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Abstract

This paper discusses forecasting of long memory and a nonparametric scale function

in nonnegative financial processes based on a fractionally integrated Log-ACD (FI-

Log-ACD) and its semiparametric extension (Semi-FI-Log-ACD). Necessary and

sufficient conditions for the existence of a stationary solution of the FI-Log-ACD are

obtained. Properties of this model under log-normal assumption are summarized.

A linear predictor based on the truncated AR(∞) form of the logarithmic process is

proposed. It is shown that this proposal is an approximately best linear predictor.

Approximate variances of the prediction errors for an individual observation and

for the conditional mean are obtained. Forecasting intervals for these quantities

in the log- and the original processes are calculated under log-normal assumption.

The proposals are applied to forecasting daily trading volumes and daily trading

numbers in financial market.
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1 Introduction

Modeling and forecasting of short- and long memory, and a possible nonparametric scale

function in financial time series is of great interest. Well known models in this context

with short memory are e.g. the ARCH (autoregressive conditional heteroskedasticity,

Engle, 1982) and GARCH (generalized ARCH, Bollerslev, 1986) for returns and the ACD

(autoregressive conditional duration, Engle & Russell, 1998) for transaction durations.

The ACD can also be used for modeling trading volume (Manganelli, 2005). Models based

on logarithmic transformation are also proposed, including the Log-GARCH (Geweke,

1986, and Pantula, 1986) and the (first type) Log-ACD (Bauwens & Giot, 2000, Bauwens

et al., 2008, Karanasos, 2008). Now, the log-data can be modeled by well known linear

time series approaches. For instance, the Log-ACD is indeed equivalent to an ARMA

for the log-data (Allen et al., 2006). And the resulting estimates of the original data are

always nonnegative. Modeling of a smooth scale function in volatility caused by changing

macroeconomic environment was investigated by Feng (2004), and Engle & Rangel (2008).

Well known long memory volatility models are the FIGARCH (fractionally integrated

GARCH, Baillie et al., 1996), the LM-GARCH (long memory GARCH, Karanasos et al.,

2004), the FIACD (Jasiak, 1998) and the LM-ACD (Karanasos, 2004). So far as we know,

estimation of a nonparametric scale function in volatility models with long memory is not

yet well studied. Most recently, Beran et al. (2012) proposed to model short memory,

long memory and a nonparametric scale function in financial time series based on the log-

transformation. They found in particular that the log-normal distribution is a suitable

marginal distribution for daily average transaction durations and proposed to model the

stochastic component of the log-data by a Gaussian FARIMA (fractional autoregressive

integrated moving average, Hosking, 1981 and Beran, 1994). The log-data themselves

are analyzed by a SEMIFAR (semiparametric fractional autoregressive, Beran & Feng,

2002a). Their proposals are hence called an EFARIMA (exponential FARIMA) and an

ESEMIFAR, respectively, which can be easily estimated using existing software packages.

In this paper the EFARIMA and ESEMIFAR are first redefined as a FI-Log-ACD and

a Semi-FI-Log-ACD, respectively. Necessary and sufficient conditions for the existence

of a stationary solution of the FI-Log-ACD are obtained. Detailed properties of this

model under log-normal assumption are summarized. In particular, now the long mem-
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ory parameter is not affected by the log-transformation and the processes cannot exhibit

antipersisitence (see also Dittmann & Granger, 2002). Our main focus is on the forecast-

ing using the Semi-FI-Log-ACD. Now, the log-process follows a semiparametric regression

with Gaussian FARIMA errors. Best linear predictor for the SEMIFAR model was pro-

posed by Beran and Ocker (1999). In this paper we propose to use a simple, truncated

linear predictor based on the AR(∞) form, because the sample size is very large. This

idea is often applied to ARMA models (e.g. Brockwell & Davis, 2006, p. 184). Properties

of the proposal are investigated in detail. It is shown that, in the presence of long mem-

ory the proposed predictor is still an approximately best linear predictor. Asymptotic

variances of the prediction errors for an individual observation and for the conditional

mean are obtained. Calculation of approximate forecasting intervals under log-normal

assumption is discussed. Effect of the errors in the estimated trend on the asymptotic

properties of the proposed predictor is also investigated. The Semi-FI-Log-ACD is then

applied for modeling and forecasting daily trading volumes and daily trading numbers.

The results indicate that this model is widely applicable and the proposed linear predictor

works very well in practice. It is also shown that the log-normal distribution is a suitable

choice for different kinds of aggregated financial data.

The paper is organized as follows. Definitions of the models are given in Section 2.

Section 3 describes the properties and estimation of these models. The linear predictor

is proposed and studied in Section 4. Section 5 reports the application results. Final

remarks in Section 6 conclude the paper. Proofs of results are put in the appendix.

