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1 Simulation von FEC iiber unterschiedliche Kanile

1.1 Basic setup

In [1l]: import numpy as np
from pprint import pprint as pp
$matplotlib notebook
from matplotlib import pyplot as plt

Die Variable bchlist enthdlt eine Liste von Triples von (Paketldnge, Payload, maximal kor-
rigierbare Fehler).

In [2]: # properties of bch as (n, k, t) triples
bchlist = [ (127, 127, 0),

127, 120, 1),

127, 113, 2),

127, 106, 3),

127, 99, 4),
127, 92, 5),
127, 85, 6),
127, 78, 7),
127, 71, 9),
127, 64, 10),
127, 57, 11)
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packetlength = 127
# not elegant: packetlength has to be identical for all BCH codes in the f«

# let's also try longer packets:

packetlength = 1023

bchlist = [

1023, 1023, 0),

1023, 973, 5),

1023, 923, 10)

1023, 873, 15),

1023, 828, 20)
)

(
(
(
(
(
(1023, 778, 25



1023, 728, 30)
1023, 698, 35)
1023, 648, 41),
1023, 608, 45)
1023, 573, 50)

—~ o~ o~ o~ o~

# how many repetitions to run, for stochastic confidence?
# also: the more repetition, the more we can find rare events!
reps = 10000000

1.2 AWGN channel

Simple iteration over various SNR values

In [3]: snrdB = np.linspace (-5, 15, num=40)
snr = 10x* (snrdB/10.0)

# bit error rate, assuming BPSK modulation.
berlist = 0.5 » np.exp(-1lxsnr)

# pp (snrdB)

# pp (snr)
# pp (berlist)

1.2.1 Paket error rate over AWGN

In [ ]: def num_errors_awgn(n, ber):
"""For a packet of length n and a given bit error rate,
randomly generate number of errors in an AWGN channel"""
return np.random.binomial (n, ber, 1) [0]

In [ ]: def compute_per (bchlist, berlist, reps=reps):
"""gFor every BCH code in bchlist, and every BER value 1in
berlist, simpute reps many packet transmissions.

A tranmission succeeds 1f it has fewer simulated errors than
the considered BCH code can correct.

mimin

per = {}

for bch in bchlist:
per[bch] = []
for ber in berlist:
tmp = [num_errors_awgn (bch[0], ber) > bch[2] for i in range (reg
per[bch] .append( (sum(tmp))/reps)

return per



per = compute_per (bchlist, berlist)

In [ ]: Let's do a plot: BER as independent variables, for all BCH codes, show
packet error curves.
Convention: double-logarithmic plots over SNR and PER;

we do have logarithmic values for SNR already in the variable SNDdB,
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so from a plotting tool perspective, this is only a semi—-logarithmic plot

plt.figure ()
for bch in bchlist:
# Add plotting command here:
### BEGIN SOLUTION
plt.semilogy (snrdB, per[bch])
### END SOLUTION
plt.title("PER for different FEC schemes (AWGN)")
plt.xlabel ("SNR [dB]")
plt.ylabel ("PER")
plt.show()

1.2.2 Throughput over AWGN

Let us also compute the effective throughput obtained for different BCH codes. On one hand,
stronger code reduces error probability; on the other hand, it reduces payload length. So what is
optimal code for a given SNR value?

In [ ]: throughput = {}
for bch in bchlist:

throughput [bch] = []

for p in per[bch]:
payload = bch[1]
packetlength = bch[0]
# Assign to variable tp the throughput obtained for
# packet error rate p when there are payload many useful
# bits in a paket of length packetlength (doh).
# (It is ok to normalize this to a paketduration here since
# all our codes have same length.
# TODO: Think whether this needs extension!)
### BEGIN SOLUTION
tp = payload/packetlength % (1-p)
### END SOLUTION
throughput [bch] . append (tp)

In [ ]: # plot throughput over SNR (logarithmic on SNR, natural unit on throughput,
plt.figure ()
for bch in bchlist:
plt.plot (snrdB, throughput [bch])
plt.title("Throughput relative to uncoded transmission for different FEC sc
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plt.xlabel ("SNR [dB]")
plt.ylabel ("Througput")
plt.show ()

1.3 FEC over a bursty channel

We switch from a simple AWGN scheme to a Gilbert-Elliot type bursty channel. First, the com-
putation of number of errors in a frame is a bit more complicated. We define a class to hold state
information: is the channel in a good or bad state?

