
BCH

October 12, 2017

1 Simulation von FEC über unterschiedliche Kanäle

1.1 Basic setup

In []: import numpy as np
from pprint import pprint as pp
%matplotlib notebook
from matplotlib import pyplot as plt

Die Variable bchlist enthält eine Liste von Triples von (Paketlänge, Payload, maximal kor-
rigierbare Fehler).

In []: # properties of bch as (n, k, t) triples
bchlist = [(127, 127, 0),

(127, 120, 1),
(127, 113, 2),
(127, 106, 3),
(127, 99, 4),
(127, 92, 5),
(127, 85, 6),
(127, 78, 7),
(127, 71, 9),
(127, 64, 10),
(127, 57, 11),

]

packetlength = 127
not elegant: packetlength has to be identical for all BCH codes in the following code

let's also try longer packets:
packetlength = 1023
bchlist = [

(1023, 1023, 0),
(1023, 973, 5),
(1023, 923, 10),
(1023, 873, 15),
(1023, 828, 20),
(1023, 778, 25),

1

(1023, 728, 30),
(1023, 698, 35),
(1023, 648, 41),
(1023, 608, 45),
(1023, 573, 50),

]

how many repetitions to run, for stochastic confidence?
also: the more repetition, the more we can find rare events!
reps = 100000

1.2 AWGN channel

Simple iteration over various SNR values

In []: snrdB = np.linspace(-5, 15, num=20)
snr = 10**(snrdB/10.0)

bit error rate, assuming BPSK modulation.
berlist = 0.5 * np.exp(-1*snr)

pp(snrdB)
pp(snr)
pp(berlist)

1.2.1 Paket error rate over AWGN

In []: def num_errors_awgn(n, ber):
"""For a packet of length n and a given bit error rate,
randomly generate number of errors in an AWGN channel"""
return np.random.binomial(n, ber, 1)[0]

In []: def compute_per(bchlist, berlist, reps=reps):
"""For every BCH code in bchlist, and every BER value in
berlist, simpute reps many packet transmissions.

A tranmission succeeds if it has fewer simulated errors than
the considered BCH code can correct.
"""
per = {}

for bch in bchlist:
per[bch] = []
for ber in berlist:

tmp = [num_errors_awgn(bch[0], ber) > bch[2] for i in range(reps)]
per[bch].append((sum(tmp))/reps)

return per

2

per = compute_per(bchlist, berlist)

In []: # Let's do a plot: BER as independent variables, for all BCH codes, show
packet error curves.
Convention: double-logarithmic plots over SNR and PER;
we do have logarithmic values for SNR already in the variable SNDdB,
so from a plotting tool perspective, this is only a semi-logarithmic plot

plt.figure()
for bch in bchlist:

Add plotting command here:
YOUR SOLUTION HERE
plt.title("PER for different FEC schemes (AWGN)")
plt.xlabel("SNR [dB]")
plt.ylabel("PER")
plt.show()

1.2.2 Throughput over AWGN

Let us also compute the effective throughput obtained for different BCH codes. On one hand,
stronger code reduces error probability; on the other hand, it reduces payload length. So what is
optimal code for a given SNR value?

In []: throughput = {}
for bch in bchlist:

throughput[bch] = []
for p in per[bch]:

payload = bch[1]
packetlength = bch[0]
Assign to variable tp the throughput obtained for
packet error rate p when there are payload many useful
bits in a paket of length packetlength (doh).
(It is ok to normalize this to a paketduration here since
all our codes have same length.
TODO: Think whether this needs extension!)

YOUR SOLUTION HERE
throughput[bch].append(tp)

In []: # plot throughput over SNR (logarithmic on SNR, natural unit on throughput)
plt.figure()
for bch in bchlist:

plt.plot(snrdB, throughput[bch])
plt.title("Throughput relative to uncoded transmission for different FEC schemes (AWGN)")
plt.xlabel("SNR [dB]")
plt.ylabel("Througput")
plt.show()

3

1.3 FEC over a bursty channel

We switch from a simple AWGN scheme to a Gilbert-Elliot type bursty channel. First, the com-
putation of number of errors in a frame is a bit more complicated. We define a class to hold state
information: is the channel in a good or bad state?