2 The FI-Log-ACD and Semi-FI-Log-ACD

A well known model for a stationary nonnegative financial time series, X∗t , t = 1, ..., n, is

the MEM (multiplicative error model, Engle, 2002) defined by

Xt = νλtηt, (1)

where ν > 0 is a scale parameter, λt > 0 is the conditional mean of X∗t = Xt/ν and ηt ≥ 0

are i.i.d. random variables. In this paper we propose the use of a semiparametric MEM

model by replacing ν in (1) with a nonparametric smooth scale function ν(τ) > 0:

Xt = ν(τt)X
∗
t = ν(τt)λtηt, (2)
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where τt = t/n denotes the rescaled time. Let εt = ln(ηt), Yt = ln(Xt), Zt = ln(X∗t ),

µ(τt) = ln[ν(τt)] and ζt = ln(λt), where µ(τt) and ζt are the local and conditional means

of Yt, respectively. Following Beran et al. (2012), we assume that E(εt) = 0, var (εt) = σ2
ε

and the stochastic component Zt follows a FARIMA

(1−B)dφ(B)Zt = ψ(B)εt, (3)

where d ∈ (−0.5, 0.5) is the fractional differencing parameter, φ(B) = 1−φ1B−. . .−φpBp

and ψ(B) = 1 + ψ1B + . . . + ψqB
q are the MA- and AR-characteristic polynomials with

no common factor and all roots outside the unit circle. The model defined by (1) and

(3) is called an exponential FARIMA (EFARIMA), which is a nonnegative process whose

log-transformation follows a FARIMA. The model defined by (2) and (3) will be called

an ESEMIFAR, because Yt = ln(Xt) = Zt + µ(τt) follows a SEMIFAR (Beran & Feng,

2002a) with the integer integration parameter m = 0 and an additional MA part.

Beran et al. (2012) indicated that the EFARIMA model can be written as a fractionally

integrated generalization of the (first type) Log-ACD model. The reason is that, similar

to Eq. (7) in Bauwens et al. (2008), the conditional mean of Zt can be represented as

ζt = lnλt =
∞∑
i=1

πi lnλt−i +
∞∑
j=1

ωj ln(ηt−j), (4)

where πi are coefficients of π(B) = (1 − B)dφ(B) = 1 −
∑∞

i=1 πiB
i with πi ≈ cπi

d−1 for

large i, ωj = πj + ψj for 1 ≤ j ≤ q, and ωj = πj for j > q. The model defined by

(1) and (4) will be called a FI-Log-ACD. And Eq. (2) and (4) define a semiparametric

generalization of the FI-Log-ACD, called a Semi-FI-Log-ACD. The Log-ACD (p, q) model

is the special case with d = 0. Moreover, note that ζt can also be rewritten as

ζt =
∞∑
i=1

πiZt−i +

q∑
j=1

ψjεt = [π(B)− 1]Zt + [ψ(B)− 1]εt. (5)

The relationship between the FI-Log-ACD and the EFARIMA is given below.

Proposition 1. The EFARIMA model defined by (1) and (3), and the FI-Log-ACD

model defined by (1) and (4) are equivalent to each other.

Proof of Proposition 1 is omitted. This result means that the proposed models are the

application of the well known FARIMA and SEMIFAR models to the log-process. Hence,

the log-transformation of a nonlinear (nonnegative) process following the FI-Log-ACD is

assumed to be a linear process. The original process X∗t is hence a log-linear process.
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3 Properties and estimation of the models

3.1 The stationary solutions

Firstly, some results in Beran et al. (2012) under log-normal assumption will be extended

to more general distributions. Let α(B) = (1− B)−dφ−1(B)ψ(B) = 1 +
∑∞

i=1 αiB
i. It is

well known that the stationary solution of the FARIMA process Zt is given by

Zt =
∞∑
i=0

αiεt−i (6)

with αi ≈ cαi
d−1 for large i, and, for large k, the autocorrelation (ACF) of Zt is given by

ρZ(k) ≈ cZρ |k|2d−1, (7)

where cZρ is a constant. Note that cZρ > 0 for d > 0 and now Zt has long memory.

Now, let αmax = max(αi) and αmin = inf(αi), where αmax ≥ 1 and αmin may be negative.

Conditions for the existence of a stationary solution of X∗t in the current case with 2u-th

finite moment are similar as those given by Karanasos (2008).

A1. Zt is a stationary and invertible FARIMA process as defined in (3).

A2. Both E(η2uαmax
t ) and E(η2uαmin

t ) are finite for some u > 0.

Now, the stationarity solution of X∗t is given by

X∗t =
∞∏
i=0

ηαi
t−i. (8)

Lemma 1. The solution of X∗t given in (8) is strictly stationary with finite 2u-th moment,

if and only if A1 and A2 hold. If A2 holds for u ≥ 1, X∗t is also weakly stationary.

The proof is similar to that of Lemmas 1 and 2 in Karanasos (2008) and is omitted.

A2 ensures that all of the terms in the product in (8) exist. A1 implies that
∑∞

i=0 α
2
i <

∞ and E(εt) = 0. This together with A2 ensures the convergence of X∗t defined in (8).

Note that the condition E(εt) = 0 is indeed a restriction on the distribution of ηt. For
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instance, if ηt is exponentially distributed with the density f(u) = µ−1η exp(−u/µη), this

leads to µη = exp(γ) ≈ 1.781, where γ is the Euler constant. Thus, µη is now fixed.

The possible change in the scale is reflexed by ν or ν(τ). If a two-parameter family of

nonnegative distributions is considered, the restriction E(εt) = 0 means that only one of

the two parameters is free. The restriction E(εt) = 0 is obviously fulfilled e.g. by:

Example 1. The log-normal innovations ηt with εt ∼ N(0, σ2
ε) and σ2

ε > 0,

Example 2. The log-logistic innovations ηt with εt ∼ Lo(0, b) and b > 0 or

Example 3. The log-Laplace innovations ηt with εt ∼ La(0, b) and b > 0.

