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Note: Order of questions swapped; it makes more sense to start with the equivalency proof of inter-
arrival times and counting process characterization.

Note 2: think of this as solution sketches. There are a couple of details missing (e.g., we don’t
explicitly prove independence), but that should be enough to get you an idea.

1. Show that the two definitions of Poisson process (via interarrival times and via number of events
in time interval) are equivalent.

Lösung:

• Assume that Xi are i.i.d. with Xi ∼ exp(λ ). We have to show that the increments of N(t)
follow a Poisson distribution.

– We note that the process is time-invariant because of memorylessness.
– We have hence to look at P(N(t) = n).
– Brute force: follows immediately from the quantiles of the n-fold Gamma distribution.
– Proof directly: Trivial for n = 0.

P(N(t) = 0) = P(X1 > t)

= e−λ t (1)

For n = 1, look at convolution of X1, X2, P(X1 < t ∧X1 +X2 > t).
We have to show: P(N(t) = 1) = (λ t)1

1! e−λ t

P(X1 < t ∧X1 +X2 > t) =
∫ t

0
P(X1 +X2 > t|X1 = s) fX1(s)ds

=
∫ t

0
P(X2 > t− s) fX1(s)ds

=
∫ t

0
e−λ (t−s)

λe−λ sds

=
∫ t

0
λe−λ tds

= λe−λ t
∫ t

0
1ds

= λ te−λ t

(2)

. . . and so on. Use Gamma density!

• Assume that N(t) follows a Poisson distribution. I.e., we know that P(N(t) = k) = (λ t)k

k! e−λ t .
We have to show that the interarrival times are i.i.d. exponential .

– Independence follows from independent increments of the counting process.
– First look at P(X1 ≤ t); this is exponential immediately from the definition of Poisson

distribution.
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More in detail: P(X1 ≤ t) = 1−P(X1 > t). This event occurs when the interval (0, t) has
no events, i.e., N(t) = 0. Hence:

P(X1 ≤ t) = 1−P(X1 > t) = P(N(t) = 0) = 1− eλ t

by definition of the Poisson distribution.
– Now look at P(X2 > t). Condition this on the time of the first arrival X1 = s.

P(X2 > t) =
∫

∞

s=0 P(X2 > t|X1 = s) f (s)ds
(where f is the density of the exponential distribution, which we have already established
for X1).
For the first event to happen at s and the second event to happen more than t units after
event 1, there must be no event occurring in interval (s,s+ t). This interval has length t,
and because of independent increments, it doesn’t matter whether we look at (s,s+ t) or
(0, t).
Hence, the above equation simplifies to
P(X2 > t) =

∫
∞

s=0 P(N(t) = 0) f (s)ds = P(N(t) = 0)
∫

∞

s=0 f (s)ds = P(N(t) = 0) = e−λ t

Note that the second-to-last equality follows because we integrate over the entire support
of the density, which must by definition give 1.

– Continue inductively for X3, . . ..

2. Show that, for the special case where A and B are Poisson processes, their superposition is again a
Poisson process, the rate of which is the sum of the rates of A and B.

Lösung: Easiest approach: Count process!

Let N1 and N2 be the count processes for the two individual, stochastically independent processes to
be superimposed, with rates λ1 and λ2, respectively. Obviously, N(t) = N1(t)+N2(t); the number
of events that have happened up to t in the superimposed process is the sum of the number of
events in the two constituting processes.

We have to show: N(t) follows a Poisson distribution with rate λ1 +λ2. We use law of total proba-
bility and condition on N1.

P(N(t) = k) = P(N1(t)+N2(t) = k) = ∑
k
n1=0 P(N1(t)+N2(t) = k|N1(t) = n1)P(N1(t) = n1)

Simplifying the first term gives: . . .= ∑
k
n1=0 P(N2(t) = k−n1)P(N1(t) = n1).

Plugging in definition of Poisson PMF:

. . .= ∑
k
n1=0

(λ2t)k−n1

(k−n1)!
e−λ2t (λ1t)n1

(n1)!
e−λ1t

Rearrange terms and multiply by k!
k! :

. . .= e−λ1te−λ2t 1
k! ∑

k
n1=0

k!
(n1)!(k−n1)!

(λ2t)k−n1(λ1t)n1 = e−λ1te−λ2ttk 1
k! ∑

k
n1=0

k!
(n1)!(k−n1)!

λ
k−n1
2 λ

n1
1

But the sum is just (λ1 +λ2)
k!

Hence we obtain:

. . .= ((λ1+λ2)t)k

k! e−(λ1+λ2)t

which is just what we had to show!

Note: In passing we have shown the sum of two independent Poisson random variables is again
Poisson with the sum of the rates as parameter.

3. Let A be a Poisson process with rate λ . For each event in A, accept it with probability p and reject
with probability 1− p (splitting the Poisson process). Show that the sequence of accepted events
is again a Poisson process with rate pλ .

Lösung:
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• Probably easiest approach: Count process again.
Let Ns(t) be the count process for the splitted process, N(t) the original process, p the accep-
tance probability for each event.
Fairly straightforward, condition P(Ns(t) = k) on the number of events that have happened
in the original process in this interval. Obviously, for k events to remain after splitting, the
original process must have generated at least k events in the same time interval.
P(Ns(t) = k) = ∑

∞
m=k P(Ns(t) = k|N(t) = m)P(N(t) = m)

Now P(N(t) = m) = (λ t)m

m! e−λ t by definition of Poisson process.
P(Ns(t) = k|N(t) = m) occurs when out of these m events generated by the original process,
any k were chosen. Each choice is an independent Bernoulli trial with success probability p,
hence the number of successes is just Binomially distributed.
Hence: P(Ns(t) = k|N(t) = m) =

(m
k

)
pk(1− p)m−k

Putting this together give us:

P(Ns(t) = k) = ∑
∞
m=k

(m
k

)
pk(1− p)m−k (λ t)m

m! e−λ t

Rearrange terms and shift the start index from m to 0:

P(Ns(t) = k) = pke−λ t (λ t)k

k! ∑
∞
m=k(1− p)m−k (λ t)m−k

(m−k)!

Look at the sum term: ∑
∞
m=k(1− p)m−k (λ t)m−k

(m−k)! = ∑
∞
m=0(1− p)m (λ t)m

(m)! , which is just the Taylor

expansion for e(1−p)λ t

Bringing this back together: P(Ns(t) = k) = pke−λ t (λ t)k

k! e(1−p)λ t = (pλ t)k

k! e−pλ t

This is just what we had to show! QED

• Note that the solution via the IAT characterization is also instructive. We have to compute
sums of exponentially distributed random variables, giving Gamma distributed RVs, which
we sum up again weighted by their occurrence, which is geometrically distributed. After
some basic algebraic drudgery, we end up with the same result. But this is not necessarily
fun . . . .
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