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Abstract

This paper introduces first an extended SAN (sinh-arcsinh normal) family of distri-

butions by allowing the transformed normal random variable to be unstandardized.

A Log-SAN transformation for non-negative random variables and the associate

Log-SAN family of distributions are then proposed. Properties of those distribu-

tions are investigated. A maximum likelihood estimation procedure is proposed. A

chain mixed multivariate extension of the SAN distributions and a corresponding

distributional regression model are then defined. Those approaches can help us to

discover possible spurious or hidden bimodal property of a multivariate distribution.

The proposals are illustrated by different examples.

Keywords: Extended SAN distributions, Log-SAN distribution, MLE, chain mixed

multivariate distributions, distributional regression, spurious and hidden bimodality
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1 Introduction

Consider first a univariate real-valued random variable Y . According to the SAN (sinh-

arcsinh normal) distribution proposed by Jones and Pewsey (2009, 2019), it is assumed

that there exist four transformation parameters ξ, β ∈ IR and η, α > 0 such that

Z = S[(Y − ξ)/η] = sinh[α sinh−1[(Y − ξ)/η]− β] (1)

is N(µ, σ2) distributed, where ξ, η, β and α are the location, scale, skewness and shape

parameters, respectively, and µ ∈ IR and σ2 > 0 are two nuisance parameters. A six

parameter SAN family of distributions is defined, including normal distributions as special

cases with α = 1 and β = 0. The original proposal of Jones and Pewsey (2009), hereafter

JP09, is a four parameter subfamily assuming Z ∼ N(0, 1), which will be called the

standard SAN family of distributions. Those distributions are widely employed in theory

and application (see e.g. Duerinckx et al., 2014; Stasinopoulos et al., 2017; Hothorn et al.,

2018; Jones et al., 2019; Fasiolo et al., 2020). Advantages of SAN distributions compared

to related proposals are indicated in JP09. Now, skewness, shape and heavy- or light-tails

can be modeled simultaneously. A six parameter SAN distribution can also be bimodal.

Those distributions can be estimated by maximum likelihood. See Risco et al. (2011),

and Pewsey and Abe (2015) for further extensions of the SAN distributions.

Our main purpose is the modeling of a non-negative random variable X ≥ 0 with X > 0

a.s. In light of the transformation models (e.g. Box and Cox, 1964; Collins, 1991; Cheng

et al., 1997; Foster et al., 2001; Hothorn et al., 2014) we focus on random variables, which

can be transformed monotonically to a (nearly) normal distribution by combining a pilot

transformation for non-negative random variables with the SAN approach. In particular,

the application of the SAN transformation to the log-data and the associate distributions

will be studied in detail. Let Y = ln(X), this leads to a Log-SAN transformation for

X ≥ 0:

Z = T (X) = S{[Y − ξ]/η} = sinh{α sinh−1[(ln(X)− ξ)/η]− β}. (2)

A Log-SAN distribution is defined assuming Z ∼ N(µ, σ2). It is a wide extension of the

log-normal distribution, including the latter as a special case with α = 1 and β = 0. A

closely related proposal is the Birnbaum-Saunders (BS) distribution (Birnbaum-Saunders,

1969), i.e. a log-sinh normal distribution (Rieck and Nedelman, 1991). A log-archsinh
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normal distribution is defined by applying Johnson’s SU distribution (Johnson, 1949) to

the log-data. The former has extremely lighter tails with existing mgf (moment generating

function), while the latter is extremely heavy-tailed without any finite moment. The Log-

SAN distributions have clear advantages compared to them. If α > 0.5, their properties

are similar to those of the log-normal distributions. They have finite moments of all

orders, but their mgf does not exist. Their tailwights are controlled by α and are the

same as those of a log-normal distribution, if α = 1.

Consider now a p-dimensional real-valued random vector Y = (Y1, ..., Yp)
′, p > 1. Some of

its elements may be obtained from non-negative random variables through a transforma-

tion. A multivariate SAN distribution is defined in JP09 assuming that the elementwise

transformaed random variables Zi = S(Yi), i = 1, ..., p, are multivariate normal random

variables. It is found that this definition should not be used, when the marginal and con-

ditional distributions of the elements are of different shapes. Consider a bivariate bimodal

distribution, where Y1 and Y2 are linearly dependent. Now, both marginal distributions

will be bimodal, but the distribution of e.g. Y2|Y1 is unimodal. The bimodality in Y2

is a spurious distributional property caused by Y1 or vice versa. Now, the elementwise

transformation will introduce two artificial modes into the joint distribution, so that it

is no longer bimodal. To overcome this problem, a chain mixed multivariate distribution

(CMMD) is proposed. The joint density is defined as a chain product of the first marginal

and subsequent chain conditional distributions, assuming that the relationships among all

elements are of known forms, where the distributions of the elements may come from dif-

ferent families. This definition is based on a dimension reduction rule and can be easily

applied to high dimensional cases. Moreover, parametric conditional distributions can be

investigated following this definition, if Y is partitioned into two parts. In particular, the

last step in this approach defines an explicit distributional regression of Yp on Y1, ..., Yp−1.

See e.g. Chernozhukov et al. (2013), and Rothe and Wied (2013) for recent studies on

distributional regression. A fixed design distributional regression with SAN errors is also

proposed. It is shown that this model can help us to discover hidden bimodality, which

cannot be observed from the marginal distribution. These proposals provide parametric

alternatives to the commonly used nonparametric approaches for conditional distribu-

tions (Hall and Müller, 2003; Hall et al., 2004) or to quantile regression (Koenker and

Bassett 1978; Koenker, 2005; Wei and He, 2006). See Koenker et al. (2013) for a detailed

discussion on the relationship between distributional regression and quantile regression.
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Maximum likelihood procedures for estimating the SAN and Log-SAN distributions are

developed. An ad hoc multistep procedure is proposed for practical implementation of the

multivariate extensions. The proposals are applied to different examples and compared to

related approaches. In particular, spurious bimodality is shown by the Old Faithful Geyser

data in Härdle (1991) and hidden bimodality is illustrated by the Italian GDP growth

panel from 1951 to 1998 (Baiocchi, 2006). Finally, the SAN and Log-SAN transformations

can be applied to define new subordinated long memory Gaussian processes (Beran et al.,

2013; Papiras and Taqqu, 2017). Discussion on those topics will be carried out elsewhere.

The paper is organized as follows. The SAN and Log-SAN distributions are studied in

Sections 2 and 3. Maximum likelihood estimation is discussed in Section 4. Multivariate

extensions of the proposals are introduced in Section 5. Section 6 reports the application.

Final remarks in Section 7 close the paper. Proofs of results are put in the appendix.

2 Properties of the canonical families

The canonical SAN- and Log-SAN distributions with ξ = 0 and η = 1 will be discussed in

detail. Now, the inverse of S(Y ), Y = K(Z) = S−1(Z) with K(Z) = sinh[α−1 sinh−1(Z)+

β/α] = S(Z, α−1,−β/α) is another SAN transformation with parameters α−1 and −β/α.

The canonical Log-SAN transformation has the following equivalent forms

T (X) =
1

2

[

e−β{[1 + ln2(X)]1/2 + ln(X)}α − eβ{[1 + ln2(X)]1/2 + ln(X)}−α
]

(3)

=
1

2

[

e−β{[1 + ln2(X)]1/2 + ln(X)}α − eβ{[1 + ln2(X)]1/2 − ln(X)}α
]

. (4)

The inverse canonical Log-SAN transformation X = G(Z) = exp[K(Z)] is given by

G(Z) = exp{sinh[α−1 sinh−1(Z) + β/α]}

= exp

(

1

2

{

eβ/α[(1 + Z2)1/2 + Z]1/α − e−β/α[(1 + Z2)1/2 + Z]−1/α
}

)

(5)

= exp

(

1

2

{

eβ/α[(1 + Z2)1/2 + Z]1/α − e−β/α[(1 + Z2)1/2 − Z]1/α
}

)

. (6)

Those equivalent formulas are useful for simulation and further statistical inferences.