Note that A2 may or may not be affected by d. Whether A2 is fulfilled or not, is jointly

determined by the distribution of ηt, the value of u and the FARIMA coefficients. In Ex.

1 above, A2 is always fulfilled and X∗t is strictly and weakly stationary. In Ex. 2 and 3,

X∗t is only weakly stationary, if b is small enough.

Furthermore, the stationary solution of the conditional mean of Zt is given by

ζt =
∞∑
i=1

αiεt−i. (9)

Under the same assumptions we obtain the stationary solution of λt:

λt =
∞∏
i=1

ηαi
t−i.

The forecasts of the FARIMA process Zt and its conditional mean ζt to propose later

are based on their AR(∞) representations, respectively. For Zt we have

Zt =
∞∑
j=1

βjZt−j + εt, (10)

where βj are the coefficients of β(B) = (1−B)dφ(B)ψ−1(B) = 1−
∑∞

j=1 βjB
j. For large

j, we have βj ≈ cβj
−d−1 with cβ > 0. This yields the representation of ζt based on Zt

ζt =
∞∑
j=1

βjZt−j. (11)

The stationary solutions of X∗t and λt, respectively, can be rewritten as

X∗t = ηt

∞∏
j=1

(X∗t−j)
βj and λt =

∞∏
j=1

(X∗t−j)
βj . (12)
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3.2 Properties under log-normal assumption

Beran et al. (2012) found that when aggregated financial data are considered, the log-

normal assumption is usually a suitable choice. They hence studied the properties of

the proposed models with log-normally distributed innovations in detail. In the following,

their results will be first summarized briefly. Then we will focus on discussing the applica-

tion of the Semi-FI-Log-ACD model. We will see that now all of Zt, X
∗
t , ζt and λt exhibit

long memory. In particular, the authors showed that the process X∗t is log-normally dis-

tributed, X∗t ∼ LN(0, σ2) with σ2 = σ2
ε

∑∞
i=0 α

2
i , if εt are i.i.d. N(0, σ2

ε) random variables.

Closed form formula of the ACF of X∗t can be obtained. Furthermore, in the presence of

long memory it holds

ρX∗(k) ≈ cX
∗

ρ |k|2d−1

for large k, where 0 < cX
∗

ρ < cZρ . We see that X∗t is a long memory process with the

same memory parameter d, if Zt has long memory. This confirms the well known fact

that the long memory parameter in Zt and that in X∗t under log-normal assumption is

the same (see e.g Dittmann & Granger, 2002). The reason is that the Hermite rank of the

exponential function is one. However, the constant in the asymptotic formula of ρX∗(k) is

smaller than that in ρZ(k). If Zt is a FARIMA with −0.5 < d ≤ 0, it can be shown that∑
ρX∗(k) > 0. We see that X∗t does not have antipersistence, even if Zt is antipersistent

(see also Dittmann & Granger, 2002). This leads to the very interesting fact:

Proposition 2. A FI-Log-ACD process X∗t with log-normal marginal distribution cannot

exhibit antipersistence.

In financial econometrics, long memory property of the conditional means ζt in Zt and

λt in X∗t is also of great interest. The ACF of ζt with d > 0 is given by

ρζ(k) ≈ cζρ|k|2d−1 (13)

for large k, where cζρ > cZρ . From (13) we see that ζt also has long memory with the same

memory parameter d. However, the constant in the asymptotic formula of ρζ(k) is larger

than that in ρZ(k). And the ACF of λt for large k is given by

ρλ(k) ≈ cλρ |k|2d−1,

where 0 < cλρ < cζρ. Again, the long memory parameter in λt is d. But the constant in the

asymptotic formula of the ACF after the exponential transformation is reduced.
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3.3 Estimation of the models

Let K(u) be a symmetric density with compact support [−1, 1] and h be the bandwidth.

The trend can estimated by local polynomial regression with FARIMA errors (Beran &

Feng, 2002b). Now, µ̂(τ) is obtained by solving the weighted least squares problem

Q =
n∑
t=1

{
Yt −

p∑
j=0

bj(τt − τ)j

}2

K

(
τt − τ
h

)
⇒ min .

From now on we will mainly consider the model of Zt without the MA part, so that the

Semi-FI-Log-ACD can be estimated using existing software packages. But the theoretical

discussion holds in the case, when Zt follows a general FARIMA model. Now, let θ =

(σ2
ε , d, φ1, . . . , φp)

T denote the unknown parameter vector of the SEMIFAR model. Under

the normal assumption of εt, θ can be estimated by approximate Gaussian MLE from

Ẑt = Yt− µ̂(τt). The AR order p can be selected consistently by the BIC. A crucial point

by the practical implementation of the Semi-FI-Log-ACD model is the selection of the

bandwidth h. This can e.g. be done by means of the package FinMetrics in S+, where

however only a kernel estimator of µ(τ) is built-in. In this paper that package is improved

slightly to include local polynomial estimator of µ(τ).

4 Forecasting based on the Semi-FI-Log-ACD

Now, we will discuss forecasting based on the Semi-FI-Log-ACD model, which is equiv-

alent to the ESEMIFAR. Note that the ESEMIFAR is a SEMIFAR applied to the log-

transformed data, the ESEMIFAR forecasting hence consists of two stages: 1) The fore-

casting based on the SEMIFAR model applied to the log-data, and 2) The calculation of

the forecasts for the original data through exponential transformation. The former con-

sists again of two parts: the extrapolation of the estimated trend function µ̂(τn) and the

prediction of the stochastic part Zn+k. This will be discussed in the following separately.

