(ν), corresponding to the uniform, epanechnikov, bisquare and triweight

kernel, respectively. ĝ(ν) (ν ≤ l) can now be obtained by solving the locally weighted least

squares problem

Q =
t
∑

i=1

[

Yt −
l
∑

j=0

bj(τi − τ0)
j

]2

K
(τi − τ0

h

)

, (6)

where h denotes the bandwidth and K[(τi − τ0)/h] are the weights ensuring that only

observations in the neighbourhood of τ0 are used. Consider the case where l − ν is odd.

Define m = l + 1, then we have m ≥ ν + 2 and m − ν is even. A point τ is said to

be in the interior for each τt ∈ [h, 1 − h], at the left boundary if τt ∈ [0, h)] and at the

right boundary if τt ∈ (1− h, 1]. Following Beran and Feng (2002b) a common definition

for an interior point is τ = ch with c = 1 and for a boundary point we have c ∈ [0, 1).

Asymptotic expressions for the bias, variance and mean integrated squared error (MISE)

are presented in Theorem 1 and 2 by Beran and Feng (2002b). The asymptotic mean

integrated squared error (AMISE) is given by

AMISE(h) = h2(m−ν) I[g
(m)]β2

m!
+

(nh)2d−1V (1)

h2ν
, (7)

where I[g(m)] =
∫ db
cb
[gm(τ)]2dτ with 0 ≤ cb < db ≤ 1 in order to reduce the so-called

boundary effect. Moreover, β =
∫ 1

−1
umK(u)du and for d > 0 we have V (1) = 2cfΓ(1 −

2d) sin(πd)
∫ 1

−1

∫ 1

−1
K(x)K(y)|x−y|2d−1dxdy. For d = 0, V reduces to V (1) = 2πcf

∫ 1

−1
K2(x)dx.

cf stands for the spectral density of the ARMA part of (4) at frequency zero and is given

by

cf = f(0) =
σ2
ǫ

2π

(1 + ψ1 + · · ·+ ψq)
2

(1− φ1 − · · · − φp)2
. (8)

The asymptotically optimal bandwidth, denoted by hA, that minimizes the AMISE is

given by

hA = Cn(2d−1)/(2m+1−2d), (9)

with

C =

(

[m!]2

2(m− ν)

(2ν + 1− 2d)

β2

(db − cb)V (1)

I[g(m)]

)1/(2m+1−2d)

. (10)
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In order to obtain a selected bandwidth the unknown constants I[g(m)], d and V in

(9) have to be replaced with consistent estimators. Please note, that the estimation of

V relates to that of cf . I[g(m)] is estimated by means of local polynomial regression

and numerical integration. The remaining two quantities d and V can be obtained via

maximum likelihood. Inserting those estimates into (9) yields a plug-in estimator for the

bandwidth, which minimises the MISE.

Based on these results Beran and Feng (2002a) proposed two iterative plug-in algorithms

for automatic bandwidth selection, namely Algorithm A and B. In this paper we only

consider a strongly adapted version of Algorithm B which is presented in the following.

2.3 The IPI-algorithm for estimating g

We introduce a modified IPI-procedure for SEMIFAR models by translating and adapting

the main features of the IPI for SEMIFAR models introduced by Beran and Feng (2002a)

from the programming language S to R. The algorithm processes as follows:

i) In the first iteration start with an initial bandwidth h0 set beforehand and select p

and q denoting the AR- and MA-order, respectively.

ii) Estimate g from Yt employing hj−1 and calculate the residuals Z̃t = Yt − ĝ(τt).

Estimate d and V by fitting a FARIMA (with predefined AR- and MA-order in

Step i) to Ẑt.

iii) Set hd,j = (hj−1)
α, where α denotes an inflation factor. Estimate I[g(m)] via a local

polynomial of order l∗ = l + 2 and with hd, j. Now, we obtain hj−1 by

hj =

(

[m!]2

2m

(1− 2d̂)

β2

(db − cb)V̂ (1)

I[ĝ(m)]

)1/(2m+1−2d̂)

· n(2d̂−1)/(2m+1−2d̂). (11)

iv) Repeat steps ii) and iii) until convergence or a given number of iterations has been

reached and set ĥopt = hj.

We propose to set the initial bandwidths to h0 = 0.1 for l = 1 and h0 = 0.2 for l = 3.