The density function of the canonical SAN family is

fCS(y) =
α

σ
√

2π(1 + y2)
C(y) exp

{

− [S(y)− µ]2

2σ2

}

(7)
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with C(y) = cosh[α sinh−1(y) − β], which reduces to that given in (2) of JP09, if µ = 0

and σ2 = 1. It is easy to see that fCS is symmetric, if β = µ = 0. For β 6= 0 or µ 6= 0, the

two densities fCS, β, µ(y) and fCS,−β,−µ(y) are such that fCS,−β,−µ(y) = fCS, β, µ(−y). The

shape of the SAN distributions will be strongly affected by σ2. Moreover, µ will affect

the skewness and the shape of fCS, too. The skewness parameter β can also have some

effect on the shape of this distribution. The distribution function associated with fCS in

(7) is FCS(y) = Φ{[S(y)− µ]/σ} with the quantile function F−1
CS(u) = K[Φ−1(u) ∗ σ + µ],

0 < u < 1, and the median yM = K(µ) = sinh{[sinh−1(µ) + β]/α}.

Let X ≥ 0 be a non-negative random variable and Y = ln(X) follow a canonical SAN

distribution, X has a canonical Log-SAN distribution with the density

fCL(x) =
α

σ
√
2πx

√

1 + ln2 x
C(ln x) exp

{

− [S(ln x)− µ)2

2σ2

}

, (8)

which reduces to a log-normal density, if β = 0 and α = 1. The distribution and quantile

functions are now FCL(x) = Φ{[S(ln(x)) − µ]/σ} and F−1
CL(u) = G[Φ−1(u) ∗ σ + µ],

0 < u < 1, with the median xM = G(µ) = exp
(

sinh{[sinh−1(µ) + β]/α}
)

.

The canonical SAN distribution shares some properties of its two-parameter standard

counterpart. However, the former can be bimodal, while the latter is always unimodal.

Consider first the tail behaviors of the proposed distributions. As for the original proposal

in JP09, the tailweights of fCS are of the order O[exp(−|y|2α)], which are not affected by µ

and σ. Hence, the tailweights of those distributions are the same as those of the generalized

normal distribution with a tail-thickness 2α. Compared to the normal distribution, it is

with heavier tails, if α < 1 and lighter tails, if α > 1. In particular, we have

Theorem 1. The tailweights and moment properties of a SAN or a Log-SAN distributed

random variable, denoted by Y and X, respectively, are quantified as follows

i) For any α > 0, Y has finite moments of all orders with lighter tails, if α > 1 and

heavier tails, if α < 1, compared to those of a normal distribution.

ii) If α < 0.5 and u > 0, E(Xu) = ∞. For α > 0.5, the mgf of Y exists on IR. Now,

X has finite moments of all orders, but its mgf does not exist at any u > 0.
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For the SAN distributions, any α > 0 is meaningful. If α = 1, the tailweight of the SAN

distributions is the same as that of a normal distribution. For a Log-SAN distribution we

assume that α > 0.5, implying E(Xk) < ∞ for any k ∈ R. Formulas of the moments of

the standard canonical SAN family are obtained by JP09. Their results can be extended

to the case with µ = 0 and σ2 > 0.

Proposition 1. The moments of fCS(y) with µ = 0 are

E(Y k
α,β,σ) =

1

2k

k
∑

r=0

(

k

r

)

(−1)r exp

{

(k − 2r)
β

α

}

Q(k−2r)/α, (9)

where

Qδ =
e1/(4σ

2)

√
8πσ2

{K(δ+1)/2[1/(4σ
2)] +K(δ−1)/2[1/(4σ

2)]} (10)

and Kν is the modified Bessel function of the second order with Kν(u) = K−ν(u).

It is easy to see that Qδ = Q−δ and E(Y k
α,0,σ) = 0, if k is odd. Results for the SAN family

with µ 6= 0 or for the Log-SAN family are too complex and are omitted.

Furthermore, β acts as a skewness parameter in a SAN or Log-SAN distribution.

Theorem 2. If other parameters are fixed, in the SAN and Log-SAN distributions β acts

as a skewness parameter in the sense of van Zwet’s (1964) skewness ordering.

This fact is not affected by µ and σ2. That is, if the other parameters are fixed, a SAN

distribution with a bigger β is more positively skewed. This is also true for the Log-SAN

distributions, although it is always positively skewed, its level of skewness increases with

β. It can be shown that µ will also affect the skewness of fCS and fCL. However, it is not

a skewness parameter. Some properties of the symmetric SAN family with β = µ = 0,

fCS0(y) say, including the special case with σ2 = 1 studied in JP09, are now stated.

Theorem 3. For the symmetric subfamily fCS0 with β = 0 and µ = 0 we have

i) α acts as a kurtosis parameter in the sense of van Zwet’s (1964) kurtosis ordering.

ii) fCS0 is unimodal, if σ2 ≤ 1 or α ≤ 1. A necessary and sufficient condition for the

unimodal property of fCS0 is α2(1− σ−2) ≤ 1.
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The result in i) is an extension of the finding in JP09, which indicates that the kurtosis

of a distribution in this subfamily decreases with α. The kurtosis parameter is defined

for a symmetric distribution and is irrelevant for the Log-SAN distribution. Without

the restriction σ2 = 1, fCS0 can be sometimes bimodal. We see, α ≤ 1 or σ2 ≤ 1 is

sufficient for the unimodality of fCS0. The necessary and sufficient condition for this is

α2(1 − σ−2) ≤ 1. Note that f ′
CS0(0) = 0 is always true. The sign of f ′′

CS0(0) is the same

as that of α2(1 − σ−2) − 1. Hence, fCS0 has a single mode at y = 0, if α2(1 − σ−2) < 1.

And, it is with a flat peak, if α2(1 − σ−2) = 1. If α2(1 − σ−2) > 1, we have f ′′
CS0(0) > 0

so that fCS0 has a local minimum at y = 0 with two symmetric modes around zero. A

heavy-tailed distribution in this subfamily with α < 1 can only be unimodal.

Finally, consider the asymmetric subfamily with µ = 0 but β 6= 0, denoted by fCSb(y)

with fCSb,−β(y) = fCSb, β(−y), which also includes the standard SAN family as a special

case. Let yβ = sinh(β/α), we have yβ < 0 for β < 0 and yβ > 0 for β > 0. For this

subfamily only the following fact is stated.

Proposition 2. If σ2 ≤ 1, the asymmetric density function fCSb(y) is always unimodal

with a mode at yP say, which lies between zero and yβ.

It confirms the finding in JP09 that a standard SAN distribution can only be unimodal.

Now, α2(1− σ−2) ≤ 1 is still sufficient but not necessary for the unimodality of fCSb(y).

A necessary and sufficient condition for this property seems to be (1+y2β)α
2(1−σ−2) ≤ 1.

Further discussion on those topics is omitted.

Selected SAN (left) and corresponding Log-SAN (right) densities are shown in Figure 1,

where each window is with four densities displayed in solid, dashed, dashed and dotted

and long-dashed lines. Those in Figure 1(a) are symmetric with α = 0.65, 0.80, 3 and 6,

and σ = 0.5, 0.4, 1.1 and 1.8. The first two are heavy-tailed. The third is light-tailed with

α = 3, but still unimodal. The last is strongly light-tailed and bimodal. The bimodal

feature of a SAN density can be taken over by its log-counterpart. The densities in (c) are

asymmetric with µ = 0 and similar tail properties as those in 1(a), where the parameters

α = 0.65, 0.8, 3 and 7, β = 0.5, 0.5, 2 and 6, and σ = 0.6, 0.4, 1 and 2, are used. Those in

(e) are all heavy-tailed with α = 0.75, β = 0.75 and σ = 0.25 fixed, where µ =-0.4, -0.2,

0 and 0.2 are used to show the effect of µ on the skewness and scale of those densities.