4.1 Extrapolation of the trend function

In this paper the trend estimated by local linear regression will be used, because a higher

order local polynomial estimator may be instable at the endpoint and is hence not suitable
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for forecasting. A great advantage of the local linear estimator compared to a kernel

estimator is that µ̂ has automatic boundary correction, i.e. the bias of µ̂(τn) at the

endpoint of the time series is of the order O(h2), while the bias of a kernel estimator at

τn is of the order O(h). We propose to forecast the trend µ(τn+k) in the future by linear

extrapolation of µ̂(τn). Let ∆µ = µ̂(τn)− µ̂(τn−1). By means of the linear extrapolation,

the forecasted trend µ̂(τn+k) is given by

µ̂(τn+k) = µ̂(1) + k∆µ. (14)

The following assumptions are required for further discussion.

A3. In A1 assume further that d ∈ (0, 0.5), εt ∼ N(0, σ2
ε), and q = 0 for simplicity.

A4. The weighting function K(u) is a symmetric density on the compact support [−1, 1].

A5. The trend function µ is at least secondly continuously differentiable.

A6. The bandwidth h is selected by a consistent data-driven algorithm.

Assumptions A4 and A5 are standard assumptions in nonparametric regression. A3

through A6 ensure that the model can be estimated using some existing SEMIFAR algo-

rithm. A6 ensures that the used bandwidth ĥ ≈ hA = O(n(2d−1)/(5−2d)), where hA is the

asymptotically optimal bandwidth, and that µ̂ achieves the optimal rate of convergence.

4.2 The best linear and approximately best linear predictors

Let Z1, . . . , Zn denote the past observations. The best linear predictor of Zn+k under the

SEMIFAR model was proposed by Beran and Ocker (1999):

Z̆n+k =
n∑
j=1

βok,jZj, (15)

where βk,o = (βok,1, . . . , β
o
k,n)T is as given in Theorem 1 of Beran and Ocker (1999), which

minimizes the mean squared prediction error (MSE). Furthermore, Z̆n+k satisfies

E[(Zn+k − Z̆n+k)Zt] = 0, t = 1, . . . , n. (16)

Eq. (16) implies that the prediction error of Z̆n+k is orthogonal to any of the observations.
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It is however not easy to use Z̆n+k defined in (15), because βk,o has to be solved re-

peatedly at each forecasting step. Note that in the current context n is very large. For

simplicity, we hence propose to use an approximately best linear predictor based on the

truncated part of the AR(∞) representation of Zt. This idea is often employed to carry

out forecasting based on an ARMA model, when the sample size is large (Brockwell &

Davis, 2006, p. 184). Hence, an approximately best linear predictor based on Z1, . . . , Zn,

by means of the AR(∞) representation (10) of the FARIMA process is defined by

Ẑ∗n+k =
k−1∑
j=1

βjẐ
∗
n+k−j +

n+k−1∑
j=k

βjZn+k−j, (17)

where Ẑ∗n+k−j are the previously predicted values. For the practical implementation, we

propose to use the following linear predictor

Ẑn+k =
k−1∑
j=1

β̂jẐn+k−j +
n+k−1∑
j=k

β̂jẐn+k−j, (18)

where β̂j are the estimated coefficients in the AR(∞) form of Zt, Ẑn+k−j for j = k, ..., n+

k− 1, are the obtained residuals and Ẑn+k−j, j = 1, ..., k− 1, are the previously predicted

values. The linear predictor in (18) is our proposal to use in practice. To our knowledge,

in the literature the above defined approximately best linear predictor is not yet proposed

in the presence of long memory. The relationship between Ẑn+k and Ẑ∗n+k is given by

Lemma 2. Under Assumptions A3 through A6, the two linear predictors Ẑn+k and Ẑ∗n+k

are asymptotically equivalent to each other.

Proof of Lemma 2 is given in the appendix. Lemma 2 indicates that the asymptotic

properties of Ẑ∗n+k defined based on the unobservable quantities βi and Zt, and those of

Ẑn+k defined using β̂i and Ẑt are the same.

Now, the best linear predictor given infinite past observations Zn, . . . , Z1, Z0, Z−1, . . .,

is introduced. Similar to Eq. (5.5.3) in Brockwell & Davis (2006), this linear predictor

based on the AR(∞) form of the FARIMA model (10) is defined by

Z̃n+k =
k−1∑
j=1

βjZ̃n+k−j +
∞∑
j=k

βjZn+k−j. (19)

Properties of Ẑn+k are stated in the following theorem.
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Theorem 1. Under the same assumptions of Lemma 2, the proposed linear predictor

Ẑn+k is an approximately best linear predictor in the following sense:

i) E[(Z̃n+k − Ẑn+k)2] = o(1) and

ii) E[(Zn+k − Ẑn+k)Zt] = o(1), t = 1, . . . n.

Proof of Theorem 1 is given in the appendix. Theorem 1 i) shows that Ẑn+k converges

to Z̃n+k in mean squared error. Theorem 1 ii) shows that the prediction error of Ẑn+k

is approximately orthogonal to all of the observations. Note that Z̃n+k is the best linear

predictor based on infinite past observations. Hence, its MSE is no larger than that of

Z̆n+k, because the σ-algebra generated by Zn, . . . , Z1, Z0, Z−1, . . . includes that generated

by Zn, . . . , Z1 as a subset. Moreover, the MSE of Ẑn+k is no smaller than that of Z̆n+k.

