Nonlinear Propagation of Ultrashort Pulses in Two-Dimensional Silicon Photonic Bandgap Crystals

Institut(e): Fachbereich Physik der Universität Kaiserslautern
Erwin-Schrödinger-Str.
67663 Kaiserslautern

Faculty of Applied Physics, University of Twente, NL
P.O.Box 217
7500 AE Enschede
The Netherlands
Tel: 0031-53-489-3964
Fax: 0031-53-489-1102

Institut für Theorie der Kondensierten Materie der Universität Karlsruhe
P.O. Box 6980
76128 Karlsruhe
Germany

Phone: +49-(721)-608-3366
FAX: +49-(721)-698150

Projektleiter: Prof. Dr. Klaus Jürgen Boller k.j.boller@tn.utwente.nl
Prof. Dr. René Beigang beigang@physik.uni-kl.de
Dr. Kurt Busch
Phone: +49-(721)-608-3366
Kurt@tkm.physik.uni-karlsruhe.de
  Prof. Dr. Laurens (Kobus) Kuipers l.kuipers@tn.utwente.nl
Sekretariat: Gabriele Koschmann koschm@physik.uni-kl.de
Mitarbeiter: Liviu Prodan l.prodan@tn.utwente.nl
 
Abstract:

The propagation of ultrashort pulses in photonic bandgap crystals (PBCs) is of high interest for future photonic circuits, which are expected to supplement electronic microchips. Of particular interest is the propagation of ultrashort pulses in PBCs, where the intensity-dependent refractive index compensates the dispersion, such that the pulse preserves its temporal shape (solitons). Further, for an optical switching of pulses it is important to study the mutual nonlinear interaction of such solitons. To get access to a much richer variety of solitons it is required to study PBCs with a dimension higher than one, e.g., PBCs which are at least two-dimensional.

Our goal is the experimental investigation of ultrashort pulse propagation in two-dimensional PBCs. Using Si, two-dimensional photonic crystals will be manufactured. Intense, ultrashort (ps and fs), and wavelength tunable pulses from an infrared, synchronously pumped optical parametric oscillator, will be focused through the PBCs to measure the spectrum, temporal shape and carrier phase of the transmitted pulses as a function of the input pulse parameters and direction of propagation. The results will be compared with theoretical modeling to understand the underlying physics, to verify the existence of new solitons, and to pursue new schemes for switching of light by light.


Zurück/Back

Stand: 25. Februar 2002, by S. Lölkes