
ConstellationPhaseNoise

October 31, 2017

1 Noise and constellation diagrams

This assignment looks at the manifestation of an AWGN channel in a constellation diagram. We
will use QPSK modulation to show the effects here.

In []: # common setup code

Imports for numerical library and plotting library:

import numpy as np

the following line is necessary to use plotting in Jupyter notebook
remove if you use this code outside a notebook
%matplotlib notebook
import matplotlib.pyplot as plt

1.1 Basic variables to control visualization

In []: # base frequency of the carrier signal
assumption: symbol duration is unit time
f = 5

snrs = [0.1, 1, 10]
samples = 50 # samples per symbol duration
repetitions = 1000 # how many samples to use?

In case we want to visualize some of the signals directly:
show_time_plots = False

Setup the carrier, modulation scheme, etc. Watch out for correct alignment of samples; else,
FFT functions will get confused

In []: # Create a carrier per symbol period
time, dT = np.linspace(0, 1, num=samples,

endpoint=False, retstep=True
)

For easier plotting of sequence of bits, let's get the

1

time samples for that as well:
longtime, _ = np.linspace(0, repetitions, num=repetitions*samples,

endpoint=False, retstep=True
)

four constelation points for QPSK:
constellation_points = np.array([

complex(np.cos(2*np.pi/4*phase + np.pi/4),
np.sin(2*np.pi/4*phase + np.pi/4))

for phase in range(0,4)])

and for each constellation point, the corresponding carrier signal
for one unit time
carriers = [

np.cos(2*np.pi*f*time + 2*np.pi/4*phase + np.pi/4)
for phase in range(0,4)]

1.2 Compute results for one particular SNR value

A function to make it easier to iterate over SNRs

In []: def one_run(snr,
repetitions=repetitions,
carriers=carriers, f=f):

"""
For given SNR, generate number of repetitions many symbols,
add noise corresponding to the given SNR (watch out: Power!),
and for each noisy symbol, compute its constellation point at
the given frequency f via an FFT.
Return lists of (1) symbols, (2) received constellations points
and (3) True/False for each symbol, whether received correctly or not."""

Create a sequence of QPSK constellation points.
Effectively, that means choose phases out of 45, 135, -45, -135 degrees

YOUR SOLUTION HERE

modulate the signals: create a long signal for all samples

YOUR SOLUTION HERE

add noise
YOUR SOLUTION HERE

noisy_signal = signal + noise

2

demodulate; look at each symbol separate, do FFT to compute phase
received_signals = np.split(noisy_signal, repetitions)

YOUR SOLUTION HERE

check which symbols where correctly transmitted
YOUR SOLUTION HERE

return symbols, received_cps, correct_bits

2 Visualize Signal

2.1 Plot one constellation diagram

Corresponds to one particular SNR value. To be called with a matplotlib axis!

In []: def show_one(axis, symbols, received_cps, correct_bits, snr,
constellation_points=constellation_points):

axis.scatter(constellation_points.real,
constellation_points.imag,
c=range(0, 4),
marker="*", s=500)

plot the "correct" bits:
axis.scatter(received_cps[correct_bits].real,

received_cps[correct_bits].imag,
c=symbols[correct_bits],
marker='o'
)

and the incorect ones:
axis.scatter(received_cps[np.logical_not(correct_bits)].real,

received_cps[np.logical_not(correct_bits)].imag,
c=symbols[np.logical_not(correct_bits)],
marker='x',
s=100,
)

axis.plot((-1.5, 1.5), (0, 0), 'r--')
axis.plot((0, 0), (-1.5, 1.5), 'r--')
axis.set(aspect=1, adjustable="box-forced")
axis.set_title("SNR={}".format(snr))

2.2 Show all constellation diagrams, for all SNRs

Also, call the actual computation function (TODO: split in two functions?)

In []: def visualize(snrs,
repetitions=repetitions,

3

constellation_points=constellation_points):

fig, axes = plt.subplots(len(snrs), 1, sharex=True)
for s, a in zip(snrs, axes):

symbols, received, correct = one_run(s)
show_one(a, symbols, received, correct, s)

plt.show()

3 Run it!

(TODO: check axis scaling? again, works fine outside the notebook :-()

In []: visualize(snrs)

4

	Noise and constellation diagrams
	Basic variables to control visualization
	Compute results for one particular SNR value

	Visualize Signal
	Plot one constellation diagram
	Show all constellation diagrams, for all SNRs

	Run it!