Thus, Theorem 1 i) ensures that the MSE’s of all of the above mentioned linear predictors

are asymptotically the same. This leads to the following corollary.

Corollary 1. Under Assumptions A3 to A6, the linear predictor Ẑt is asymptotically

equivalent to the (exactly) best linear predictor Z̆t proposed by Beran and Ocker (1999).

4.3 Approximate forecasting intervals

Now, we will discuss the interval forecasting of an individual observation, the conditional

mean and the total mean. Note that the point forecasting for ζn+k is the same as that

for Zn+k, i.e. ζ̂n+k = Ẑn+k. The variance of Zn+k − Ẑn+k and that of ζn+k − Ẑn+k can be

easily obtained by adapting known results in the literature.

Theorem 2. Under the same conditions of Theorem 1 we have

i) var (Zn+k − Ẑn+k|Zn, . . . , Z1) ≈ VZn+k
, where VZn+k

= σ2
ε

k−1∑
i=0

α2
i ,

ii) var (ζn+k − Ẑn+k|Zn, . . . , Z1) ≈ Vζn+k
, where Vζn+k

= σ2
ε

k−1∑
i=1

α2
i .
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Proof of Theorem 2 is given in the appendix. The result in Theorem 2 i) is well known.

Note however that, in the current case VZn+k
tends to var (Zt) very slowly. Moreover, so

far as we know, the result in Theorem 2 ii) on the variance of the prediction error for the

conditional mean is usually not discussed in the literature. This is however an interesting

topic in financial econometrics. For example, it helps us to understand the accuracy of

the forecasted volatility or the forecasted conditional mean duration.

The point forecasting for an individual future observation is Ŷn+k = µ̂(τn+k) + Ẑn+k.

The length of the forecasting interval for Yn+k is the same as that for Zn+k, because the

error in µ̂(τn+k) is asymptotically negligible compared to that in Ẑn+k. Assume that εt

are i.i.d. N(0, σ2
ε). The approximate 100(1−α)%-forecasting interval for Yn+k is given by

Yn+k ∈
(
µ̂(τn+k) + Ẑn+k − qα/2

√
VZn+k

, µ̂(τn+k) + Ẑn+k + qα/2

√
VZn+k

)
(20)

and, for k > 1, the approximate 100(1− α)%-forecasting interval of ζn+k is given by

ζn+k ∈
(
Ẑn+k − qα/2

√
Vζn+k

, Ẑn+k + qα/2

√
Vζn+k

)
, (21)

where qα/2 is the upper α/2-quantile of N(0, 1). Furthermore, let m(τt) = µ(τt) + ζt and

g(τt) = exp[m(τt)] be the total means in Yt and Xt, respectively. We have m̂(τn+k) = Ŷn+k.

But the prediction error for m(τn+k) is approximately equal to that for ζn+k. Thus, the

approximate 100(1− α)%-forecasting interval for m(τn+k), k > 1, is given by

m(τn+k) ∈
(
µ̂(τn+k) + Ẑn+k − qα/2

√
Vζn+k

, µ̂(τn+k) + Ẑn+k + qα/2

√
Vζn+k

)
. (22)

Note that the prediction errors in ζ̂n+1 and m̂(τn+1) are both asymptotically negligible.

Our main purpose is to achieve suitable forecasting for Xn+k, λn+k and g(τn+k). Taking

the exponential transformation of Ẑn+k and m̂(τn+k) = Ŷn+k, respectively, we have

λ̂n+k = exp(Ẑn+k) =
n+k−1∏
j=1

Ẑ
β̂j
n+k−j, (23)

X̂n+k = ĝ(τn+k) = exp[µ̂(τn+k) + Ẑn+k] = ν̂(τn+k)λ̂n+k. (24)

The approximate 100(1 − α)%-forecasting intervals for Xn+k, λn+k and g(τn+k) can be

obtained based on (20) to (22), respectively, through exponential transformation.
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5 Application

Modeling and forecasting trading volumes and trading numbers in the financial market is

of great interest, because these quantities play a critical role and can be used as indicators

for market activity. Manganelli (2005) employed the ACD to model the conditional mean

volume and called it an ACV. We found that the ACD is also a useful framework for

analyzing trading numbers. In the following, we will therefore apply the Semi-FI-Log-

ACD to the daily trading volumes and trading numbers of BMW and Air France (AF)

from Jan 02, 2006 to Jun 30, 2012. It is found that daily trading volumes and trading

numbers may exhibit significant short memory, long memory as well as a significant slowly

changing trend at the same time (see Table 1 given later). Let Ẑt = Yt− µ̂(τt) denote the

residuals of the log-data. Histograms of the standardized values of Ẑt and those of their

exponential values are shown in Fig. 1 for all examples. We see that the distribution of

Ẑt in all cases is nearly normal. This indicates that the normal assumption on εt is a

suitable choice for analyzing and forecasting these quantities.

