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Abstract

This paper discusses the detailed performance of an iterative plug-in (IPI) bandwidth

selector for estimating the diurnal duration pattern in a recently proposed semipara-

metric autoregressive conditional duration (SemiACD) model. For this purpose an

alternative formula of the asymptotically optimal bandwidth is proposed. A large sim-

ulation study was carried out based on this new formula. The effect of different factors,

which affect the selected bandwidth is discussed in detail. It is shown that the proposed

IPI algorithm works very well in practice and that the SemiACD model in general, is

clearly superior to the parametric ACD model, if there is a deterministic trend in the

duration data. It is also shown that the quality of the bandwidth selection, the diur-

nal pattern estimate and the parametric estimation will all be clearly improved, if the

sample size is enlarged. Furthermore, according to the goodness-of-fit of the estimated

diurnal pattern, a best combination of the above mentioned factors is found.
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1 Introduction

Since the introduction of the ACD (autoregressive conditional duration) model by the sem-

inal work of Engle and Russell (1998), the analysis of financial market behaviour based on

transaction durations became one of the most important sub-areas of financial economet-

rics. Numerous extensions of this model are proposed, including the Log-ACD (Bauwens and

Giot, 2000), the class of the augmented ACD models (Fernandes and Grammig, 2006) and

the threshold ACD (Zhang et al., 2001). For further information on the development in this

context we refer the reader to Pacurar (2008), Engle and Russell (2010), and in particular

the monograph of Hautsch (2012) and references therein.

A crucial problem faced by the application of an ACD is that intraday trade durations

often exhibit a nonstationary deterministic diurnal pattern (or intraday seasonality), φ(t)

say. The estimation of φ(t) is necessary for further econometric analysis of trade durations

using a stationary ACD model. Different approaches are introduced to deal with φ(t). For

instance, in their original work Engle and Russell (1998) proposed the use of a cubic spline. A

nonparametric approach is proposed by Bauwens and Giot (2000). Recently, Rodŕıguez-Poo

et al. (2008) proposed to estimate φ(t) and the ACD parameters jointly using generalized

profile likelihood, which results in a transformed kernel estimator of the nonparametric part.

Further approaches for estimating φ(t) are e.g. linear spline (Dufour and Engle, 2000),

wavelet (Bortoluzzo et al., 2009) and shrinkage technique (Brownlees and Gallo, 2011).

Most recently, Feng (2013) proposed a semiparametric ACD (SemiACD) model with a local

linear estimator for the diurnal pattern and developed an iterative plug-in (IPI) algorithm

(Gasser et al., 1991) for selecting the bandwidth. Here, an inflation method is required to

calculate the bandwidth for estimating the second derivative in each iteration. Gasser et

al. (1991) proposed to use a so-called MIM (multiplicative inflation method). Beran and

Feng (2002) proposed a faster EIM (exponential inflation method) with different possible

inflation factors. In this paper we first propose to use the asymptotically optimal bandwidth,

bA, obtained by minimizing a partially weighted asymptotic MISE (mean integrated squared

error), which is design adaptive and hence a stable criterion. Furthermore, for simplicity

and to reduce the computing time we propose to calculate two required integrals numerically

at just a few equidistant evaluation points, not at all of the observation points. When the

number of evaluation points is not smaller than the root of the sample size, this simplification

will not affect the rate of convergence of the bandwidth at all. Furthermore, a closed form

formula of bA under EACD(1, 1) (exponential ACD), is obtained and employed for assessing
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the quality of the selected bandwidth in the simulation. However, the IPI algorithm is

developed independently of the ACD specification and the sum of all autocovariances of the

stationary part in bA is estimated by a lag-window estimator (Bühlmann, 1996). Hence, the

proposed algorithm is applicable under different ACD models.

The main aim of the current paper is to study the practical performance of IPI bandwidth

selector in detail. For this purpose, a large simulation is carried out, which is designed based

on 12 main cases defined by two diurnal patterns, two EACD(1, 1) models and three different

sample sizes. In each of the main cases 400 replications were generated. For each replication

the bandwidth is selected by the EIM sub-method with three inflation factors and by the

MIM of Gasser et al. (1991) as well. For each sub-method the bandwidth was again selected

using 5 different window-widths for estimating S, respectively. This leads to a total of 20

selected bandwidths for each replication. To discuss the effect of the nonparametric estimator

on the parametric estimation, EACD(1, 1) models are fitted to the original (nonstationary)

data and to the standardized durations with each selected bandwidth. The results are then

assessed according to the MSE (mean squared error) of b̂ with respect to bA, the goodness-

of-fit of the estimated diurnal pattern and the quality of the resulting parameter estimation.