Now, the scale of a distribution increases and its skewness decreases with µ.
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3 Complete SAN and Log-SAN families

In practice, six parameter SAN and Log-SAN distributions obtained by the canonical

SAN transformation of Ỹ = (Y − ξ)/η with ξ ∈ IR and η > 0 should be used. Those two

families are closed for location-scale or scale-power changes, respectively. Their properties

will be discussed briefly. The density function of the six-parameter SAN family is

fS(y) =
α

ησ
√
2π

√

1 + [(y − ξ)/η]2
C[(y − ξ)/η]

exp

(

−{S[(y − ξ)/η]− µ}2
2σ2

)

. (11)

That is fS(y) = η−1fCS(ỹ) with ỹ = (y− ξ)/η. The distribution function associated with

the density in (11) is FS(y) = Φ{[S((y−ξ)/η)−µ]/σ} with the quantile function F−1
S (u) =

ηK[Φ−1(u) ∗ σ + µ] + ξ, 0 < u < 1, and median yM = ηK(µ) + ξ = η sinh{[sinh−1(µ) +

β]/α}+ ξ. The density function of the corresponding Log-SAN family is

fL(x) =
α

ησ
√
2πx

√

1 + [(ln x− ξ)/η]2
C[(ln x− ξ)/η]

exp

(

−{S[(ln x− ξ)/η]− µ}2
2σ2

)

. (12)

Again, fL(x) is obtained from fCL(x) with ln x being replaced by (ln x−ξ)/η and rescaled

by η−1. The distribution function of the Log-SAN family is FL(x) = Φ{[S((ln(x)−ξ)/η)−
µ]/σ} with the quantile function F−1

L (u) = eξ{G[Φ−1(u)∗σ+µ]}η, 0 < u < 1, and median

xM = eξ[G(µ)]η = exp
(

η sinh{[sinh−1(µ) + β]/α}+ ξ
)

. Assuming Z ∼ N(0, 1), the above

density functions reduce to those of the standard SAN and Log-SAN families. The former

was that used in JP09.

It is easy to see that fS(y) is symmetric, if ξ, µ and β are all zero. Although fS(y) is

a wide extension of fCS(y), its shape, skewness, modal property and its kurtosis in the

symmetric subfamily are all not affected by ξ and η. Moreover, the main results in Section

2 on the canonical SAN and Log-SAN families hold for the current cases. The tailweights

of those distributions are still determined by α, such that all results in Theorem 1 hold for

the complete SAN and Log-SAN distributions. Moreover, if other parameters in the SAN

or Log-SAN distributions are fixed, β acts as a skewness parameter. For the symmetric

SAN subfamily with β = 0, µ = 0 and ξ = 0, α is still a kurtosis parameter.
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4 Maximum likelihood estimation

For given observations yi, i = 1, ..., n, let ỹi = (yi − ξ)/η and θ = (ξ, η, α, β, µ, σ2)′. The

log-likelihood function for estimating a SAN distribution is

L(θ) = n ln(α/η/
√
2π/σ) +

n
∑

i=1

{ln[C(ỹi)/
√

1 + ỹ2i ]− [S(ỹi)− µ]2/2/σ2}. (13)

Set µ = 0 and σ2 = 1, (13) reduces to that for estimating a standard SAN distribution with

the parameter vector θ4 = (ξ, η, α, β). For a positive random variable with observations

x1, ..., xn, a Log-SAN distribution can be fitted. Let yi = ln(xi), the log-likelihood function

for a Log-SAN distribution is given by

LL(θ) = n ln(α/η/
√
2π/σ)+

n
∑

i=1

{ln[C(ỹi)/
√

1 + ỹ2i ]−[S(ỹi)−µ]2/2/σ2}−
n

∑

i=1

ln(xi), (14)

where the notations are as defined before. The log-likelihood LL(θ) in (14) differs to

that in (13) in two ways: 1) The term yx,i is now defined based on ln(xi). And 2) There

is an additional component in this function reflecting the contribution of xi to the log-

likelihood, which is a constant given the data and will not affect the solutions. However,

the log-likelihood function of the Log-SAN distribution should be calculated using LL(θ)

so that it is comparable to that of a SAN distribution fitted to xi. The elements of the

observed information matrix are given in an online supplement. In this paper σ instead

of σ2 is treated as the targeted parameter. It should be indicated that although µ̂ and σ̂

are still asymptotically independent, both are correlated to the other estimators.

For practical implementation, the optimization is done by the default option of the R

function ‘optim’, i.e. by a direct search using the simplex algorithm of Nelder-Mead

(Nelder and Mead, 1965). A standard SAN distribution will be fitted using the naive

initial vector (ȳ, σ̂y, 1, 0). For the complete SAN family the score function given in the

supplement shows that for given θ4 the tow nuisance parameters µ and σ can be estimated

from the transformed data. This fact is applied in the developed algorithm so that the

number of directly searched parameters in this case is still 4. It is shown that this

simplified optimization algorithm runs more stably than a full search procedure. The two

algorithms will result in the same estimates, up to some negligible numerical differences,

provided that both procedures converge. The above-mentioned naive initial vector can

usually be used for fitting a six-parameter SAN distribution. If this fails to work, one can
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for instance try to use the estimates of a standard SAN distribution as the initial values

in this stage. An auxiliary procedure is also developed for finding suitable initial values

by maximizing the p-value of the Shapiro and Wilk (1965) normality test.

5 Multivariate and conditional extensions

Now, we will extend the SAN distributions to a random vector Y = (Y1, ..., Yp)
′. For

simplicity, it is assumed that suitable transformations of all or some elements are done

beforehand, if necessary. A multivariate SAN (MSAN) distribution can be defined by

assuming that Z = S = (S1, ..., Sp)
′ is jointly normally distributed with mean vector µ

and covariance matrix V, where Si is the SAN transformation of Yi. This is an extension

of the proposal in JP09. However, this definition should not be used, if the marginal and

conditional distributions of the elements are with different shapes, e.g. if one is unimodal

and the other is bimodal. Now, the correct joint distribution cannot be obtained based

on elementwise transformations. Hence, we propose an alternative multivariate extension

of the SAN distributions defined based on the following chain rule

fY(y1, ..., yp) = fY1
(y1)fY2|Y1

(y2|y1)...fYp|Y1,...,Yp−1
(yp|y1, ..., yp−1), (15)

provided that the order is known and that the first marginal distribution, the subsequent

conditional distributions and the required relationships are all of known forms. In this

paper, we assume that the univariate distributions are members of the SAN family or of

its subfamilies. A multivariate distribution defined in this way is called a CMMD (chain

mixed multivariate distribution). Moreover, we assume that only the conditional mean

µYi
|Y1, ..., Yi−1, for 1 < i ≤ p, depends on the previous elements, i.e. fYi|Y1,...,Yi−1

(yp −
µi|y1, ..., yp−1), and that µi|Y1, ..., Yp−1 is of a linear form. Now, the covariance matrix of

the marginal distributions is preserved. The definitions of the CMMD and the MSAN

distributions are equivalent, if all elements are independent SAN random variables.

Definition (15) can be used to study the conditional distributions, if Y is partitioned into

two parts. In particular, the last step on the right-hand side defines a special random

design distributional regression. Moreover, we also propose the use of the following fixed

design distributional regression

Yi = a0 + a1x1i + ...+ akxki + εi, i = 1, ..., n, (16)
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with iid SAN errors εi. Thus, the error distribution is assumed to be known up to some

unknown parameters. We will see that Model (15) can help us to discover hidden bimodal

property, where the unconditional distribution is unimodal but the conditional distribu-

tion is bimodal. An ad hoc multistep procedure is used for practical implementation,

where the mean function(s), the marginal and conditional distributions are estimated

separately using existing approaches. The development of joint maximum likelihood esti-

mation and further studies on related topics are beyond the aim of this paper.