Fig. 2(a) shows the (aggregated) daily trading volumes of BMW together with the

point and interval forecasts (α = 5%) for an individual observation for the next 50 days,

obtained through exponential transformation of (20). From Fig. 2(a) we can see that

the higher the scale function, the larger the variation in the observations, which reflexes

the fact that Xt has time varying unconditional variance var (Xt) = ν2(τt)var (X∗t ). To

this end see also the other examples. This provides an evidence for the use of the log-

transformation, which transfers the multiplicative nonparametric regression to an additive

nonparametric regression. Fig. 2(b) displays the log-transformed data together with the

estimated trend µ̂(τt) (solid line) and the corresponding forecasts for Yn+k obtained from

(20). In this paper the Epanechnikov kernel is used as the weighting function. To ensure

the stability of ĥ, the bandwidth is selected based on 95% of the observations in the middle

part. From Fig. 2(b) we can see that after the log-transformation the data becomes more

concentrated and distributed symmetrically around the trend. And the level of variation

keeps now nearly unchanged over the whole observation period.

The estimated conditional means of the log-data together with the corresponding point

and interval forecasts for ζn+k calculated from (21) are given in Fig. 2(c). The estimated

conditional means look quite stationary. The difference between the forecasting interval
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of Yn+k in Fig. 2(b) and that of ζn+k in Fig. 2(c) is that the former is affected by εn+k,

but the latter not. The estimated total means in the original data ĝ(τt) together with

the point forecasts ĝ(τn+k) and their forecasting intervals calculated through exponential

transformation of (22) are displayed in Fig. 2(d), which reflex the total dynamics of the

daily trading volumes of BMW caused by past information and slowly changing macroe-

conomic environment. Results on λ̂t and m̂(τt) are omitted. The same results for daily

trading volumes of Air France are displayed in Fig. 3.

Similar results for daily trading numbers of BMW and those of Air France are displayed

in Fig. 4 and 5. Fig. 2 to 5 indicate that both of the Semi-FI-Log-ACD model and the

proposed approximately best linear predictor work in practice very well. From Fig. 5(b)

we can see that at the end of the time series the point forecasts are much lower than the

estimated trend, but will tend to the average level in the near future. This reflexes a well

known feature of a long memory process clearly, i.e. long memory may cause spurious

local trends. From Fig. 4(d) and 5(d) we can see that trading numbers and the volatility

of trading numbers of both companies increased strongly in the last years and will possibly

increase in the future. This fact seems also to be true for trading volumes of Air France,

but not for trading volumes of BMW. Finally, comparing Fig. 1(c) with Fig. 3(c), or Fig.

2(c) with Fig. 4(c), it seems that the conditional means of the daily trading volumes and

trading numbers of the same company are strongly correlated.

The selected bandwidth, the estimated long memory parameter, the selected AR order

by the BIC together with the estimated short memory parameter, if applicable, in all

cases are listed in Table 1, where the 95%-confidence intervals for the corresponding

parameters and the significance test of the trend are also listed. For instance, for daily

trading volumes of BMW we have ĥ = 0.146 and p̂ = 1, where µ̂(τ), d̂ and φ̂1 are all

significant at α = 5%. This means that daily trading volumes of BMW can be well

modeled by a nonparametric regression model with long memory errors. After removing

the fitted trend, the residuals follow a FARIMAR(1, 0.299, 0) model. For daily trading

volumes of Air France an EFARIMA(1, 0.393, 0) model is fitted, but now the trend is

insignificant and the selected bandwidth ĥ = 0.243 is very large. That is the log-data of

daily trading volumes of Air France can be simply modeled by a FARIMA model.
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6 Final remarks

In this paper necessary and sufficient conditions for the existence of a stationary solution of

the FI-Log-ACD model are obtained. Short and middle-term forecasting of a nonnegative

process with long memory and a nonparametric scale function based on the Semi-FI-Log-

ACD model is studied. A simple linear predictor is proposed. It is shown that the proposal

is an approximately best linear predictor. Application to real data sets shows that the

proposed linear predictor works very well in practice. It is also confirmed that the Semi-FI-

Log-ACD model is very useful for modeling different kinds of financial data, in particular

aggregated financial data. Furthermore, simultaneous estimation of the nonparametric

trend and the long memory error process will improve the quality of the forecasting. The

more important reasons for this are as follows. On the one hand, if possible long memory

in the conditional mean of a process is not considered, the selected bandwidth will be

much smaller than it should be and the formula for calculating the asymptotic variance

is also wrong. This will lead to a significant trend, even if the underlying process is

indeed stationary. On the other hand, if an existing nonparametric scale function is not

considered, it will be misinterpreted as very strong long memory.

Finally, the proposed models can be extended in different ways. Firstly, it is of inter-

est to extend the data-driven algorithms used in this paper to include the MA-part in

Zt. Furthermore, properties of the FI-Log-ACD model under the log-logistic, log-Laplace

and other suitable distributions of ηt should also be studied in detail. Under these dis-

tributions, the nonparametric trend can be estimated similarly. The unknown FARIMA

parameters can be estimated from the residuals by QMLE. Now, the selection of the most

suitable distribution is also an important topic. These problems will be studied elsewhere.
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Appendix. Proofs of results

Proof of Lemma 2. It is well known that, under assumptions A3 through A6, the local

linear estimator µ̂(τ) with fractional times series error achieves the optimal convergence

rate of the order O(n−2(1−2d)/(5−2d)) (Feng and Beran, 2013). This results in the fact that

the difference between Ẑt and Zt is also of the order O(n−2(1−2d)/(5−2d)). Moreover, when

n → ∞ and d > 0, the effect of the estimated trend function on the estimation of the

unknown parameter vector θ is negligible (Beran and Feng, 2002a), and θ̂ is now still
√
n-

consistent. Using Taylor expansion it can be shown that β̂j − βj = βjOp(n
−1/2). Detailed

discussion on this point is omitted to save space.

