

Preparation of two and three dimensional photonic crystals in Si and III-V semiconductors by pore etching

S. Lölkes, S. Langa, M. Christophersen, J. Carstensen and H. Föll

> Materials Science, Faculty of Engineering, University of Kiel

Introduction

➢ Key issues of project
➢ Experimental technique
➢ Experimental results
➢ Sub-µm Si - Pores
➢ Kielovite (3D Si)
➢ InP
➢ Summary and outlook

Acknowledgements

tfrrr

Major Goals

New modes of pore etching in Si, esp. sub-µm structures
 3D Photonic Crystal in Si

tfrr Experimental setup

- PC controlled potentiostat/galvanostat
- ➢ Pt electrodes,
- Peristaltic pump,
- Teflon cell and Teflon electrolyte container
- ➢ NIR LED Illumination

Si: ~ 10¹⁵-10¹⁷ cm⁻³ I: ~ 0.1-10 mA/cm² U: ~0.5-4V (aq),0.5-20V(org.) Etchant: HF III-V: $\sim 10^{17}$ - 10^{18} cm⁻³ I: $\sim 1-60$ mA/cm² U: $\sim 1-10V$ Etchant: H₂SO₄, HCl

tfrrr

- ➢ w/o current: H-passivation of surface
- ➢ w/ current: holes can break up passivation!!

SEM micrograph of prestructured macropores high current density j:
electropolishing
low j: (macro)porous Si

- pref. growth directions (100, 113)
- branching
- intrinsic vs. extrinsic lengths
- Current Burst Model (CBM) ⇒no continuous local current
 - but local bursts
- \Rightarrow dynamic system !

tfrrr Sub-µm Si pores

normally: Backside illuminated n-Si with increased doping

- ≻Problems: diffusion length, breakdown voltage comes closer
- intrinsic limit: 200 nm diameter (state-of-the-art: 500 nm)

Take other solvents than H₂O and p-Si!!

Tested and selected from a whole bunch of chems! \Rightarrow lower tedency to form oxide at the Si interface \Rightarrow smaller pores possible

tfrrr Kielovite with Lithography

random:

(n-Si, BSI, 4% HF aq., 3V, 1mA resp. 0.6 mAcm⁻²)

tfrr PhoCs out of III-V-compounds

Different behaviour than Si:

- •Crystallographically oriented pores form at low j
- •Current line oriented pores form at high j

Advantages to Si:

- sometimes bigger E_{gap} (in the visible)
- Luminescence
- sometimes larger ε

III-V problem: Lithography doesn't work well Try without!

tfrr Summary and Outlook

Essential to understand pore formation mechanisms in order to:

- •further shrink pore dimensions
- •build complex 3D PC structures like the Kielovite
 •benefit from self-organisation mechanisms like in InP

We showed you:

•First examples of 200 nm macropores (best with DMSO)•3D Kielovite-structures

•2D single-crystalline self-organized PC in InP

We'd like to show you next time:
Ordered (esp. p-Si) 3D Kielovite PC
3D single-crystalline self-organized PC in InP
Further optimization of pore growth in resp. to PC
Optical measurements

Acknowledgements

Lab-engineers

tfrrr

• J. Bahr, K. Voigt, University of Kiel

Cooperation partners

- Dr. R. Wehrspohn, MPI Halle
- Prof. Dr. Dichtel, Univ. Kiel
- Prof. Tiginyanu, TU of Moldova, Chisinau, Moldova
 Financial Support
- Deutsche Forschungsgemeinschaft
 FO 258 / 1-2

tfrrr Thank You for your attention !

"Free pores!" (German advertisement)

Mask for sub-µm

InP refractive index

Monocrystaline 2D porous arrays have been obtained for the FIRST time by means of self-organisation without any lithographic prepatterning!!!

- Low voltages : **K** No Closed packet arrangement
- High voltages :KNo Nucleation layer
- Optimum : **K** Both

InP in detail

tfrrr Nucleation layer on (111) samples