6 Application

In the sequel, the standard SAN distribution and its extension will be denoted by SA4

and SA6, respectively. We first applied the proposals to the strengths of n = 63 glass

fibres used in JP09. The data were originally published in Smith and Naylor (1987) and

is available in the R package ‘ismev’. Now, the SA6 cannot be well estimated and the

Log-SA6 has a bigger BIC. The best distribution selected is the Log-SA4 with a log-

likelihood ll = −9.16. But the 95%-confidence interval of α is around 0.5 so that the

log-transformation should not be used. Therefore, the SA4 density with ll = −10 as

proposed by JP09b remains to be the most reasonable choice. For further application

the miscellaneous share (Wmisc) of the Budget Shares for Italian Households from 1973

to 1992 with 1729 observations (Bollino et al., 2000), the Old Faithful Geyser eruption

and waiting times (in minutes, called OFGE and OFGW) used in Härdle (1991) with 272

observations, the numbers of applications (Apps), acceptances (Acce) and enrollments

(Enro) for 777 US Colleges from the 1995 issue of US News and World Report, see James

et al. (2021), as well as the Italian GDP growth panel in 21 regions from 1951 to 1998

(IGDP, millions of Lire, 1990=base) in Baiocchi (2006) are selected. Those datasets are

available in the R packages ‘np’, ‘Ecdat’ as well as ‘ISLR’.

The two examples Wmisc and OFGE were used to show some details in the univariate case,

for which normal, SA4 and SA6 distributions are fitted to the original and log-data as well.

The estimates, ll, AIC, BIC and p-values of the Shapiro-Wilk (sw-) test of the transformed

data are listed in Table 1. For Wmisc, the log-transformation is helpful and the best

distribution chosen by the BIC is the Log-SA6. For OFGE, all uni-modal distributions

are clearly not suitable, because its distribution is bimodal. Now, the SA6 and Log-SA6

11



distributions have almost the same ll and BIC. Therefore, we propose to use the SA6

distribution without the log-transformation. The p-value of the normality test for both

selected distributions (bold marked) is much bigger than 5%. Thus, those distributions

fit the data well, for which the standard deviations of the estimated parameters are also

given. We see, the errors of the estimates are sometimes very large, in particular for

OFGE. The estimation quality of µ and σ is strongly affected by the other parameters.

The extended BS distribution proposed by Vilca et al. (2011) based on the skewed normal

distribution of Azzalini (1985) was fitted using the R package ‘bssn’ as a comparison. The

achieved log-likelihoods are ll = −2323.8 and −438.2 for Wmisc and OFGE, respectively,

indicating that this distribution should not be used for those examples. For OFGE, a two

component normal mixture distribution is further fitted, which achieves ll = −276.4 and

is not a reasonable choice. Histograms for the log-data of Wmisc and the original data of

OFGE together with the corresponding densities are displayed in Figures 2(a) and (b).

The joint distribution of OFGE (x) and OFGW (y) is bimodal. Furthermore, the simple

linear regression ŷi = 33.47 + 10.73xi with r2 = 0.812 fits the relationship between them

very well. The observations of OFGW and the residuals are displayed in Figures 2 (c) and

(d). Although the marginal histogram of OFGW is also bimodal, the residuals are clearly

unimodal. This indicates that the bimodality of OFGW can be thought of as a spurious

distributional property caused by that of OFGE. The best distribution selected for the

residuals is just a zero mean normal one with σ̂2 = 34.72. The finally fitted bivariate

SA6-normal distribution with ll = −1127 is displayed in Figure 2(e), which provided a

satisfactory parametric alternative to the nonparametric results for this dataset as given in

Härdle (1991), and Hafield and Racine (2008). The log-likelihood of the bivariate normal

distribution fitted to those data is ll = −1290, which is much smaller. A bivariate SAN

distribution defined by elementwise transformations should not be used for this example,

because it will result in either a uni-modal estimate or an estimate with four modes.

Now, we will illustrate the application of the CMMD in high dimensional case using the

log-data of Apps (y1), Acce (y2) and Enro (y3) following the logical order. It is found that

the relationships between thosee variables are roughly linear, for which we have

ŷ2i = 0.429 + 0.990y1i and ŷ3i = −0.315 + 0.014y1i + 0.898y2i,

sd (0.055) (0.007) (0.079) (0.046) (0.050)

where y1 in the second regression is irrelevant but is left in the model. The selected

12



distributions in the three steps are: 1) An SA4 for y1 with coefficients 7.12, 1.65, 1.40,

and 0.228; 2) An SA4 for the residuals of y2 with coefficients 0.0999, 0.0927, 0.684 and

-0.385; and 3) A normal distribution with zero mean and σ̂2 = 0.0923 for the residuals of

y3. The scatter plot of y1, y2 and y3 is shown in Figure 2(f), where the values of the joint

density are indicated by colors. Further details for this example are omitted.

Finally, the IGDP panel data (xi) is used to show the application of the fixed design distri-

butional regression with SAN errors and hidden bimodal property. The serial correlation

is ignored in the current paper. It is found that the square root transformation is better

than the log-one, because the errors in yi =
√
xi are roughly identically distributed, for

which the following polynomial regression is selected by the BIC:

ŷi = 2.479 + 5.60 · 10−3t2 − 1.69 · 104t3 + 1.55 · 10−6t4, t = 1, ..., 48.

sd (0.042) (4.9 · 10−4) (2.4 · 10−5) (3.1 · 10−7)

Note that the marginal histogram of yi were unimodal. The figure for this is omitted.

Both of the scatter plot and the histogram of the residuals given in Figures 3(a) and (b)

indicate that the conditional distributions are bimodal, which is a hidden distributional

property and cannot be discovered without taking the regression function into account.

For the residuals, an SA6 distribution with coefficients ξ̂ = −0.201, η̂ = 0.229, α̂ = 1.732,

β̂ = 0.139, µ̂ = 2.711, 8.695 and ll = −647.7 was selected. The conditional densities are

displayed in Figure 3(c), which are much better than the nonparametric results for this

example as shown in Figure 4 of Hafield and Racine (2008). The estimated quantile curves

for the original data with p = 0.05, 0.25, 0.50, 0.75 and 0.95 are illustrated in Figure

3(d). We see those parametric quantile curves are quite reasonable. Moreover, a two

component normal mixture distribution is also fitted to the residuals with µ̂1 = −0.57,

σ̂1 = 0.232, µ̂2 = 0.341, σ̂2 = 0.282, ŵ = 0.374 and ll = −648.2. This distribution

has one parameter fewer and hence a smaller BIC, which provides another reasonable

distributional regression for this example. Further details on this alternative model are

omitted to save space. This finding and the related results fitted to OFGE indicate that

whether an SA6 distribution performs better than a normal mixture one, depends on

the data. If both perform similarly, the former is more preferable, because statistical

inferences based on it are more simple.
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7 Concluding remarks

In this paper the SAN family of distributions is extended and a novel Log-SAN family

of distributions is introduced. Properties of those distributions are investigated. It is

proposed to fit such a distribution by maximum likelihood. The proposals are further ex-

tended to multivariate cases and distributional regression. An ad hoc multistep estimation

procedure is proposed for the practical implementation of those proposals. Application

to different examples shows that the proposals are very attractive in theory and prac-

tice. In particular, they provide useful alternatives to some well-known nonparametric

approaches and quantile regression. They can also help us to discover possible spurious

or hidden distributional properties. There are many open questions in this context. In

particular, theoretical study on the proposed multivariate distribution and distributional

regression should be carried out. Application of the SAN and Log-SAN distributions to

long memory time series is also of great interest.
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Table 1: Estimated parameters and some statistics for selected cases