The analysis confirmed that the IPI bandwidth selector works well in general. In particular,

it is found that the larger the sample size, the better the estimation quality following each

of the assessment criteria. Some detailed findings are: 1) According to the MSE of b̂, the

best bandwidth selector changes from case to case. 2) According to the goodness-of-fit of

the estimated diurnal patterns, the difference caused by different sub-methods for selecting

the bandwidth is not clear. Nevertheless, a combination is found, which works almost overall

the best. We will hence suggest the use of this sub-method in practice. 3) The empirical

efficiency of the resulting ACD parameters compared to those obtained from the stationary

data are quite different for different parameters. It is clear that the larger the sample size,

the higher the estimation quality. These efficiencies even achieved 100% in many cases. On

the other hand, the empirical efficiencies of the parameter estimation are very low, if the

parameters are estimated from the nonstationary data directly without removing the diurnal

pattern. It is particularly found that, for the scale parameter and the parameter of the latent

variable, those efficiencies tend to zero, as N →∞. Thus, the estimation and adjustment of

the diurnal duration pattern is a necessary step before a parametric ACD is fitted.

This paper proceeds as follows. The model and the estimator are defined in Section 2.

The bandwidth selector is proposed in Section 3. Section 4 reports the simulation results.

Concluding remarks in Section 5 close the paper.
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2 The semi-ACD model for diurnal durations

Let To = t0 < t1 < ... < tN < tN+1 = Tc be the time points at which trades occur, where N

is the (random) number of trades on a trading day, and To and Tc denote the opening and

closing times of a stock market. Throughout this paper we will assume that ti are rescaled

trading time points such that To = 0 and Tc = 1. Let xi = ti− ti−1 be the durations between

two consecutive trades. A commonly used model for xi (Engle and Russell, 1998) is

xi = φ(ti−1)ψiεi, (1)

where φ(ti) is often called a (deterministic) diurnal pattern, ψi is the conditional expectation

of the diurnally adjusted durations, which follows e.g. some stationary ACD model, and

εi ≥ 0 are i.i.d. random variables with E(εi) = 1. Let yi = ψiεi. It is assumed that

E(yi) = 1 so that the model is uniquely defined, i.e. yi follows a unit ACD with E(ψi) = 1.

Engle and Russell (1998) propose to specify ψi following the idea of the GARCH (generalized

autoregressive conditional heteroskedasticity, Engle, 1982 and Bollerslev, 1986) model:

ψi = ω +

p∑
j=1

αjyi−j +

q∑
k=1

βkψi−k (2)

with a standard exponential distribution of εi. Due to the restriction E(yi) = 1 we have

ω = 1−
∑p

j=1 αj −
∑q

k=1 βk. Hence, in a SemiACD the scale parameter ω is no more free.

Note that φ(ti) is (approximately) the local mean of xi. However, xi and φ(ti) depend

strongly on N . Under regularity conditions we have indeed xi = Op(N
−1). Hence it is

more convenient to study the deterministic pattern in the rescaled durations zi = Nxi,

because the local mean of zi is (approximately) a fixed deterministic function. For given

N , the estimation of the local mean of zi is equivalent to that of φ(ti). Furthermore, we

assume that trades on a day occur according to some design density 0 < f(t) < ∞ on

t ∈ [0, 1] and define m(t) = 1/f(t) and φN(t) = m(t)/N . According to Feng (2013), it holds

E[zi|N ] = m(ti−1)[1 +Op(N
−1)], where the Op(N

−1) term is caused by the randomness of ti.