In []: class GilbertElliot():
def __init__(self, berGood, berBad, gb, bg):

self.ber = (berGood, berBad)
self.M = ((1-gb, gb), (bg, 1-bg))

self.state = 0

def num_errors(self, n):
"""Simulate numer of errors in the next n bits."""
errors = 0
count = 0

while count < n:
how long do we stay in this state?
Pnextstate = self.M[self.state][1-self.state]
berstate = self.ber[self.state]

next_change = np.random.geometric(
Pnextstate, 1)[0]

truncate to remaining packet length;
only switch state if this falls indeed inside this packet
Question: Explain why it would not be correct to change state
ALWAYS, irrespective of this test!

if next_change <= n-count:
self.state = 1-self.state

else:
next_change = n-count

how many errors within these many bits?
next_errors = np.random.binomial(

next_change, berstate)

errors += next_errors
count += next_change

pp((Pnextstate, next_change, next_errors, count, errors))

return errors

def steady_state_ber(self):
steady states - why is this correct?

4

gb = self.M[0][1]
bg = self.M[1][0]
tmp = gb + bg
Pg = bg / tmp
Pb = gb / tmp

pp((Pg, Pb))
return Pg*self.ber[0] + Pb*self.ber[1]

def sim_steady_state_ber(self):
n = 1000000
err = self.num_errors(n)
return err/n

Let’s get an example channel object and look at its long-term steady-state, average bit error
rate.

In []: ge = GilbertElliot(berGood=10**-6, berBad=2*10**-1,
gb = 1- 0.999, bg = 1-0.99)

ss_ber = ge.steady_state_ber()
print(ss_ber)
sim_ber = ge.sim_steady_state_ber()
pp(sim_ber)

So it turns out that these parameters give us a pretty bad channel, but to illustrate the effects,
that’s ok)

1.3.1 A histogram for a GE channel

What is the distriubution of number of errors in a packet under such a channel assumption?

In []: errors = [ge.num_errors(packetlength) for i in range(100000)]
pp(errors)
plt.figure()
n, bins, patches= plt.hist(errors, bins=range(max(errors)))
plt.show()

In []: pp(n)
pp(bins)
pp(sum(n))
testber = sum([x*y for x, y in zip(n, bins)])/sum(n)/packetlength
pp(testber)

Compare against an AWGN channel with the same BER:

In []: ge_ber = ge.steady_state_ber()
errors = [num_errors_awgn(packetlength, ge_ber) for i in range(10000)]
pp(errors)
plt.figure()
n, bins, patches= plt.hist(errors, bins=range(max(errors)))
plt.show()

5

In []: pp(n)
pp(bins)
testber = sum([x*y for x, y in zip(n, bins)])/sum(n)/packetlength
pp(testber)

What is the interpretation here?

1.3.2 YOUR SOLUTION HERE

1.3.3 Use bursty channel with FEC codes

In []: def compute_bursty_per(bchlist, ge):
per_bursty = []
per_awgn = []

ss_ber = ge.steady_state_ber()

for bch in bchlist:
tmp = [ge.num_errors(bch[0]) > bch[2] for i in range(reps)]
per_bursty.append(sum(tmp)/reps)

tmp = [num_errors_awgn(bch[0], ss_ber) > bch[2] for i in range(reps)]
per_awgn.append(sum(tmp)/reps)

return (per_bursty, per_awgn)

per2 = compute_bursty_per(bchlist, ge)
pp(per2)

In []: # to plot, let's first get a good horizonatel axis:
t = [bch[2] for bch in bchlist]
plt.figure()
plt.semilogy(t, per2[1], label="AWGN")
plt.semilogy(t, per2[0], label="bursty")
plt.ylabel("PER after FEC")
plt.title("PER for BCH AWGN and bursty channel")
plt.xlabel("Number of correctable bits")
plt.legend()
plt.show()

In []: # plot throughput
throughput_awgn = [(1-per)*(bch[1]/bch[0])

for bch, per in zip(bchlist, per2[1])]
throughput_bursty = [(1-per)*(bch[1]/bch[0])

for bch, per in zip(bchlist, per2[0])]

plt.figure()

6

plt.plot(t, throughput_awgn, label="AWGN")
plt.plot(t, throughput_bursty, label="bursty")
plt.title("Throughput for BCH AWGN and bursty channel")
plt.ylabel("Throughput after FEC")
plt.xlabel("Number of correctable bits")
plt.legend()
plt.show()

2 Delay

And what about delay characteristics? We save this for anoth

7

	Simulation von FEC über unterschiedliche Kanäle
	Basic setup
	AWGN channel
	Paket error rate over AWGN
	Throughput over AWGN

	FEC over a bursty channel
	A histogram for a GE channel
	YOUR SOLUTION HERE
	Use bursty channel with FEC codes

	Delay