Data dis. ξ̂ η̂ α̂ β̂ µ̂ σ̂ ll AIC BIC p̂

Wmisc N — — 1 0 1.87 1.46 -3102 6208 6219 0.00

(orig.) SA4 1.18 0.27 0.55 0.49 0 1 -2238 4484 4506 0.00

SA6 1.26 0.72 0.69 1.13 -1.07 0.89 -2218 4449 4482 0.14

Wmisc N — — 1 0 0.44 0.59 -2293 4590 4601 0.00

(log) SA4 0.34 0.28 0.66 0.11 0 1 -2220 4448 4470 0.012

SA6 0.14 0.15 0.69 -0.11 1.13 1.75 -2211 4435 4467 0.48

(sd) (0.036) (0.057) (0.044) (0.055) (0.42) (0.66)

OFGE N — — 1 0 3.49 1.14 -421.4 846.8 854.0 0.00

(orig.) SA4 6.04 0.05 1.93 -8.77 0 1 -364.0 735.9 750.4 0.00

SA6 2.18 1.03 4.82 2.89 16.3 42.8 -258.4 528.8 550.4 0.93

(sd) (0.44) (0.34) (1.02) (1.53) (10.4) (26.6)

OFGE N — — 1 0 1.19 0.37 -440.9 885.8 893.0 0.00

(log) SA4 1.72 0.01 1.16 -5.80 0 1 -351.4 710.9 725.3 0.00

SA6 1.08 0.42 5.10 -0.26 19.8 52.4 -258.0 528.0 549.7 0.93
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Figure 1: Examples of different SAN (left) and Log-SAN (right)
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(a) Ex. 1: histogram & SA6 density
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(d) Conditional normal distribution
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(e) Faithful SA6−Normal 2D density
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(f) Ex. 3: Illustration of a 3D CMMD
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Figure 2: Results for the first two examples
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(c) Bimodal conditional distributions
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Appendix. Proofs of the main results

We begin by stating some basic facts of the SAN transformation. Several equivalent

formulas of S(y) are given in Equations (3) and (4) in JP09. Similar equivalent formulas

also hold for C(y):

C(y) =
1

2

[

e−β exp{α sinh−1(y)}+ eβ exp{−α sinh−1(y)}
]

=
1

2

[

e−β{(1 + y2)1/2 + y}α + eβ{(1 + y2)1/2 + y}−α
]

=
1

2

[

e−β{(1 + y2)1/2 + y}α + eβ{(1 + y2)1/2 − y}α
]

. (A.1)

A few useful facts about S(y) and C(y) are e.g. 1) C(y) =
√

1 + S2(y); 2) S(y) = y

and C(y) =
√

1 + y2, if β = 0 and α = 1; 3) For given y, C(y) increases monotonically

over α, S(y) decreases over α, if y < 0, and increases over α, if y > 0; 4) |S(y)| > |y|
and C(y) >

√

1 + y2, if α > 1, and |S(y)| < |y| and C(y) <
√

1 + y2, if α < 1; 5)

S ′(y) = αC(y)/
√

1 + y2 and C ′(y) = αS(y)/
√

1 + y2.

A sketched proof of Theorem 1. Following Equation (4) in JP09 and (A.1), it

is easy to show that, for large |y|, S(y) ≈ 2α−1sgn(y) exp[−sgn(y)β]|y|α and C(y) ≈
2α−1 exp[−sgn(y)β]|y|α. This results in

fCS(y) = O
(

|y|α−1 exp
{

−22α−3σ−2 exp[−2sgn(y)β]|y|2α
})

. (A.2)

The tails of fCS are of the Weibull type and decay in an exponential-power rate. The

proof of further results in i) to ii) based on (A.2) is straightforward. A detailed proof is

omitted. We will only check the results on the moments and mgf X briefly. Note that,

for any k > 0, if E(Xk) < ∞ or not is only determined by the right tail of fCS(y). It is

easy to show that E(Xk) = E(eky) = ∞, if α < 0.5 and E(Xk) = E(eky) < ∞, if α > 0.5,

because yekyfCS(y) → ∞, as y → ∞, if α < 0.5, and yekyfCS(y) → 0, as y → ∞, if

α > 0.5. That is, α > 0.5 is necessary and sufficient so that E(Xk) < ∞ for any k > 0.

The fact that the mgf of X for any u > 0 does never exist is also easy to check, because

for α > 0, E(euX) = E(eue
y

) = ∞, if u > 0. Theorem 1 is proved. ✸

Proof of Proposition 1. Note that the re-transformation of S(y) is another sinh-arcsinh

transformation K(Z) with parameters 1/α and −β/α. By means of the second equivalent

form of K(Z) given in JP09 we obtain the expansion of E(Y k
α,β,σ2) in (9), which is the

same as that shown on Page 764 in JP09. The only difference is that now Z ∼ (0, σ2)
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with a general variance σ2 > 0. This leads to a generalization of the components Qδ in

E(Y k
α,β,σ2). Set ζ = z + (1 + z2)1/2 and x = ζ2/(8σ2), we have

Qδ = E
[

{(1 + z2)1/2 + z}δ
]

=
1√
2πσ2

∫ ∞

−∞

[

{(1 + z2)1/2 + z}δ
]

e−
1

2σ2 z
2

dz

=
1√
8πσ2

∫ ∞

0

ζδ
(

1 +
1

ζ2

)

exp

{

− 1

8σ2

(

ζ − 1

ζ

)2
}

dζ

=
e1/(4σ

2)(8σ2)(δ+1)/2

√
32πσ2

∫ ∞

0

x(δ−1)/2

(

1 +
1

8σ2x

)

exp

(

−x− 1

64σ2x

)

dx

=
e1/(4σ

2)

√
8πσ2

{K(δ+1)/2[1/(4σ
2)] +K(δ−1)/2[1/(4σ

2)]} (A.3)

by (3.471.12) of Gradshteyn and Ryzhik (2007), where K is the modified Bessel function

of the second kind with K−ν(x) = Kν(x). ✸

Remark A.1. It is easy to see that Q−δ = Qδ. Like in the results in JP09, the above

extensions only involve the application of the well-studied modified Bessel function of the

second order. However, the moments of a SAN distribution with µ 6= 0 cannot be stated

based on those special functions. Now, the resulting special integrals are of a form, which is

not yet studied in the literature. The formulas of the moments of a Log-SAN distribution

will involve other unknown special integrals. Detail discussion on those topics is omitted.

Proof of Theorem 2.

For the SAN distribution, consider the case with fixed parameters except for β and let the

two distribution functions with β1 and β2, where β2 > β1, be FCS,1 and FCS,2, respectively.