2.1 Local linear estimation of the scale function

Note that xi and zi can be rewritten as special nonparametric regression models as follows:

xi = φ(ti) + φ(ti)(yi − 1) (3)
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and

zi ≈ m(ti) +m(ti)(yi − 1). (4)

Now, the derivatives m(ν)(t) can be estimated by minimizing the weighted least squares

Q =
N∑
i=1

{zi − a0(t)− a1(t)(ti − t)− ...− ad(t)(ti − t)d}2K
(
ti − t
b

)
, (5)

where K(u) is a kernel function and b is the bandwidth. We obtain the estimates m̂(ν)(t) =

ν!âν , for ν ≤ d, and accordingly φ̂(ν)(t) = ν!âν
N

. If we put d = 1 and ν = 0, this leads to the

local linear estimates m̂(t) = â0 and φ̂(t) = â0/N , which will be used in this paper.

The asymptotic properties of m̂(t) and φ̂(t) are obtained by Feng (2013). Let γ(k) denote

the autocovariances of yi and S =
∑
γ(k) be their sum. Furthermore, let R(K) =

∫
K2(u)du

and I(K) =
∫
u2K(u)du for a kernel function K. At an interior point 0 < t < T the

asymptotic variance and asymptotic bias of m̂(t) are given by

var [m̂(t)] ≈ R(K)S

Nbf(t)
m2(t) =

R(K)S

Nb
m3(t) (6)

and

B[m̂(t)] = b2
m′′(t)I(K)

2
. (7)

Accordingly, we have var [φ̂(t)] ≈ var [m̂(t)]/N2 and B[φ̂(t)] ≈ B[m̂(t)]/N . Based on equa-

tions (6) and (7) the asymptotic mean integrated squared error (AMISE), an approximation

of MISE(m̂) =
∫
E{[m̂(t)−m(t)]2}dt, is given by

AMISE(m̂) = b4
∫

[m′′(t)]2I(K)

4
+
R(K)S

∫
m3(t)dt

Nb
. (8)

By minimizing the AMISE we obtain the asymptotically optimal bandwidth

b̃A =

(
R(K)S

I2(K)

I(m3)

I([m′′]2)

)1/5

N−1/5, (9)

where I(m3) =
∫
m3(t)dt and I([m′′]2) =

∫
[m′′(t)]2dt. One problem with the above formula

is that the I(m3) term may cause unnecessary instability of the selected bandwidth. To solve

this problem we propose to use the following formula of the optimal bandwidth

bA =

(
R(K)S

I2(K)

I(m2)

I([m′′]2)

)1/5

N−1/5, (10)

which minimizes the dominating part of the partially weighted MISE
∫
{B[m̂(t)]2+f(t)V [m̂(t)]}dt.

Note that a SemiACD model can also be applied to model other financial variables such as
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daily average durations and daily trade volumes. The formula of bA in (10) is design adaptive,

i.e. it is the same for equidistant, non-equidistant fixed design as well as for random design.

Hence, an algorithm developed based on this formula works for SemiACD models in all of

these cases. This fact also ensures that many known results on the IPI bandwidth selector

with dependent errors can be easily adapted to the one developed in the next section. Fur-

thermore, we will see that by means of this idea the computing time can be reduced clearly

without affecting the rate of convergence of the proposed bandwidth selector.

To assess the simulation results, we need to calculate b̃A or bA under given design. Note

that R(K) and I(K) are two known constants. The terms I([m′′]2), I(m2) or I(m3) can also

be calculated easily. However, the formula of the sum of γ(k) for a given ACD model is still

unknown in the literature. In the simulation in Section 4, EACD(1, 1) models will be used.

In this case, S can be calculated according to the following lemma.

Lemma 1. If yi follow an EACD(1, 1) with εi ∼ exp(1) and ψi = (1−α−β)+αyi−1+βψi−1,

then the sum of all γ(k) of yi is given by

S =

(
1− β

1− (α + β)

)2
1− (α + β)2

1− (α + β)2 − α2
. (11)

The proof of Lemma 1 is given in the appendix. Note that the above formula only holds for

an EACD(1, 1). More general results will not be discussed here. For a given diurnal pattern

and given EACD(1, 1), it can be shown that the difference between b̃A and bA is quite small.

This confirms that the use of bA is theoretically and practically reasonable.

