BCH-hints

November 8, 2017

1 Simulation von FEC iiber unterschiedliche Kanile

1.1 Basic setup

In [1l]: import numpy as np
from pprint import pprint as pp
$matplotlib notebook
from matplotlib import pyplot as plt

Die Variable bchlist enthdlt eine Liste von Triples von (Paketldnge, Payload, maximal kor-
rigierbare Fehler).

In [2]: # properties of bch as (n, k, t) triples
bchlist = [(127, 127, 0),

127, 120, 1),

127, 113, 2),

127, 106, 3),

127, 99, 4),
127, 92, 5),
127, 85, 6),
127, 78, 7),
127, 71, 9),
127, 64, 10),
127, 57, 11)

4

packetlength = 127
not elegant: packetlength has to be identical for all BCH codes in the f«

let's also try longer packets:

packetlength = 1023

bchlist = [

1023, 1023, 0),

1023, 973, 5),

1023, 923, 10)

1023, 873, 15),

1023, 828, 20)
)

(
(
(
(
(
(1023, 778, 25

1023, 728, 30)
1023, 698, 35)
1023, 648, 41),
1023, 608, 45)
1023, 573, 50)

—~ o~ o~ o~ o~

how many repetitions to run, for stochastic confidence?
also: the more repetition, the more we can find rare events!
reps = 10000000

1.2 AWGN channel

Simple iteration over various SNR values

In [3]: snrdB = np.linspace (-5, 15, num=40)
snr = 10x* (snrdB/10.0)

bit error rate, assuming BPSK modulation.
berlist = 0.5 » np.exp(-1lxsnr)

pp (snrdB)

pp (snr)
pp (berlist)

1.2.1 Paket error rate over AWGN

In []: def num_errors_awgn(n, ber):
"""For a packet of length n and a given bit error rate,
randomly generate number of errors in an AWGN channel"""
return np.random.binomial (n, ber, 1) [0]

In []: def compute_per (bchlist, berlist, reps=reps):
"""gFor every BCH code in bchlist, and every BER value 1in
berlist, simpute reps many packet transmissions.

A tranmission succeeds 1f it has fewer simulated errors than
the considered BCH code can correct.

mimin

per = {}

for bch in bchlist:
per[bch] = []
for ber in berlist:
tmp = [num_errors_awgn (bch[0], ber) > bch[2] for i in range (reg
per[bch] .append((sum(tmp))/reps)

return per

per = compute_per (bchlist, berlist)

In []: Let's do a plot: BER as independent variables, for all BCH codes, show
packet error curves.
Convention: double-logarithmic plots over SNR and PER;

we do have logarithmic values for SNR already in the variable SNDdB,

FH H R IR W

so from a plotting tool perspective, this is only a semi—-logarithmic plot

plt.figure ()
for bch in bchlist:
Add plotting command here:
BEGIN SOLUTION
plt.semilogy (snrdB, per[bch])
END SOLUTION
plt.title("PER for different FEC schemes (AWGN)")
plt.xlabel ("SNR [dB]")
plt.ylabel ("PER")
plt.show()

1.2.2 Throughput over AWGN

Let us also compute the effective throughput obtained for different BCH codes. On one hand,
stronger code reduces error probability; on the other hand, it reduces payload length. So what is
optimal code for a given SNR value?

In []: throughput = {}
for bch in bchlist:

throughput [bch] = []

for p in per[bch]:
payload = bch[1]
packetlength = bch[0]
Assign to variable tp the throughput obtained for
packet error rate p when there are payload many useful
bits in a paket of length packetlength (doh).
(It is ok to normalize this to a paketduration here since
all our codes have same length.
TODO: Think whether this needs extension!)
BEGIN SOLUTION
tp = payload/packetlength % (1-p)
END SOLUTION
throughput [bch] . append (tp)

In []: # plot throughput over SNR (logarithmic on SNR, natural unit on throughput,
plt.figure ()
for bch in bchlist:
plt.plot (snrdB, throughput [bch])
plt.title("Throughput relative to uncoded transmission for different FEC sc

3

plt.xlabel ("SNR [dB]")
plt.ylabel ("Througput")
plt.show ()

1.3 FEC over a bursty channel

We switch from a simple AWGN scheme to a Gilbert-Elliot type bursty channel. First, the com-
putation of number of errors in a frame is a bit more complicated. We define a class to hold state
information: is the channel in a good or bad state?