According to van Zwet’s (1964) skewness ordering, β is a skewness parameter such that

FCS,1 is less positively skewed than FCS,2, denoted by FCS,1 ≤S FCS,2, if F
−1
CS,2(FCS,1) is

convex for all y. Using the formulas given in the context after (7) we have

F−1
CS,2[FCS,1(y)] = sinh{[sinh−1(S[y;α, β1]) + β2]/α}

= sinh{[α sinh−1(y)− β1 + β2]/α} (A.4)

= S(y; 1, dβ)

with dβ = (β1 − β2)/α < 0. This fact is not affected by the additional parameters µ and

σ2 and is the same as that obtained in Section 2.2 in JP09. Further proof of the result in

this case follows from their argument, who showed that because [S(y; 1, dβ)]
′
y > 0.
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For the Log-SAN case let FCL,1(x) and FCL,2(x) denote the two distribution functions with

β1 and β2. Based on the formulas given in the context after (8) and similar derivation as

above we have

F−1
CL,2[FCL,1(x)] = exp(sinh{[sinh−1(S[ln(x);α, β1]) + β2]/α})

= exp(sinh{[α sinh−1(ln(x))− β1 + β2]/α}) (A.5)

= exp{S[ln(x); 1, dβ]},

where dβ is as defined before. We have

{F−1
CL,2[FCL,1(x)]}′x = F−1

CL,2[FCL,1(x)][S(y; 1, dβ)]
′
y

1

x
> 0, (A.6)

where y = ln(x) and the three components on the right-hand side are all positive. ✸

Proof of Theorem 3.

i) For β = µ = 0, denote the simplified form of S(y) and C(y) by S0(y) = sinh[α sinh−1(y)]

and C0(y) = cosh[α sinh−1(y)], respectively. The density function fCS0(y) in this case can

be deduced from fCS(y) with S(y) and C(y) being replaced by S0(y) and C0(y), and

putting µ = 0, which is given by

fCS0(y) =
α

σ
√

2π(1 + y2)
C0(y) exp

{

− [S0(y)]
2

2σ2

}

. (A.7)

The distribution and quantile functions of this subfamily are FCS0(y) = Φ[S0(y)/σ] and

F−1
CS0(u) = sinh{sinh−1[σΦ−1(u)]/α}, respectively. Let α1 > α2. Denote the two distri-

bution functions with α1 and α2 by FCS0,1 and FCS0,2. According to Zwet’s ordering for

kurtosis of symmetric distributions around zero we need to show that F−1
CS0,2[FCS0,1(y)] is

convex for y > 0. Insert the formulas of FCS0,1(y) and F−1
CS0,2(u) into F−1

CS0,2[FCS0,1(y)], we

can obtain

F−1
CS0,2[FCS0,1(y)] = sinh{sinh−1[σΦ−1(Φ[S0,1(y)/σ])]/α2}

= sinh{sinh−1[S0,1(y)]/α2} (A.8)

= sinh[α1 sinh
−1(y)/α2].

That is F−1
CS0,2[FCS0,1(y)] = S0(y; cα) with cα = α1/α2 > 1. This is again the same as

that obtained in Section 3.1 of JP09. The authors showed that F−1
CS0,2[fCS0,1(y)] is convex

for y > 0. That is α is a kurtosis parameter according to Zwet’s ordering for kurtosis of
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symmetric distributions around zero and this property is not affected by the additional

parameter σ2.

ii) The key point to find the modes of the density f(y) is to discuss the properties of f ′(y)

or (ln f)′(y), and the sign of the second derivative at their zeros. This analysis can also

be equivalently carried out by analyzing those properties of f ′(y)h(y) or (ln f)′(y)h(y),

where h(y) is some positive function. This idea will be employed in the following to obtain

a formula, which is easy to use in the case under consideration.

Note that S ′
0(y) = αC0(y)/

√

1 + y2 and C ′
0(y) = αS0(y)/

√

1 + y2. Now, the discussion

on the zeros of f ′
CS0(y) or [ln(fCS0)(y)]

′ is equivalent to analyze the zeros of

dCS0(y) =
αS0(y)

C0(y)

[

1− C2
0(y)

σ2

]

− y
√

1 + y2
, (A.9)

which is anti-symmetric with dCS0(0) ≡ 0, lim
y→−∞

dCS0(y) = ∞ and lim
y→∞

dCS0(y) = −∞.

The two terms y/
√

1 + y2 and S0(y)/C0(y) = S0(y)/
√

1 + S2
0(y) are monotonically in-

creasing. Consider first the special case with σ2 ≤ 1. This means that [1−C2
0(y)/σ

2] ≤ 0,

which increases monotonically for y < 0, and decreases monotonically for y > 0. Hence,

the product αS0(y)/C0(y)[1 − C2
0(y)/σ

2] is positive for y < 0, negative for y > 0 and

decreases monotonically from ∞ to −∞. We see dCS0 decreases monotonicaly from ∞ to

−∞, provided that σ2 ≤ 1. Thus it has only one zero at y = 0 with d′CS0(0) < 0. This

leads to f ′
CS(0) = 0 and f ′′

CS(0) < 0. That is fCS0(y) has now a unique mode at y = 0.

In the special case with α = 1, we have S0(y) = y and C0(y) =
√

1 + y2. This results in

dCS0(y) = −σ−2S0(y)C0(y). It is easy to show that now dCS0(y) decreases monotonically

from ∞ to −∞ with a single zero at y = 0, which corresponds again to the unique mode

of fCS0(y).

Now, consider the case with α < 1. We first state some results on S0(y) and C0(y) without

proof: S0(y;α) is an increasing function of α for y < 0 and a decreasing function of α

for y > 0. For any y 6= 0, C0(y;α) is an increasing function of α. In particular we have

|S0(y)| < |y| = |S0(y, 1)|, if α < 1. This results in S0(y)/C0(y) < y/
√

1 + y2, for y > 0,

and S0(y)/C0(y) > y/
√

1 + y2, for y < 0. Moreover, for y > 0 we have

dCS0(y) <
αS0(y)

C0(y)
− y

√

1 + y2
< 0.
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Analogously, it can be shown that dCS0(y) > 0, for y < 0. That is dCS0 has only one zero

at y = 0 with d′CS0(0) < 0. Note that we have not shown that dCS0(y) is monotonically

decreasing in this case. In summary, fCS0(y) is unimodal, if α ≤ 1 or σ2 ≤ 1.

Now, consider σ2 > 1. Let y = − sinh[cosh−1(σ)/α] < 0 and yU = sinh[cosh−1(σ)/α] =

|y| > 0. Note that y and yU are not well defined for σ2 < 1 and they are y = yU = 0 in the

trivial case with σ2 = 1. It is easy to see dCS0(y) decreases monotonically in the interval

(−∞, y) from ∞ to yU/
√

1 + y2U and it decreases monotonically again in the interval

[yU ,∞) from −yU/
√

1 + y2U to −∞. That is all possible zeros of dCS0 lie within the

symmetric interval (y, yU) around zero. In the sequel we will only discuss the behavior of

dCS0 within (0, yU) by means of the follwing ratio between the two part on the right-hand

side of (A.9)

R0(y) =
αS0(y)

√

1 + y2

yC0(y)
− αS0(y)C0(y)

√

1 + y2

σ2y
(A.10)

= R01(y)−R02(y),

where R01(y) and R02(y) stand for the first and the second parts on the right-hand side of

(A.10), respectively. A zero of dCS0 at some y > 0 should satisfy R0(y) = 1. Furthermore,

we have dCS0(y) < 0, if R0(y) < 1 and dCS0(y) > 0, if R0(y) > 1. The dominating term of

the Taylor expansion of S0(y) is αy. This leads to lim
y→0+

R01(y) = α2, lim
y→0+

R02(y) = α2σ−2

and lim
y→0+

R0(y) = α2(1−σ−2). And we also have R0(yU) ≡ 0. Straightforward calculation

results in

R′
01(y) =

α[αy
√

1 + y2 − SA0(y)CA0(y)]

C2
A0(y)y

2
√

1 + y2
. (A.11)

Based on (A.1) and the basic facts on SA as given in JP09 it can be shown that, for y ≥ 0,

CA0(y) >
√

1 + y2 and SA0(y) > αy. This shows that R′
01(y) < 0 and R01(y) decreases

monotonically. Similarly, it can be shown that SA0(y)/[αy] increases monotonically. This

implies that R02(y) is monotonically increasing and R0(y) decreases monotonically from

α2(1 − σ−2) to zero. This results in dCS0(y) < 0 for y ∈ (0, yU), if α
2(1 − σ−2) ≤ 1 and

hence it does not have any zero within this interval.

For α2(1− σ−2) > 1 however, there is one (and only one) solution of R0(y) = 1, denoted

by yS. We have 0 < yS < yU and it can be further shown that yS corresponds to a mode

of fCS0(y). Due to the symmetry of fCS0(y), it has another mode at yP = −yS < 0. And

now y = 0 becomes a local minimal point of fCS0(y). Theorem 3 is proved. ✸
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Proof of Proposition 2.