2.2 Estimation of the ACD parameters

Having estimated the scale function and diurnally adjusted the original duration series, an

ACD model can be fitted to the diurnally adjusted durations. Let θ denote the vector of

the unknown ACD(p, q) parameters, θ = (ω, α1, ..., αp, β1, ..., βq)
′. Assume that m̂(t) and

φ̂(t) are consistent estimates of m(t) and φ(t), then θ can be estimated from ŷi = xi/φ̂(ti)

using the QML (quasi maximum likelihood) method under an EACD(p, q) assumption as

proposed by Engle and Russell (1998) and Engle (2000). If the type of the distribution of εi

is assumed, fully efficient ML estimates of θ can also be employed. For a detailed description

on these topics we refer the reader to Chapter 5.3 of Hautsch (2012) and references therein.

The resulting parameter estimate will be denoted by θ̂. Now, assume that yi = ψiεi were
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observable. The parameter vector θ could also be estimated from yi using the same method.

Denote this (practically unavailable) estimate by θ̃. It is well known that θ̃ is
√
N -consistent

and asymptotically normal. According to the similarity between the GARCH and the ACD

models, consistency and asymptotic properties of θ̂ can be obtained following the ideas of

Lemma 1 and Theorem 3 in Feng (2004). These results indicate that θ̂ is also
√
N -consistent

and asymptotically normal up to a bias term. Following the proof of Theorem 3 in Feng

(2004), we can see that this bias term is the same for kernel and local linear estimates of

m(t). Moreover, it is easy to see that this conclusion does not depend on N . Hence we have

B(θ̂) = E[θ̂ − θ̃] = O[b2 + (Nb)−1], where the O(b2) term is due to the integral of the bias

E[m̂(t) −m(t)] and the O[(Nb)−1] term is caused by the variance of m̂(t). If a bandwidth

b = O(n−a) with 1/4 < a < 1/2 is used, this bias term is asymptotically negligible. If a

bandwidth of the optimal order O(bA) is used, we have B(θ̂) = O(N−2/5). Furthermore, if

xi follow a parametric ACD model with φ(t) to be a constant, then θ̂ is
√
N -consistent and

asymptotically normal, if b is of a larger order than O(N−1/2). This is particularly true, when

b is selected by the proposed data-driven algorithm in the next section. This means that the

SemiACD model also works well in the case when the data do not have a diurnal pattern,

but with some loss of the efficiency. Proofs of those results are omitted to save space.

For the practical implementation we propose to fit an EACD(1, 1) or another suitable ACD

model to ŷi using the fACD package in R. Other available ACD packages in the literature

can also be employed for this purpose. As in the parametric case, model selection using the

AIC or BIC can also be applied to ŷi.

3 The bandwidth selection procedure

The IPI bandwidth selector to be proposed extends the original idea of Gasser et al. (1991)

in different ways. Let b0 denote the starting bandwidth. In the j-th iteration, m′′(t) will be

estimated using the bandwidth b2j calculated from bj−1, the selected bandwidth in the j-th

iteration. The formula for calculating b2j from bj−1 is called the inflation method. Gasser et

al. (1991) propose to use the following MIM inflation form

b2j = bj−1N
1/10. (12)

On the other hand, Beran and Feng (2002) proposed to use a faster EIM inflation form

b2j = bλj−1, (13)
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where 0 < λ < 1 denotes the inflation factor, which determines the rate of convergence of b̂A.

Assume that the MIM or the EIM with a suitable value of λ is used and that Ŝj is calculated

from γ̂(k) using the Bartlett window wk = 1−k/(L+1) with L = cfN
1/3. Let

√
N < M < N

be an odd integer. Define t∗r = (r − 1)/(M − 1) to be M equidistant evaluation points, and

m1 = [0.05 ∗ (M − 1)] and m2 = [0.95 ∗M ], where [·] denotes the integer part. The proposed

IPI algorithm processes as follows:

Step 1a. In the j-th iteration estimate m̂j(t
∗
r), r = 1, ...,M , by bj−1. Calculate Îj(m

2) =

{
∑m2

r=m1
[m̂j(t

∗
r)]

2}/(m2−m1 + 1) and ŷji = xi/φ̂j(ti), i = 1, ..., N . Then calculate γ̂j(k)

from ŷji and obtain Ŝj =
∑
|k|<K wkγ̂j(k).

Step 1b. Calculate b2j using the chosen method, estimate m̂′′j (t
∗
r) by local cubic regression

and calculate Îj([m
′′]2) = {

∑m2

r=m1
[m̂′′j (t

∗
r)]

2}/(m2 −m1 + 1).