Moreover, for p = 3 it is recommended to employ cb = 1 − db such that only 90% of all

observations are used for estimating an interior point in order to reduce the boundary

effect. For l = 1 all observations are used and hence cb = 1− db = 0. The bandwidth hd.j
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used for estimating g(m) is enlarged by means of an exponential inflation factor denoted by

α. We have α = αopt = (2m+1−2d)/(2m+3−2d), α = αnai = (2m+1−2d)/(2m+5−2d)

and α = αvar = 1
2
. Using αopt results in bandwidth hd,j that minimizes the MSE of

Î[g(m)] and consequently the rate of convergence of ĥj is optimal. Whereas for αnai the

optimal rate of convergence is achieved for m̂(m) and αvar ensures a stable selection of the

bandwidth. Moreover, we have αvar > αnai > αopt and αnai → αvar as d→ 0.5. The choice

of α depends on the underlying data, which is to be analysed. For a more detailed insight

on inflation methods we refer the reader to Beran and Feng (2002a).

2.4 Data-driven estimation of g✬ and g✬✬

The modified IPI for SEMIFAR models can also be applied to bandwidth selection for

estimating g(ν) with ν > 0. In this paper, only the cases for ν = 1 and ν = 2 are discussed.

The proposed IPI is now employed as a data-driven pilot method to obtain estimates for

d, cf and hν,0 with order ld, say. Estimation of g(ν) is then carried out with l = ν +1 and

m = ν +2. As previously, g(m), which is required for calculating I[g(m)] is estimated with

order l∗ = l + 2. The following two-stage procedure is proposed.

i) In the first stage d̂, ĉf , and ĥopt are obtained by means of the main IPI-algorithm

for estimating g with order ld = 1 or ld = 3.

ii) Set hν,0 = ĥopt. Carry out an IPI-procedure as proposed above with fixed ĉf and d̂

in order to select a bandwidth for estimating g(ν). Please note that (9) should be

used.

Explicit formulas of the equivalent kernels for estimating g(ν) at an interior point τt can

be found in Müller (1988). The corresponding inflation factors are defined as previously

and are determined by m and d.

3 Implementation in R

Based on the algorithms introduced in the previous section a R-package is developed,

which is an extension of the already published smoots package. Hence, this package will be

coined esemifar. The main functions are called tsmoothlm and dsmoothlm for estimating
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the trend and its derivatives, respectively, under presence of long-memory errors. Local

polynomial estimation of g(ν) and kernel smoothing of g are carried out by means of the

functions gsmooth and knsmooth, which are implemented in the smoots package (see Feng

et al., forthcoming).

In the following the function tsmoothlm is explained in more detail. The first argument y

denotes the input time series. The second and third argument (pmin and pmax ) are the

minimum and maximum AR-order of the stochastic part Zt in (3), respectively. Accord-

ingly, the fourth and fifth argument (qmin and qmax ) stand for the the minimum and

maximum MA-order of Zt. All four arguments can take the value 0, 1, 2, 3, 4 or 5 while

pmin ≤ pmax and qmin ≤ qmax. The optimal order is determined via BIC. The default set-

ting is pmin = qmin = pmax = qmax = 0. The order of the polynomial for trend estimation

is set via the argument p and the user can choose between 1 and 3, where p = 1 is the

predefined option. The argument mu controls for the smoothness of the weight function.

We have µ ∈ {0, 1, 2, 3}, with µ = 1 for the Epanechnikov kernel as default. Furthermore,

the inflation factor α can be selected by the argument InfR with three different options,

i.e. “Opt”, “Nai” and “Var”, which corresponds to αopt = (2m+ 1− 2d)/(2m+ 3− 2d),

αnai = (2m+1−2d)/(2m+5−2d) and αvar =
1
2
, respectively. The default setting for InfR

is “Opt”. Moreover, the starting bandwidth h0 can be set beforehand by the argument

bStart with default h0 = 0.1 for p = 1 and h0 = 0.2 for p = 3. However, the choice of

bStart should not affect the finally selected bandwidth if the IPI converges. Argument

bb controls for boundary bandwidth. The default is bb = 1 meaning that the k-nearest

neighbour method is applied, which results in a total bandwidth of 2ĥ at each observation

point τt. For bb = 0 however, the total bandwidth is shortened at boundary points. By

the argument cb, which is set to cb = 0.05 per default, the percentage of observations

omitted for calculating I[g(m)] =
∫ 1−db
cb

[gm(τ)]2dτ in (9) can be controlled. Additionally,

the smoothing method with ĥopt can be selected via the argument method. The user may

choose between local polynomial regression (“lpr”) and kernel regression (“kr”). How-

ever, originally kernel regression has been only incorporated in the smoots package as a

benchmark to local polynomial regression.