Now, we choose to use the following determinant term of f ′
CSb:

dCSb(y) = α
SA(y)

CA(y)

[

1− C2
A(y)

σ2

]

− y
√

1 + y2
, (A.12)

which is of the same form of dCS0, but with SA0 and CA0 being replaced by SA and CA.

Let Sβ = SA(0) = sinh(−β) < 0 and Cβ = CA(0) = cosh(−β) > 1. We have SA(yβ) = 0

and CA(yβ) = 1. Now, SA(y) is an increasing function but not anti-symmetric about yβ

and CA(y) is decreasing for y < yβ and increasing for y > yβ, but not symmetric about

yβ. The first derivative of dCSb is given by

d′CSb(y) =
α2CA(y)

√

1 + y2CA(y)
− α2S2

A(y)
√

1 + y2C2
A(y)

− α2C2
A(y)

√

1 + y2σ2
− α2S2

A(y)
√

1 + y2σ2

− 1
√

1 + y2
+

y2

(1 + y2)3/2

=
1

√

1 + y2

{

α2[C−2
A (y)− 1/σ2 − 2S2

A(y)/σ
2]− 1

(1 + y2)

}

. (A.13)

From (A.13) it is easy to see that d′CSb < 0, if σ2 ≤ 1. And, dCSb takes values from −∞
to ∞, which hence only has one zero, denoted by yP Moreover, we have 0 < yP < yβ,

because dCSb(0) = αSβ(1−C2
β/σ

2)C−1
β > 0 and dCSb(yβ) = −yβ/

√

1 + y2β < 0. Hence, yP

corresponds to a unimode of fCSb in this subfamily. Proposition 2 is proved. ✸
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Elements of the observed information matrix:

Those details can be put into an online supplement

Elements of the observed information matrix for the SAN distribution will be given in

Equations (S.1) to (S.21), respectively. The related results of JP09 can be obtained from

the formulas for the first four parameters by setting µ = 0 and σ2 = 1. This fact will

be shown using the first element. Formulas for the elements of the observed information

matrix for the Log-SAN distribution are the same, but calculated with the log-data.

Let yi, i = 1, ..., n, be the observations and ỹi = (yi − ξ)/η. Recall that

L(θ) = n ln(α/η/
√
2π/σ) +

n
∑

i=1

{ln[C(ỹi)/
√

1 + ỹ2i ]− [S(ỹi)− µ]2/2/σ2}.

Some basic formulas we need for the derivation are

S ′
ξ(ỹi) = −αη−1C(ỹi)/

√

1 + ỹ2i , C
′
ξ(ỹi) = −αη−1S(ỹi)/

√

1 + ỹ2i ,

[
√

1 + ỹ2i ]
′
ξ = −η−1ỹi/

√

1 + ỹ2i , (ỹi)
′
ξ = −η−1,

S ′
η(ỹi) = −αη−1ỹiC(ỹi)/

√

1 + ỹ2i , C
′
η(ỹi) = −αη−1ỹiS(ỹi)/

√

1 + ỹ2i ,

[
√

1 + ỹ2i ]
′
η = −η−1ỹ2i /

√

1 + ỹ2i , (ỹi)
′
η = −η−1ỹi,

S ′
α(ỹi) = sinh−1(ỹi)C(ỹi) and C ′

α(ỹi) = sinh−1(ỹi)S(ỹi),

S ′
β(ỹi) = −C(ỹi) and C ′

β(ỹi) = −S(ỹi) and C2(ỹi) = 1 + S2(ỹi).

The score functions are

∂L(ỹi|θ)
∂ξ

= − αS(ỹi)

ηC(ỹi)
√

1 + ỹ2i
+

ỹi
η(1 + ỹ2i )

+
αC(ỹi)[S(ỹi)− µ]

ησ2
√

1 + ỹ2i
,

∂L(ỹi|θ)
∂η

= −1

η
− αỹiS(ỹi)

ηC(ỹi)
√

1 + ỹ2i
+

ỹ2i
η(1 + ỹ2i )

+
αỹiC(ỹi)[S(ỹi)− µ]

ησ2
√

1 + ỹ2i
,

∂L(ỹi|θ)
∂α

=
1

α
+

sinh−1(ỹi)S(ỹi)

C(ỹi)
− sinh−1(ỹi)C(ỹi)[S(ỹi)− µ]/σ2,

∂L(ỹi|θ)
∂β

= −S(ỹi)

C(ỹi)
+ C(ỹi)[S(ỹi)− µ]/σ2,

∂L(ỹi|θ)
∂µ

= [S(ỹi)− µ]/σ2,

∂L(ỹi|θ)
∂σ

= − 1

σ
+ [S(ỹi)− µ]2/σ3.
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The term involving the second derivative with respect to ξ is

−∂L2

∂ξ2
=

1

η2

n
∑

i=1

{[ −α2

1 + ỹ2i
+

α2S2(ỹi)

C2(ỹi)(1 + ỹ2i )
+

αỹiS(ỹi)

C(ỹi)(1 + ỹ2i )
3/2

]

+

[

1

1 + ỹ2i
− 2ỹ2i

(1 + ỹ2i )
2

]

+
1

σ2

[

α2S(ỹi)[S(ỹi)− µ]

1 + ỹ2i
+

α2C2(ỹi)

1 + ỹ2i
− αỹiC(ỹi)[S(ỹi)− µ]

(1 + ỹ2i )
3/2

]}

=
1

η2

n
∑

i=1

{

α[ỹiS(ỹi)C(ỹi)− α
√

1 + ỹ2i ]

C2(ỹi)(1 + ỹ2i )
3/2

+
1− ỹ2i

(1 + ỹ2i )
2

+
1

σ2

[

α2[1 + 2S2(ỹi)− µS(ỹi)]

1 + ỹ2i
− αỹiC(ỹi)[S(ỹi)− µ]

(1 + ỹ2i )
3/2

]}

. (S.1)

Put µ = 0 and σ2 = 1, we obtain the corresponding formula as given in JP09

−∂L2

∂ξ2
=

1

η2

n
∑

i=1

{

1− ỹ2i
(1 + ỹ2i )

2
+ αS2(ỹi)

α
√

1 + ỹ2i [3 + 2S2(ỹi)]− ỹiS(ỹi)C(ỹi)

C2(ỹi)(1 + ỹ2i )
3/2

}

.

All other elements will be given directly with out additional description.

− ∂L2

∂ξ∂η
=

1

η2

n
∑

i=1

{[−α2ỹi
1 + ỹ2i

+
α2ỹiS

2(ỹi)

C2(ỹi)(1 + ỹ2i )
+

αỹ2i S(ỹi)

C(ỹi)(1 + ỹ2i )
3/2

]

+

[

ỹi
1 + ỹ2i

− 2ỹ3i
(1 + ỹ2i )

2

]

+
1

σ2

[

α2ỹiS(ỹi)[S(ỹi)− µ]

1 + ỹ2i
+

α2ỹiC
2(ỹi)

1 + ỹ2i
− αỹ2iC(ỹi)[S(ỹi)− µ]

(1 + ỹ2i )
3/2

]}

=
1

η2

n
∑

i=1

ỹi

{

α[ỹiS(ỹi)C(ỹi)− α
√

1 + ỹ2i ]

C2(ỹi)(1 + ỹ2i )
3/2

+
1− ỹ2i

(1 + ỹ2i )
2

+
1

σ2

[

α2[1 + 2S2(ỹi)− µS(ỹi)]

1 + ỹ2i
− αỹiC(ỹi)[S(ỹi)− µ]

(1 + ỹ2i )
3/2

]}

. (S.2)

− ∂L2

∂ξ∂α
=

1

η

n
∑

i=1

{[

S(ỹi)