Step 2. Insert the values of Îj(m
2), Ŝj and Îj([m

′′]2) into (10) to obtain bj.

Step 3. Increase j by one and repeatedly carry out Steps 1 and 2 until convergence or until

a given number of iterations is reached. Put b̂ = bj.

The idea to estimate m̂j(t) and m̂′′j (t) only at M evaluation points will reduce the computing

time very clearly. In particular note that m̂′′j (t) is a 3rd order local polynomial estimator,

which has to be carried out in each iteration. This simplification will not affect the rate of

convergence of b̂, if M >
√
N , because, the highest rate of convergence of an IPI bandwidth

selector in the current context is of the order O(N−2/7). Our empirical experience shows

that bandwidths selected by different M values are almost the same. In the simulation in

the next section, M = 201 is fixed to ensure that the large simulation can be finished in

a adequate time. Note that even for the smallest sample size there, i.e. N = 8000, M is

just about 2.5% of the whole observation time points. Our simulation results show that this

simplification works very well in practice. Although it is well known that local polynomial

regression has automatic boundary correction, the curve estimation quality at a boundary

point is still worse than that at an interior point. This problem was dealt with in two ways.

Firstly, at any boundary point, the total bandwidth used is kept to be the same as at an

interior point. For instance, for a given bandwidth b, the estimation at a point t < b is carried

out with all observations within the interval ti ∈ [0, 2b]. Secondly, the integrals Îj(m
2) and

Îj([m
′′]2) are calculated without the 5% estimates at each boundary to avoid their effect on

the bandwidth selection.
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For calculating the standardized durations in the jth iteration, φ̂j(ti) are obtained from

m̂j(t
∗
r) by means of linear interpolation. At the beginning, we propose to fix b0 = 1/10,

so that a rather large number of observations, i.e. 20% of the observations, is used for

estimating the scale function in the first iteration. In general, the finally selected bandwidth

does not depend on b0, if it set to any reasonable value, because the IPI algorithm is a

fix-point search procedure. It can be shown that with the above starting bandwidth bj will

become a consistent estimator of bA in a few iterations. On the other hand, the choice of

the inflation method is more important. In this paper we will mainly consider the use of the

EIM. Although, as shown by Beran and Feng (2002), inflation factor λ = 5/7 will lead to the

highest O(N−2/7) convergence rate, Feng (2013), proposed the use of λ = 1/2 so that b̂ is

most stable but with a lower rate of convergence of the order O(N−1/5), because the variation

of the intraday durations is very large. This idea was confirmed by the simulation results in

the next section. A further choice of λ is λ = 5/9 to minimize the MSE of m̂′′ with a rate

of convergence of the order O(N−2/9). A bandwidth selected by the MIM of Gasser et al.

(1991) is also most stable with the rate of convergence of the order O(N−1/5). The error in Ŝ

will cause an additional error term in b̂/bA of the order Op(N
−1/3), which is asymptotically

negligible. This fact is not affected by the choice of cf . For practical application, we propose

to use m̂(ti) and φ(ti) obtained by using the selected bandwidth b̂ at all observation points

ti as the final estimates.

4 The simulation study

In the simulation study different cases were constructed to examine the practical performance

of the bandwidth selector in detailed and to see, whether a relatively better combination of

the control parameters exists and how the algorithm can be further improved.

4.1 Description of the simulation study

Firstly, two diurnal patterns, m1(t) and m2(t), were chosen, where m1(t) exhibits a typical

inverse U-shape and m2(t) shows an atypical duration pattern with long durations in the

morning and afternoon and comparatively short durations around noon. These two patterns

are displayed in Figure 1, which were indeed designed based on the estimated diurnal duration

9



patterns of the BMW stocks on two trading days in August 2011. The closed function forms

are very complex and are hence omitted.

For each diurnal pattern data were generated using two EACD(1, 1) models with:

ACD1 : ψ1i = 0.04 + 0.09xi−1 + 0.87ψ1i−1 (14)

and

ACD2 : ψ2i = 0.04 + 0.14xi−1 + 0.82ψ2i−1 (15)

with ω = 1 − α − β. The simulation was carried out with three different sample sizes

N1 = 8000, N2 = 16000 and N3 = 32000. These combinations define 12 main cases of the

simulation in total. For each main case 400 replications were generated. Here, bandwidth

selection using four different inflation methods, i.e. the MIM and the three EIM with λ =

5/7, 5/9 and 1/2, are considered. For each method, Ŝ was then calculated with five values

of cf , namely cf = 2, 4, 6, 8 and 10, respectively. Hence, for each simulated data set the

bandwidth was selected by 20 sub-methods separately. In addition, the bisquare kernel is

used in all cases as weight function.