In [ ]: class GilbertElliot () :
def _ _init__ (self, berGood, berBad, gb, bg):
self.ber = (berGood, berBad)
self.M = ( (1-gb, gb), (bg, 1-bg))

self.state = 0

def num_errors(self, n):
""rsimulate numer of errors in the next n bits."""
errors = 0
count = 0

while count < n:
# how long do we stay in this state?
Pnextstate = self.M[self.state][l-self.state]
berstate = self.ber[self.state]

next_change = np.random.geometric (
Pnextstate, 1) [0]

# truncate to remaining packet length;

# only switch state if this falls indeed inside this packet

# Question: Explain why it would not be correct to change state
# ALWAYS, irrespective of this test!

if next_change <= n-count:
self.state = l-self.state
else:
next_change = n-count

# how many errors within these many bits?
next_errors = np.random.binomial (

next_change, berstate)

errors += next_errors
count += next_change

# pp ((Pnextstate, next_change, next_errors, count, errors))



return errors

def steady_state_ber(self):
# steady states - why 1is this correct?
gb self .M[0][1]
bg self .M[1][0]
tmp = gb + bg
Pg = bg / tmp
Pb = gb / tmp

# pp((Pg, Pb))
return Pgxself.ber[0] + Pbxself.ber[1]

def sim_steady_state_ber(self):
n = 1000000
err = self.num_errors(n)
return err/n

Let’s get an example channel object and look at its long-term steady-state, average bit error

rate.

In [ ]:

ge = GilbertElliot (berGood=10+xx-6, berBad=2x10%x-1,
gb = 1- 0.999, bg = 1-0.99)

ss_ber = ge.steady_state_ber ()

print (ss_ber)

sim_ber = ge.sim_steady_state_ber ()

pp (sim_ber)

So it turns out that these parameters give us a pretty bad channel, but to illustrate the effects,

that’s ok)

1.3.1 A histogram for a GE channel

What is the distriubution of number of errors in a packet under such a channel assumption?

In [ ]:

In [ ]:

errors = [ge.num_errors (packetlength) for i in range (100000) ]
## pp(errors)

plt.figure ()

n, bins, patches= plt.hist (errors, bins=range (max (errors)))
plt.show ()

pp (n)

pp (bins)

pp (sum(n) )

testber = sum([x*y for x, y in zip(n, bins)])/sum(n)/packetlength
pp (testber)

Compare against an AWGN channel with the same BER:
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In [ ]: ge_ber = ge.steady_state_ber ()
[num_errors_awgn (packetlength, ge_ber) for i in range(10000)]

errors
# pp(errors)

plt.figure ()

n, bins, patches= plt.hist (errors, bins=range (max (errors)))
plt.show ()

In [ ]: pp(n)
pp (bins)
testber = sum([x*y for x, y in zip(n, bins)])/sum(n)/packetlength

pp (testber)

What is the interpretation here?

1.3.2 BEGIN SOLUTION

In an AWGN channel, there is a decent chance of seeing packets with no or very few errors. It is
extremely unlikely to see very large numbers of errors.

In a bursty channel, on there other hand, there is a good chance to see even a lot of errors in a
packet (and these packets will not be helped by FEC!). When comparing this to an AWGN channel
of equivalent long-term BER, this leads to many packets that are error free. ### END SOLUTION

1.3.3 Use bursty channel with FEC codes
In [ ]: def compute_bursty_per (bchlist, ge):
per_bursty = []
per_awgn = []
Ss_ber = ge.steady_state_ber()
for bch in bchlist:
tmp = [ge.num_errors (bch[0]) > bch[2] for i in range (reps)]
per_bursty.append (sum(tmp) /reps)
tmp = [num_errors_awgn (bch[0], ss_ber) > bch[2] for i in range (rep:s
per_awgn.append (sum (tmp) /reps)

return (per_bursty, per_awgn)

per2 = compute_bursty_per (bchlist, ge)

pp (per2)

In [ ]: # to plot, let's first get a good horizonatel axis:
t = [bch[2] for bch in bchlist]
plt.figure ()

plt.semilogy(t, per2[1l], label="AWGN")
plt.semilogy(t, per2[0], label="bursty")



plt.ylabel ("PER after FEC")
plt.title("PER for BCH AWGN and bursty channel")
plt.xlabel ("Number of correctable bits")

plt.legend()
plt.show ()
In [ ]: # plot throughput
throughput_awgn = [ (l-per) = (bch[1]/bch[0])
for bch, per in zip(bchlist, per2[11]1)]
throughput_bursty = [ (l-per)*(bch[1]/bch[0])
for bch, per in zip(bchlist, per2[0])]
plt.figure ()

plt.plot (t, throughput_awgn, label="AWGN")

plt.plot (t, throughput_bursty, label="bursty")
plt.title ("Throughput for BCH AWGN and bursty channel")
plt.ylabel ("Throughput after FEC")

plt.xlabel ("Number of correctable bits")

plt.legend()

plt.show ()

2 Delay

And what about delay characteristics? We save this for another time
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