In the following, we will only show the result of Lemma 2 for k = 1 in detail. Note that

Ẑ∗n+1 =
∑n

j=1 βjZn+1−j = Op(1) and
∑n

j=1 |βj| <
∑∞

j=1 |βj| <∞ for d > 0. We have

Ẑn+1 − Ẑ∗n+1 =
n∑
j=1

β̂jẐn+1−j −
n∑
j=1

βjZn+1−j

=
n∑
j=1

β̂jẐn+1−j −
n∑
j=1

β̂jZn+1−j −
n∑
j=1

βjZn+1−j +
n∑
j=1

β̂jZn+1−j

=
n∑
j=1

β̂j(Ẑn+1−j − Zn+1−j)−
n∑
j=1

(βj − β̂j)Zn+1−j

=
n∑
j=1

β̂jOp(n
−2(2d−1)/(5−2d))−

n∑
j=1

βjZn+1−jOp(n
−1/2)

≈
n∑
j=1

β̂jOp(n
−2(2d−1)/(5−2d)) (A.1)

≤ Op(n
2(2d−1)/(5−2d))

n∑
j=1

|β̂j| = op(1).

Similarly, this result can be proved for k > 1. Lemma 2 is proved. 3

Proof of Theorem 1. Following Lemma 2, the results of Theorem 1 will be proved

by replacing Ẑn+k with Ẑ∗n+k. Under the same conditions of Lemma 2 we have

i) For k = 1:

E[(Z̃n+1 − Ẑ∗n+1)
2] = E

( ∞∑
j=1

βjZn+1−j −
n∑
j=1

βjZn+1−j

)2
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= E

( ∞∑
j=n+1

βjZn+1−j

)2


=
∞∑

i=n+1

βi

∞∑
j=n+1

βjE[Zn+1−iZn+1−j]

=
∞∑

i=n+1

βi

∞∑
j=n+1

βjγ(i− j) (A.2)

≈
∞∑

i=n+1

Cβi
−d−1

∞∑
j=n+1

Cβj
−d−1γ(i− j)

≤ γ(0)
∞∑

i=n+1

|Cβ|i−d−1
∞∑

j=n+1

|Cβ|j−d−1

= γ(0)O[(n+ 1)−2d] = o(1).

More details of the proof above will be clarified by the remark given later.

Now, let k > 1 and assume that the results are proved for i = 1, . . . , k − 1. We have

E[(Z̃n+k − Ẑ∗n+k)2] = E

(k−1∑
j=1

βjZ̃n+k−j +
∞∑
j=k

βjZn+k−j −
k−1∑
j=1

βjẐ
∗
n+k−j −

n+k−1∑
j=k

βjZn+k−j

)2


= E

((k−1∑
j=1

βjZ̃n+k−j −
k−1∑
j=1

βjẐ
∗
n+k−j

)
+

∞∑
j=n+k

βjZn+k−j

)2


= E
[
T 2
1 + 2T1T2 + T 2

2

]
= E[T 2

1 ] + 2E[T1T2] + 2E[T 2
2 ],

where T1 =
∑k−1

j=1 βj(Z̃n+k−j − Ẑ∗n+k−j) and T2 =
∑∞

j=n+k βjZn+k−j.

Since all of the terms in T1 are of the order op(1), T1 is hence an op(1) term. Similarly as

for k = 1, it can be shown that T2 is also of the order op(1). This leads to the conclusion

that E[(Z̃n+k − Ẑn+k)2] = o(1) holds for k > 1.

ii) For k = 1 and any t = 1, ..., n:

E[(Zn+1 − Ẑ∗n+1)Zt] = E

[(
∞∑
i=1

βiZn+1−i + εn+1 −
n∑
i=1

βiZn+1−i

)(
∞∑
j=1

βjZt−j + εt

)]

= E

[(
∞∑

i=n+1

βiZn+1−i + εn+1

)(
∞∑
j=1

βjZt−j + εt

)]
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= E

[
∞∑
j=1

βjZt−j

∞∑
i=0

βn+1+iZ−i + εn+1

∞∑
j=1

βjZt−j

+εt

(
∞∑
i=0

βn+1+iZ−i + εn+1

)]

= E

[
∞∑
j=1

βjZt−j

∞∑
i=0

βn+1+iZ−i

]
+ E

[
εn+1

∞∑
j=1

βjZt−j

]

+ E

[
εt

(
∞∑
i=0

βn+1+iZ−i + εn+1

)]
.

Since E
[
εn+1

∑∞
j=1 βjZt−j

]
= 0 and E [εt (

∑∞
i=0 βn+1+iZ−i + εn+1)] = 0,

E[(Zn+1 − Ẑ∗n+1)Zt] = E

[
∞∑
j=1

βjZt−j

∞∑
i=0

βn+1+iZ−i

]
(A.3)

=
∞∑
i=0

βn+1+i

∞∑
j=1

βjE[Z−iZt−j]

≤
∞∑
i=0

|βn+1+i|
∞∑
j=1

| βj | |γ(t+ i− j)|

≤ γ(0)
∞∑
i=0

|Cβ|(n+ 1 + i)−d−1 = O[(n+ 1)−d] = o(1).

