
MAC Protocol simulation

November 30, 2017

1 Simulating MAC protocols

In this exercise, we simulate MAC several MAC protocols that make different assumptions about
availability of knowledge of paket queues at different nodes.

The setup is as follows: * Assume there are a couple of stations sharing a medium * At each
station, packets arrive for transmission over the shared medium (the packet’s destination is not
relevant here) * We make typical assumptions: time is slotted, only one transmission per timeslot *
The scheduler has to decide, for each time slot, which station to serve * We look at both centralized
and distributed schedulers

1.1 Setup and helper class

In [17]: from collections import deque
import numpy as np
%matplotlib notebook
import matplotlib.pyplot as plt

1.1.1 A helper class to model queues

We use the following class to represent a queue at each station. This class adds a packet to the
queue with a given probability. It removes a packet from the front of the queue when the station is
served. It also has a couple helper functions to keep track of statistics, in particular, average queue
length over time and averge waiting time of pacekts in the queue.

In [18]: class ArrivalQueue:

def __init__(self, rate):
"""Initialize with rate of a Bernoulli
arrival process."""
self.rate = rate

this is the actual queue, containing packets
self.queue = deque()

just a helper list, to store queue lengths at different points
in time - to ease computation of statistics
self.queuelength = [(0, 0)]

1

self.waitingtime = 0
self.numberserved = 0

def arrive(self, now):
if np.random.uniform() < self.rate:

self.queue.append(now)
self.queuelength.append((now,len(self.queue),))

def serve(self, now):
try:

el = self.queue.popleft()
self.waitingtime += now - el
self.numberserved += 1
return 1

except IndexError:
return 0

def stats(self, now):
self.queuelength.append((now, len(self.queue)))
try:

x = sum([
(b[0]-a[0])*a[1]
for

(b, a) in
zip(self.queuelength[1:],
self.queuelength[:-1])
])

y = (self.queuelength[-1][0] - self.queuelength[0][0])

print(x, y)
avgql = x / y

except ZeroDivisionError:
avgql = -1

try:
avgwaiting = self.waitingtime/self.numberserved

except ZeroDivisionError:
avgwaiting = -1

return (avgql, avgwaiting)

1.1.2 Convenience function

In [19]: def argmax(sequence):
m = max(sequence)
i = sequence.index(m)
return i

2

1.2 Simulation framework

A couple functions to run the simulation and to visualize the results. Core mechanism is to have
scheduling functions as Python generators that can take a value when called with send.

In [20]: def simulate(scheduler_fct, rates, timesteps=1000):
"""Execute one run of timesteps many time slots, using
arrival rates as given in rates list.
Call the scheduler_fct as a generator.
Returns an array of ArrivalQueues, from which statistics
can be extracted."""

size = len(rates)
queues = [ArrivalQueue(r) for r in rates]
scheduler = scheduler_fct(len(rates), queues)

now = 0
transmit = 0

serve = scheduler.send(None)
while now < timesteps:

for q in queues:
q.arrive(now)

serve = scheduler.send(transmit)
if serve >= 0:

it would be so much nicer if we could raise exceptions
in a generator
and still continue to use it...
transmit = queues[serve].serve(now)

print("serving {} at {}: transmitting: {}".format(serve, now, transmit))

now += 1

return queues

In [21]: def plot_queues(allqueues, titles=[]):
"""Plot the queue evolution for all runs contained
in allqueues."""

f, axarr = plt.subplots(len(allqueues), sharex=True)
plt.tight_layout()

This is just to fix an inconvenient behavior of subplots, which
does not always return an iterable:
if len(allqueues)==1:

axarr = [axarr]

3

for ax, queues, title in zip(axarr, allqueues, titles):
ax.set_title(title)
for q in queues:

ql = q.queuelength
ax.step([x[0] for x in ql],

[x[1] for x in ql],)

plt.show()

In [22]: def run_all(rates, timesteps, allschedulers):
"""Run simulation for multiple schedulers,
with otherwise identical parameters."""

allqueues = []

print("Avg. QL, avg. waiting time")
for f in allschedulers:

queues = simulate(f, rates, timesteps)

for q in queues:
print(q.stats(timesteps))

print("-----------")

allqueues.append(queues)

plot_queues(allqueues,
titles=[s.__doc__ for s in allschedulers])

1.3 Schedulers

We will look at a couple of schedulers. They are implemented as Python generators, i.e., as infinite
loops that produce a new value whenever they are called. A simulation look will initalize the
schedulers passing them a pointer to the list of arrival queues. (TODO: perhaps nice to pass a
list with the ArrivalQueues.queues?) Then, each call happens when the packet scheduler should
decide which queue will be active next. Return that queue index, or a -1 if no queue is sending or
a collission would occur.

1.3.1 Round-robin scheduler

Perhaps the easiest one: serve one terminal after the other, irrespective of queue levels. Easy to
implement, even in distributed fashion.

In [23]: # Note: The scheduling functions are
PEP 342 style generators
that can accept a send() call

def roundrobin(size, queues):
"""Round robin"""
index = 0

4

queues = queues

while True:
previous_success = yield index
print("previous transmit: {}".format(previous_success))
index = (index + 1) % size

1.3.2 Longest queue first

In a centralized setting, this is an entirely plausible one: serve the longest queue first. No need to
do complicated tie breaking if we are not worried about fairness.