For estimating g(ν) the function dsmoothlm is applied. Please recall that here tsmoothlm

is employed as a pilot method with minimum and maximum AR- and MA-order pmin.p,

pmax.p, qmin.p as well as qmax.p, a local polynomial estimator of order pp, the inflation

8



rate InfR.p, the kernel mu.p and a starting bandwidth bStart.p in order to obtain rea-

sonable estimates for d̂, ĉf and ĥν,0 (see section 3.2). The options and default settings

for these arguments are the same as for tsmoothlm. In addition to that, the order of the

derivative to be estimated is set via the argument nu and can take the value 1 or 2 for the

first and second derivative, respectively. Moreover, the argument mu controls the kernel

used for bandwidth selection after the pilot stage. Please note that the S3 methods (print

and plot) implemented in the smoots package can be employed to the estimation results

of the functions above. The output objects of tsmoothlm and dsmoothlm are basically

lists containing input parameters and estimation results. Further detailed information on

the functions are to be published in the users guideline of the esemifar package.

4 Application of the SEMIFAR and ESEMIFAR

In this section the SEMIFAR and ESEMIFAR are applied to four real data examples:

tempNH (mean monthly temperature changes), aqiLDN (daily air quality index) and

gdpG7 (G7 GDP). An old version of the tempNH data set has already been subject to

an application example in Feng (2007), where the author employed the original version

of the IPI for SEMIFAR models. An updated version of tempNH is implemented in the

smoots package, which was recently published on the CRAN network, and the remaining

two data sets will be available in esemifar.

4.1 Application to environmental data

The SEMIFARIMA defined by (3) is applied to the time series of mean monthly Northern

Hemisphere temperature changes (NHTM) from 1880 to 2018. The data is available at

the website of the National Aeronautics and Space Administration (NASA). Bandwidth

selection is carried out by means of the IPI for SEMIFARIMA models introduced in

section 3. For model- and bandwidth selection the tsmoothlm function is applied, with

p = 1, pmin = qmin = 0, pmax = qmax = 3 and InfR = “Opt”. The remaining arguments

are set on their default.

In Figure 1a) the fitted trend together with the observations is illustrated. The optimal

bandwidth is ĥopt = 0.165 and a FARIMA (0, d̂, 0) has been selected following the BIC
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with d̂ = 0.405 implying strong long-range dependence in the temperature data. Appar-

ently, the SEMIFARIMA captures the trend quite well. A clear upward trend can be

observed approximately after 1970, which could be interpreted as an indicator for global

warming. The trend-adjusted residuals are shown in Figure 1b) and first and second

derivative are depicted in Figures 1c) and 1d), respectively. Please note that for the es-

timation of derivatives the dependence structure has been estimated by pilot smoothing

with order pp = 3. The derivatives match the features of the trend shown in Figure

1a) and provide further information about global temperature changes. For instance the

slope of the first derivative indicates how strong the trend is increasing or decreasing. The

intersections of the second derivative with the x-axis indicate a shift in the slope of ĝ.
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Figure 1: Estimated trend, residuals and the trend‘s derivatives for the NHTM series

Moreover, the ESEMIFAR defined by (2) is applied to daily observations of the (compos-

ite) air quality index (AQI) of London from 2014 to 2020. The composite AQI is simply

the maximum of all individual AQI of particulate matter less than 2.5 and 10 microns

(PM25 and PM10), Ozone (O3) , Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2) and Car-

bon monoxide (CO). The data can be obtained from the European Environment Agency.

An ESEMIFAR is fitted to the log-transformed air quality index series, again, by means

of the tsmoothlm function. Here, the inflation rate is set to InfR = “Var” due to the large

variation in the data and again a local linear smoother is employed, i.e. p = 1. Moreover,
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pmin = qmin = 0, pmax = qmax = 1 and all other arguments are set on their default.