Now, let k > 1 and assume that the results are proved for i = 1, . . . , k − 1, we have

E[(Zn+k − Ẑ∗n+k)Zt] = E

{[
k−1∑
i=1

βi(Zn+k−i − Ẑ∗n+k−i) +
∞∑

i=n+k

βiZn+k−i + εn+k

]
Zt

}
= E[T3 + T4 + T5], (A.4)

where T3 = Zt
∑k−1

i=1 βi(Zn+k−i− Ẑ∗n+k−i), T4 = Zt
∑∞

i=n+k βiZn+k−i and T5 = εn+kZt with

E(T5) = 0. It is clear that E(T3) = o(1), because the results hold for i = 1, . . . , k − 1.

The fact that E(T4) = o(1) can be proved similarly as for k = 1. Insert these results into

(A.4) we obtain

E[(Zn+k − Ẑ∗n+k)Zt] = o(1), t = 1, ..., n, (A.5)

for any k > 1. Theorem 1 is proved. 3

Remark 1. Some techniques used in the proof only apply to d > 0, while for d < 0

other approaches should be used. It is very common that some conclusions hold only for
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long memory errors but not for antipersistent errors. For instance, for d > 0 we have∑∞
i=1 βi = 1. For d < 0, βi are however not summable. Furthermore, the approximate

formula of γ(k) does not apply to γ(i − j) in the fourth line of Eq. (A.2). The reason

is that although both i and j tend to infinity, their difference may be very small. Hence,

here the fact that |γ(k)| ≤ γ(0) is simply employed. Detailed analysis of the second sum

there may lead to more accurate result. This is however omitted to simplify the proof.

Proof of Theorem 2. For a causal stationary and invertible ARMA model, the predictor

Z̃n+k defined in Eq. (19) can be represented as a MA(∞) form (see e.g. Theorem 5.5.1

of Brockwell & Davis, 2006)

Z̃n+k =
∞∑
i=k

αiεn+k−i. (A.6)

It can be shown that this fact also holds, if Zt is a causal stationary and invertible

FARIMA model considered in this paper. The difference between Zn+k and Z̃n+k is:

Zn+k − Z̃n+k =
∞∑
i=0

αiεn+k−i −
∞∑
i=k

αiεn+k−i =
k−1∑
i=0

αiεn+k−1. (A.7)

The variance of Zn+k − Z̃n+k is therefore

var (Zn+k − Z̃n+k) = σ2
ε

k−1∑
i=0

αi. (A.8)

Note that the point forecasting for the conditional mean, ζ̃n+k, is the same as Z̃n+k. The

difference between ζn+k and Z̃n+k is given by

ζn+k − Z̃n+k =
∞∑
i=1

αiεn+k−i −
∞∑
i=k

αiεn+k−i =
k−1∑
i=1

αiεn+k−i (A.9)

with the variance

var (ζn+k − Z̃n+k) = σ2
ε

k−1∑
i=1

α2
i . (A.10)

In Theorem 1 it is shown that Ẑn+k ≈ Z̃n+k. Thus, Zn+k − Ẑn+k ≈ Zn+k − Z̃n+k and

ζn+k − Ẑn+k ≈ ζn+k − Z̃n+k. Consequently, var (Zn+k − Ẑn+k) ≈ var (Zn+k − Z̃n+k) and

var (ζn+k − Ẑn+k) ≈ var (ζn+k − Z̃n+k). Theorem 2 is proved. 3

18



Reference

Allen, D.E., Chan, F., McAleer, M., & Peiris, S. (2006). Finite sample properties of the

QMLE for the Log-ACD model: Application to Australian Stocks. Preprint, Edith

Cowan University.

Baillie, R.T., Bollerslev, T., & Mikkelsen, H.O. (1996). Fractionally integrated general-

ized autoregressive conditional heteroskedasticity. J. Econometrics, 74, 3-30.

Bauwens, L., Galli, F., & Giot, P. (2008). The moments of Log-ACD models. Quanti-

tative and Qualitative Analysis in Social Sciences, 2, 1-28.

Bauwens, L., & Giot, P. (2000). The logarithmic ACD model: An application to the

bid-ask quote process of three NYSE stocks. Annales d’Économie et de Statistique,
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Figure 1: Histograms of the standardized residuals of the SEMIFAR model and their

exponential transformation for all examples.
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Figure 2: Estimation and forecasting results of the daily trading volumes of BMW from

Jan 02, 2006 to Jun 30, 2012, obtained by the Semi-FI-Log-ACD model.
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Figure 3: The same results as given in Fig. 2 for daily trading volumes of Air France.
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Figure 4: The same results as given in Fig. 2 for daily trading numbers of BMW.
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Figure 5: The same results as given in Fig. 2 for daily trading numbers of Air France.
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Table 1: Results of ESEMIFAR models for the four datasets

Series ĥ d̂ & 95%-CI p̂ φ̂1 & 95%-CI trend

VOL
BMW 0.146 0.299 [0.233, 0.366] 1 0.109 [0.024, 0.193] sign.

AF 0.243 0.393 [0.355, 0.431] 0 — insign.

TrN
BMW 0.124 0.329 [0.260, 0.398] 1 0.142 [0.055 0.228] sign.

AF 0.207 0.409 [0.372, 0.447] 0 — sign.
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