In [24]: def longest_queue(size, queues):
"""Longest queue"""

index = 0
queues = queues

while True:
previous_success = yield index
BEGIN SOLUTION
tmp = [len(q.queue) for q in queues]
END SOLUTION
index = argmax(tmp)

1.3.3 Queue with oldest packet first

Similar idea: serve oldest packet first.

In [25]: def oldest_queue(size, queues):
"""Queue with oldest packet"""

index = 0
queues = queues

while True:
previous_success = yield index

BEGIN SOLUTION
tmp = [-1 * q.queue[0] if len(q.queue) > 0 else -9999

for q in queues]
index = argmax(tmp)
END SOLUTION

1.3.4 Aloha

Pure Aloha is of course trivial to implement. It will, however, even in this simple setting fail at any
nontrivial traffic loads if we do not add same simple backoff mechanism. Think about possible
approaches.

5

In [26]: def aloha(size, queues):
convention: return -1 when there is nothing useful to do
"Aloha"
queues = queues
index = 0

while True:
previous_success = yield index

which queues have at least a single packet?
busyqueues = [len(q.queue) > 0 for q in queues]
print(busyqueues)

BEGIN SOLUTION
how many of them are there?
numBusy = busyqueues.count(True)
if numBusy >= 1:

randomly pick any of the true values, but do a bit of backoff
busyindexes = [i

for i, v in enumerate(busyqueues)
if v and (np.random.uniform() < 0.5)]

print(busyindexes)
print("----")
if len(busyindexes) == 1:

index = busyindexes[0]
else:

index = -1
else:

index = -1

END SOLUTION

1.3.5 Complete information

And here is a clever idea, suitable for distributed implementation with good performance charac-
teristics.

Suppose we are in a shared medium where everybody can observe all actions of every other
terminal, without incurring any error. Suppose that in the previous time slot, terminal k had the
right to send. Let us think about what we then can observe and can deduce about queue length
– actually, we know nothing about upper bounds, but wen can deduce something about an upper
bound on queue lengths:

• For all terminals, we do not know whether a packet has arrived or not in that time slot.
Hence, we increment every terminals upper bounds by 1.

• If terminal k did send in the previous slot: we know that it has one packet less in its queue,
and can hence reduce its upper bound by 1.

• It terminal k did not send in the previous slot, we know that it had no packet in its queue at the
beginning of that previous slot. Hence, now terminal k might have at most a single packet in

6

its queue, arrived just during this past slot. Hence, the upper bound for terminal k’s queue
is no 1!

This is the key insight: we have a means of observing that some terminal’s queue is (almost)
empty. We hence simply do a scheduler based on the longest upper bound (rather than longest
queue).

The second key point here is that this computation of upper bounds can be done by each
terminal separately, and they will all come to the same conclusion! Hence, they all know which
terminal has the largest upper bound, and can hence deterministically and consistently decide
whose terminal’s turn it is to send in this time slot.

Try to implent this scheduler in the code fragement below. The crucial aspect is updating the
variable bounds based on the information the simulation loop tells it.

In [27]: def complete_information(size, queues):
"""Complete Information"""
index = 0
queues = queues
bounds = [0 for i in range(len(queues))]

while True:
previous_success = yield index
previous_success olds information from simulation loop!

BEGIN SOLUTION
in all queues, one packet MIGHT have arrived:
for i in range(len(bounds)):

bounds[i] += 1

for the special case of the queue we just served,
we gained additional knowledge:
if previous_success:

bounds[index] -= 1
else:

bounds[index] = 1

END SOLUTION

next queue to serve: queue with smallest bound,
ties broken in order of index (to be deterministic)

index = argmax(bounds)

1.4 Let’s do it!

In [30]: # Setup simlaution parameters and run it:

timesteps = 50000

7

rates = [0.15, 0.15, 0.15]
rates = [0.1, 0.2, 0.69]

schedulers_to_run = [longest_queue,
oldest_queue,
roundrobin,
aloha,
complete_information,
]

run_all(rates, timesteps, schedulers_to_run)

Avg. QL, avg. waiting time
(5.4846, 45.66707218167072)
(5.92444, 24.53126248501798)
(6.357, 7.791269194974407)

(6.1283, 50.444092618246586)
(11.13336, 51.14282828282828)
(36.52038, 51.47692218485446)

(1.13696, 1.4192377495462796)
(1.49578, 2.487699568229742)
(8936.03226, 12919.358972820544)

(4.43506, 33.97917485265226)
(1301.71084, 6517.336414299307)
(13496.40532, 19818.85062683382)

(16.98592, 159.17932949811546)
(30.98408, 148.22571371927043)
(58.01554, 82.50822674418605)

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

8

	Simulating MAC protocols
	Setup and helper class
	A helper class to model queues
	Convenience function

	Simulation framework
	Schedulers
	Round-robin scheduler
	Longest queue first
	Queue with oldest packet first
	Aloha
	Complete information

	Let's do it!