4.2 Results of the simulation study

The quality of the bandwidth selection is first discussed according to its bias, variance and

MSE, and then assessed by the goodness-of-fit, i.e. the corresponding MSE’s of the estimated

diurnal patterns using the selected bandwidths. Finally, the simulation results are evaluated

by the quality of the estimated ACD parameters in each case.

4.2.1 Performance of the selected bandwidth

Tables 1 to 3 show the means, standard deviations as well as the mean squared errors of

the bandwidths (multiplied by 100) selected in the 400 replications in the corresponding

sub-cases for N1 = 8000, N2 = 16000 and N3 = 32000, respectively, together with the true

values of bA calculated following Lemma 1 (also multiplied by 100). Firstly, we can see that

the MSE decreases strongly, when N increases, which indicates that the proposed bandwidth

selector is consistent. It is clear that the performance of b̂ depends on the form of the diurnal

pattern and the properties of the ACD model very strongly. It is the easiest to select the

bandwidth for the second diurnal pattern with the first ACD model, while the bandwidth is
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very difficult to select in the combination of the first diurnal pattern with the second ACD

model. In the former case, the bandwidth can already be selected very well with N1 = 8000.

In the latter case the quality of the selected bandwidth with N2 = 16000 is still not good

enough. Furthermore, we can see that, if the bandwidth is difficult to select, the effect caused

by increasing the sample size is usually more clear. Another more important question, that

was to be addressed is whether an overall superior inflation method for selecting a bandwidth

can be identified. If the trend is simple, the results suggest to apply the EIM with λ = 1/2

but for large sample sizes the MIM also works well. If the trend is more complicated no clear

statement can be made on which inflation method is generally superior to the others, as it

seems to depend on the features of the ACD model as well as the number of observations.

Concerning the choice of cf , the results are ambiguous, as well. For all cases with first trend

and sample size N1 the optimal cf is 6. For N2 one optimal cf cannot be clearly identified,

however cf = 8 and cf = 10 can be ruled out to be optimal. For N3 as well as almost of the

cases simulated with the second trend the majority of smallest MSE values are achieved by

cf = 2. Thus, it is not possible to find an overall superior choice of cf . But it seems that the

performance of a moderate cf is more stable. Hence we will propose to use cf = 4, 6 or 8. If

N is large enough, cf = 2 can also be chosen.

4.2.2 Goodness of fit of m̂(t)

To assess the goodness-of-fit of the data-driven estimate of the diurnal pattern directly, we

will define the RASE (the root of the average of the averaged squared errors) as follows. For

a given diurnal pattern and sample size, the ASE for the j-th replication is defined by

ASEj =
1

0.9N

0.95N∑
k=0.05N+1

(m̂(tk)−m(tk))
2, (16)

where again 5% estimates at each boundary are not used for calculating this criterion. The

RASE is then defined as the root of the average of ASEj over all 400 replications:

RASE =

√√√√ 1

400

400∑
j=1

ASEj. (17)

The obtained results of RASE (multiplied by 100) are displayed in Table 4. An important

empirical finding is that these results indicate a clear order of the goodness-of-fit of the four

methods for calculating b2j. Now the sub-method EIM with λ = 1/2 performs the best
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overall. The MIM sub-method is the second best one and the EIM with λ = 5/7 is the

worst. Furthermore, these results also suggest that cf = 2 should not be used. For the

best sub-method, the difference between the results with the other values of cf is unclear,

although cf = 6 or cf = 8, or sometimes cf = 10, is usually the best. Note that the main

purpose of nonparametric estimation of the diurnal pattern is to fit m(t) as well as possible.