Figure 2a) depicts the log-transformed air quality index series together with the estimated

trend. The optimal bandwidth amounts to ĥopt = 0.242 and a FARIMA (1, d̂, 0) is selected

by the BIC with φ̂1 = 0.544 and d̂ = 0.103. Trend adjusted residuals, first and second

derivative are depicted in Figures 2b), 2c) and 2d), respectively. Our results indicate

that the ESEMIFAR fits the data very well. We observe a slight downward trend of air

pollution beginning in the middle of 2017 and continuing to the end of 2020. However, a

deeper interpretation of our results in regard of an environmental context is beyond the

scope of this paper.
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Figure 2: Estimated trend, residuals and the trend‘s derivatives for the AQI series

4.2 Application to GDP data

A model which is commonly used in the field of macroeconomic research is the well-known

log-linear growth model. Feng et al. (2020) have achieved a semiparametric local-linear

extensions of this model by applying a Semi-ARMA to log-transformed GDP series. We

follow this approach and additionally incorporate long memory by assuming that the log-

transformed quarterly G7-GDP series from 1961 to 2019 follows a SEMI-FARIMA defined

by (3) and (4). The data was obtained from the Organisation for Economic Co-operation
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and Development (OECD). For this purpose the tsmoothlm function is employed, with

p = 1, pmin = qmin = pmax = qmax = 1 and InfR = “Opt”. The remaining arguments

are set on their default. We obtained an optimal bandwidth of 0.112 and a FARIMA

(1, d̂, 1) with d̂ = 0.252, and φ̂1 = 0.858 and ψ̂1 = 0.192 is fitted to the residuals.

As a benchmark a kernel regression is carried out using the same bandwidth. Estimated

trends together with log-gdp series are shown in Figure 2(a). At the interior both estima-

tors are approximately equal. However, we can see that the kernel estimator clearly shows

poor estimation quality at the boundaries which indicates that the local-linear estimator

is to be preferred. The trend-adjusted residuals obtained by the local-linear approach

are depicted in Figure 2(b). Moreover, the corresponding derivatives are illustrated in

Figures 2(c) and 2(d), which reveal further information on the course of the economy.
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Figure 3: Estimated trend, residuals and the trend‘s derivatives for the G7-GDP series

5 Application to financial data

Another well-known method for analysing non-negative financial time series is the autore-

gressive conditional duration (ACD) model introduced by Engle and Russell (1998). An

extension of the ACD is the (type 1) Log-ACD1 proposed by Bauwens et al. (2008) which
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can considered to be a squared version of the Log-GARCH. A fractionally integrated gen-

eralization of the Log-ACD was indicated by Beran et al. (2015) and subsequently Feng

and Zhou (2015) proposed the FI-Log-ACD and its semiparametric extension the Semi-

FI-Log-ACD. Moreover, the authors showed that the FI-Log-ACD (Semi-FI-Log-ACD)

is equivalent to the EFARIMA (ESEMIFAR). Hence, the Semi-FI-Log-ACD can be es-

timated by the esemifar package. For a detailed derivation of the Semi-FI-Log-ACD we

refer the reader to Feng and Zhou (2015).

In the following the ESEMIFAR is applied to daily trading volume of the S&P500 from

January 2000 to December 2020. The data was obtained from Yahoo finance. The original

series is displayed in Figure 4a) and it can be seen that the variation in the data is clearly

time dependent. Trend estimation is carried out with a local linear and cubic smoother

(p = 1 and p = 3). The model order is set to pmin = qmin = pmax = qmax = 1. For

p = 1 and p = 3 the selected bandwidths are 0.085 and 0.191, respectively. In Figure

4b) the log-transformed series, the local linear and local cubic trends are shown and are

indicated by the black, red and blue (dashed) lines, respectively. Both estimators deliver

very satisfying results but the local cubic approach seems to slightly over-fit the data.

Therefore, the conditional and total means illustrated in Figures 4c) and 4d) as well as

the residuals are obtained from the local linear estimates. From the residuals of the local

linear estimator we obtain a FARIMA(1, d̂, 1) model with φ̂1 = 0.553, ψ̂1 = 0.410 and

d̂ = 0.319 indicating moderately strong long-range dependence in the data.

6 Concluding remarks

The paper at hand exemplifies the development of a supplementing R-package for the

smoots package. The main feature of this package is the semi-parametric estimation

under long-memory errors, which to the best of our knowledge has not been possible

before at least within the scope of R. In this regard an adapted version of the iterative

plug in algorithm proposed by Beran and Feng (2002a) is introduced. Moreover, the

implementation of this package is comprehensively described. The usage of two main

functions is explained and illustrated by application to various non-stationary time series

with long-memory. The estimation results are quite satisfactory and illustrate the wide

applicability of our proposal. Further extensions of esemifar are the implementation of
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Figure 4: Estimation results of the ESEMIFAR for the SP500 series.

a forecasting procedure and the non-parametric estimation of the stochastic part of the

model by means of e.g. a local Whittle-, GPH- or wavelet-estimator.
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