C(ỹi)
√

1 + ỹ2i
+

α sinh−1(ỹi)
√

1 + ỹ2i
− α sinh−1(ỹi)S

2(ỹi)

C2(ỹi)
√

1 + ỹ2i

]

− 1

σ2

[

C(ỹi)[S(ỹi)− µ]
√

1 + ỹ2i
+

α sinh−1(ỹi)S(ỹi)[S(ỹi)− µ]
√

1 + ỹ2i
+

α sinh−1(ỹi)C
2(ỹi)

√

1 + ỹ2i

]}

= − 1

ησ2

n
∑

i=1

{

C3(ỹi)[S(ỹi)− µ]− σ2S(ỹi)C(ỹi)

C2(ỹi)
√

1 + ỹ2i

+
α{1 + 3S2(ỹi) + 2S4(ỹi)− µS(ỹi)[1 + S2(ỹi)]− σ2} sinh−1(ỹi)

C2(ỹi)
√

1 + ỹ2i

}

. (S.3)
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− ∂L2

∂ξ∂β
=

1

η

n
∑

i=1

{[

−α
√

1 + ỹ2i
+

αS2(ỹi)

C2(ỹi)
√

1 + ỹ2i

]

+
1

σ2

[

αS(ỹi)[S(ỹi)− µ]
√

1 + ỹ2i
+

αC2(ỹi)
√

1 + ỹ2i

]}

=
α

ησ2

n
∑

i=1

[

C2(ỹi)S(ỹi)[S(ỹi)− µ] + C4(ỹi)− σ2

C2(ỹi)
√

1 + ỹ2i

]

. (S.4)

− ∂L2

∂ξ∂µ
=

α

ησ2

n
∑

i=1

C(ỹi)
√

1 + ỹ2i
. (S.5)

− ∂L2

∂ξ∂σ
=

2α

ησ3

n
∑

i=1

C(ỹi)[S(ỹi)− µ]
√

1 + ỹ2i
. (S.6)

−∂L2

∂η2
=

1

η2

n
∑

i=1

{[−α2ỹ2i
1 + ỹ2i

+
α2ỹ2i S

2(ỹi)

C2(ỹi)(1 + ỹ2i )
+

αỹ3i S(ỹi)

C(ỹi)(1 + ỹ2i )
3/2

− αỹiS(ỹi)

C(ỹi)
√

1 + ỹ2i

]

+

[

2ỹ2i
1 + ỹ2i

− 2ỹ4i
(1 + ỹ2i )

2

]

+
1

σ2

[

α2ỹ2i S(ỹi)[S(ỹi)− µ]

1 + ỹ2i
+

α2ỹ2iC
2(ỹi)

1 + ỹ2i

−αỹ3iC(ỹi)[S(ỹi)− µ]

(1 + ỹ2i )
3/2

+
αỹiC(ỹi)[S(ỹi)− µ]

√

1 + ỹ2i

]}

=
1

η2

n
∑

i=1

{ −α2ỹ2i
C2(ỹi)(1 + ỹ2i )

− αỹiS(ỹi)

C(ỹi)(1 + ỹ2i )
3/2

+
2ỹ2i

(1 + ỹ2i )
2

+
α

σ2

[

α[1 + 2S2(ỹi)− µS(ỹi)]ỹ
2
i

1 + ỹ2i
+

ỹiC(ỹi)[S(ỹi)− µ]

(1 + ỹ2i )
3/2

]}

. (S.7)

− ∂L2

∂η∂α
=

1

η

n
∑

i=1

{[

ỹiS(ỹi)

C(ỹi)
√

1 + ỹ2i
+

αỹi sinh
−1(ỹi)

√

1 + ỹ2i
− αỹi sinh

−1(ỹi)S
2(ỹi)

C2(ỹi)
√

1 + ỹ2i

]

− 1

σ2

[

ỹiC(ỹi)[S(ỹi)− µ]
√

1 + ỹ2i
+

αỹi sinh(ỹi)S(ỹi)[S(ỹi)− µ]
√

1 + ỹ2i
+

αỹi sinh(ỹi)C
2(ỹi)

√

1 + ỹ2i

]}

= − 1

ησ2

n
∑

i=1

ỹi

{

C3(ỹi)[S(ỹi)− µ]− σ2S(ỹi)C(ỹi)

C2(ỹi)
√

1 + ỹ2i

+
α{C2(ỹi)S(ỹi)[S(ỹi)− µ] + C4(ỹi)− σ2} sinh−1(ỹi)

C2(ỹi)
√

1 + ỹ2i

}

. (S.8)
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− ∂L2

∂η∂β
=

1

η

n
∑

i=1

{[

−αỹi
√

1 + ỹ2i
+

αỹiS
2(ỹi)

C2(ỹi)
√

1 + ỹ2i

]

+
1

σ2

[

αỹiS(ỹi)[S(ỹi)− µ]
√

1 + ỹ2i
+

αỹiC
2(ỹi)

√

1 + ỹ2i

]}

=
α

ησ2

n
∑

i=1

ỹi

[

C2(ỹi)S(ỹi)[S(ỹi)− µ] + C4(ỹi)− σ2

C2(ỹi)
√

1 + ỹ2i

]

. (S.9)

− ∂L2

∂η∂µ
=

α

ησ2

n
∑

i=1

ỹiC(ỹi)
√

1 + ỹ2i
. (S.10)

− ∂L2

∂η∂σ
=

2α

ησ3

n
∑

i=1

ỹiC(ỹi)[S(ỹi)− µ]
√

1 + ỹ2i
. (S.11)

−∂L2

∂α2
=

n

α2
+

n
∑

i=1

{[

[sinh−1(ỹi)]
2S2(ỹi)

C2(ỹi)
− [sinh−1(ỹi)]

2

]

+
1

σ2

[

[sinh−1(ỹi)]
2S(ỹi)[S(ỹi)− µ] + [sinh−1(ỹi)]

2C2(ỹi)
]

}

=
n

α2
+

n
∑

i=1

[sinh−1(ỹi)]
2{[1 + 2S2(ỹi)− S(ỹi)µ]/σ

2 − C−2(ỹi)}. (S.12)

− ∂L2

∂α∂β
=

n
∑

i=1

{

sinh−1(ỹi)− sinh−1(ỹi)S
2(ỹi)C

−2(ỹi)

−[sinh−1(ỹi)S(ỹi)[S(ỹi)− µ] + sinh−1(ỹi)C
2(ỹi)]/σ

2
}

=
n

∑

i=1

sinh−1(ỹi)
{

C−2(ỹi)− σ−2[1 + 2S2(ỹi)− µS(ỹi)]
}

. (S.13)

− ∂L2

∂α∂µ
= −

n
∑

i=1

sinh−1(ỹi)C(ỹi)/σ
2. (S.14)

− ∂L2

∂α∂σ
= −

n
∑

i=1

2 sinh−1(ỹi)C(ỹi)[S(ỹi)− µ]/σ3. (S.15)
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−∂L2

∂β2
=

n
∑

i=1

{

S2(ỹi)

C2(ỹi)
− 1 + S(ỹi)[S(ỹi − µ]/σ2 + C2(ỹi)/σ

2

}

. (S.16)

− ∂L2

∂β∂µ
=

1

σ2

n
∑

i=1

C(ỹi). (S.17)

− ∂L2

∂β∂σ
=

n
∑

i=1

2C(ỹi)[S(ỹi)− µ]/σ3. (S.18)

−∂L2

∂µ2
= n/σ2. (S.19)

− ∂L2

∂µ∂σ
=

n
∑

i=1

2[S(ỹi)− µ]/σ3. (S.20)

−∂L2

∂σ2
=

1

σ2

{

n
∑

i=1

3[S(ỹi)− µ]2

σ2
− n

}

. (S.21)
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