Hence we will suggest the use of the EIM with λ = 1/2. Also note that the MIM was

proposed to achieve a most stable bandwidth. Our simulation results seem to indicate that

the stability of the bandwidth selection is more important than the rate of convergence of

the bandwidth itself. The simulation results indicate that, following the RASE criterion, a

relatively larger value of cf is more preferable. This shows again that the stability of the

selected bandwidth plays a more important role for the goodness-of-fit of the resulting curve

estimation. Furthermore, these results indicate that the estimation of m1(t) under ACD1 is

the easiest, while the estimation of m2(t) under ACD2 is most difficult. Finally, conclusions

obtained following the RASE are quite different to those drawn from the MSE of b̂.

4.2.3 Performance of the ACD parameter estimation

For each of the 400 repetitions of a main case three EACD(1, 1) models were fitted to the

duration data simulated without a trend, yi, the duration data simulated with a trend, xi,

and the diurnally adjusted durations, ŷi = xi/φ̂(ti). Let θ denote the true parameter vector

θ = (ω, α, β)′. Denote by θ̃, θ̂x and θ̂ŷ the estimated parameter vector based on yi, xi and ŷi,

respectively. For assessing the quality of the parameter estimation, the relative efficiencies

(REFF) of θ̂x and θ̂ŷ with respect to θ̃ are defined as follows:

REFF(θ̂ŷ) =
MSE(θ̃)

MSE(θ̂ŷ)
∗ 100(%) and REFF(θ̂x) =

MSE(θ̃)

MSE(θ̂x)
∗ 100(%). (18)

These results are listed in Tables 5 to 7 for the three parameters, respectively. Theoretically,

if there is a deterministic trend in the data xi, θ̂
x is obtained under misspecification and is

hence inconsistent. As indicated before, θ̂ŷ is however consistent. These facts can be seen

clearly from REFF(θ̂ŷ) and REFF(θ̂x) and the comparison between them will indicate the

gain in parameter estimation by means of the SemiACD.

Some general findings which we can draw from these results are as follows: 1) The larger

N , the higher the REFF of the estimated parameters from ŷi but the lower the REFF of those

obtained from xi. As N →∞, θ̂ŷ will tend to 100% but REFF(θ̂x) will however tend to zero.

This fact can be seen more clearly, if the estimation of β is considered. See Table 7. 2) The

12



quality of ω̂ŷ is the poorest, because ω is the scale parameter and φ(t) is the scale function.

Indeed, the proposed SemiACD model can be asymptotically rewritten as an ACD with only

one time varying scale parameter, while its α and β are constant, as in a parametric ACD.

3) The highest REFF’s are achieved by α̂ŷ, where these efficiencies are about 100% in most

cases. Now, the REFF’s of α̂x are also high, because α reflects the short term dependence

and is not affected by the diurnal pattern so much.

Furthermore, the quality of the parameter estimation based on ŷi depends on the combina-

tion of the diurnal pattern and the ACD model very strongly. The case, where the estimation

of ω is the easiest seems to be the combination of m1(t) with ACD2. By the combination

of m2(t) and ACD1, ω is very difficult to estimate. Now the REFF of ω̂ŷ for N1 = 8000

using any sub-method is clearly smaller than 50%. Similar conclusions can be drawn for β̂ ŷ.

The difference is only that the REFF’s of β̂ ŷ are usually clearly higher than those of ω̂ŷ in

corresponding cases.

Concerning the difference caused by the sub-methods for the bandwidth selection we can

find that the EIM with λ = 1/2 performs usually the best, except for the combination of

m2(t) and ACD2. In this case the EIM with λ = 5/7 performs slightly better than the

other methods. However, we will suggest the use of the EIM with λ = 1/2 again, because

it seems to be more stable. Note in particular that by the combination of m2(t) and ACD1,

the EIM with λ = 5/7 performs clearly poorer than all of the other methods. This sub-

method is hence not a suitable choice. When the sub-method EIM with λ = 1/2 is chosen,

the difference caused by the choice of cf is usually unclear. In general, all of the cf values

perform well. However, we will still suggest the use of cf = 6 or cf = 8, because now the

proposed algorithm performs more stable than with the other cf values.

4.3 Estimation results for two simulated data examples

In order to further illustrate the performance of the proposed algorithm, two simulated data

sets were chosen, for which the fitted results using the proposed best algorithm, i.e. the EIM

with λ = 1/2 and cf = 6, are shown in more detail. The first example is the first simulated

data set in the case with m1(t), ACD1 and N1, called Case 111. The second example is

the last simulated data set in the case with m2(t), ACD2 and N3, called Case 223. The left

panels of Figure 2 display the simulated data without trend yi, the simulated data with trend,

xi, the true trend, m1(ti), together with the estimated trend, m̂1(ti), and the standardized

13



duration series, ŷi for Case 111. Those for Case 223 are shown in the right panels of Figure

2, where all data are displayed against the cumulative sum of xi.

Figures 2(e) and 2(f) show that the estimated trend fits the true trend well in both cases.

For Case 223, the selected bandwidth seems to be a little small for the second peak as it is

not completely smooth at that point. At the beginning and the end, the fit is nearly perfect,

though, which also holds for Case 111. This indicates the drawback of the use of a global

bandwidth. However, the choice of a local bandwidth would be too complex and is hence

not discussed in the current paper. The figures for the diurnally adjusted data further show,

that both estimations of the trend are good, as after the removal of the estimated trends,

the standardized series in figures 2(g) and 2(h) seem to be quite stationary and look very

similar to the originally simulated data without trend in Figure 2(a) and 2(b). The points

in the series where the estimated trends did not fit the true trends perfectly are also visible

in the standardized duration series. For example, for Case 111 where the estimated trend is

above the true trend, the standardized durations are smaller at that point than the simulated

data without trend as a trend larger than the true one, was removed at that point. Finally,

the fitted ACD models in the two cases are with ψ1i = 0.038 + 0.082xi−1 + 0.880ψ1i−1 and

ψ2i = 0.040 + 0.139xi−1 + 0.820ψ2i−1, respectively. We see, the selected examples show that

the proposed algorithm works very well in practice.

5 Conclusion

In this paper a data-driven estimation of the diurnal pattern in a recently proposed Semi-

ACD model is discussed. Detailed results on the bandwidth selection are obtained. A large

simulation was carried out to discuss the practical performance of the proposed bandwidth

selector in different cases. The results are then assessed in three ways. It is shown that

the IPI bandwidth selector works well in general. One of the sub-methods using the EIM

inflation form, an inflation factor λ = 1/2 and a coefficient cf = 6 for calculating the lag-

window estimator of the sum of all autocovariances seems to work better than the others in

most of the cases, in particular if the performance is assessed using the goodness-of-fit of the

estimated diurnal pattern. The results of the parameter estimation further showed that if a

significant daily pattern is not removed from the data, the fitted ACD model is inconsistent.

Hence, in practice the SemiACD not the stationary parametric ACD should be used.
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Appendix: Proof of Lemma 1

Assume that the true scale functions and ACD model parameters ω, α and β are known.

Let ηi = yi − ψi be a martingale difference sequence by construction. Following Engle

and Russell (1998), the EACD(1, 1) model can be represented as an ARMA(1, 1) model:

yi = ω+(α+β)yi−1−βηi−1+ηi. Based on well known results on the sum of all autocovariances

of an ARMA(1, 1) model we have

S =

(
1− β

1− (α + β)

)2

σ2
ηi
. (A.1)

Straightforward calculation leads to

σ2
ηi

= var (yi) + var (ψi)− 2cov (yi, ψi). (A.2)

Following Engle and Russell (1998) we have

var (yi) =
1− β2 − 2αβ

1− β2 − 2αβ − α2
.

Bauwens and Giot (2000) showed that var (ψi) = α2

1−β2−2αβ and

cov (yi, ψi) = E[(yi − E(yi))(ψi − E(ψi))]

= E[yiψi]− E[yi]E[ψi]. (A.3)

Under the weakly stationarity assumption we have E(yi) = E(ψi). Furthermore, following

Bauwens and Giot (2000), we have E[yiψi] = E[ψ2
i ]. This leads to cov (yi, ψi) = E[ψ2

i ]−µ2 =

var (ψi) and

σ2
ηi

=
1− (α + β)2

1− (α + β)2 − α2
. (A.4)

Inserting (A.4) into equation (A.1) gives

S =

(
1− β

1− (α + β)

)2
1− (α + β)2

1− (α + β)2 − α2
. (A.5)

Lemma 1 is proved. 3
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Figure 1: A typical trend and an atypical trend used in the simulation.
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Figure 2: Estimation results for the selected examples Case 111 (left) and Case 223 (right).
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