In []: class GilbertElliot () :
def _ _init__ (self, berGood, berBad, gb, bg):
self.ber = (berGood, berBad)
self.M = ((1-gb, gb), (bg, 1-bg))

self.state = 0

def num_errors(self, n):
""rsimulate numer of errors in the next n bits."""
errors = 0
count = 0

while count < n:
how long do we stay in this state?
Pnextstate = self.M[self.state][l-self.state]
berstate = self.ber[self.state]

next_change = np.random.geometric (
Pnextstate, 1) [0]

truncate to remaining packet length;

only switch state if this falls indeed inside this packet

Question: Explain why it would not be correct to change state
ALWAYS, irrespective of this test!

if next_change <= n-count:
self.state = l-self.state
else:
next_change = n-count

how many errors within these many bits?
next_errors = np.random.binomial (

next_change, berstate)

errors += next_errors
count += next_change

pp ((Pnextstate, next_change, next_errors, count, errors))

return errors

def steady_state_ber(self):
steady states - why 1is this correct?
gb self .M[0][1]
bg self .M[1][0]
tmp = gb + bg
Pg = bg / tmp
Pb = gb / tmp

pp((Pg, Pb))
return Pgxself.ber[0] + Pbxself.ber[1]

def sim_steady_state_ber(self):
n = 1000000
err = self.num_errors(n)
return err/n

Let’s get an example channel object and look at its long-term steady-state, average bit error

rate.

In []:

ge = GilbertElliot (berGood=10+xx-6, berBad=2x10%x-1,
gb = 1- 0.999, bg = 1-0.99)

ss_ber = ge.steady_state_ber ()

print (ss_ber)

sim_ber = ge.sim_steady_state_ber ()

pp (sim_ber)

So it turns out that these parameters give us a pretty bad channel, but to illustrate the effects,

that’s ok)

1.3.1 A histogram for a GE channel

What is the distriubution of number of errors in a packet under such a channel assumption?

In []:

In []:

errors = [ge.num_errors (packetlength) for i in range (100000)]
pp(errors)

plt.figure ()

n, bins, patches= plt.hist (errors, bins=range (max (errors)))
plt.show ()

pp (n)

pp (bins)

pp (sum(n))

testber = sum([x*y for x, y in zip(n, bins)])/sum(n)/packetlength
pp (testber)

Compare against an AWGN channel with the same BER:

5

In []: ge_ber = ge.steady_state_ber ()
[num_errors_awgn (packetlength, ge_ber) for i in range(10000)]

errors
pp(errors)

plt.figure ()

n, bins, patches= plt.hist (errors, bins=range (max (errors)))
plt.show ()

In []: pp(n)
pp (bins)
testber = sum([x*y for x, y in zip(n, bins)])/sum(n)/packetlength

pp (testber)

What is the interpretation here?

1.3.2 BEGIN SOLUTION

In an AWGN channel, there is a decent chance of seeing packets with no or very few errors. It is
extremely unlikely to see very large numbers of errors.

In a bursty channel, on there other hand, there is a good chance to see even a lot of errors in a
packet (and these packets will not be helped by FEC!). When comparing this to an AWGN channel
of equivalent long-term BER, this leads to many packets that are error free. ### END SOLUTION

1.3.3 Use bursty channel with FEC codes
In []: def compute_bursty_per (bchlist, ge):
per_bursty = []
per_awgn = []
Ss_ber = ge.steady_state_ber()
for bch in bchlist:
tmp = [ge.num_errors (bch[0]) > bch[2] for i in range (reps)]
per_bursty.append (sum(tmp) /reps)
tmp = [num_errors_awgn (bch[0], ss_ber) > bch[2] for i in range (rep:s
per_awgn.append (sum (tmp) /reps)

return (per_bursty, per_awgn)

per2 = compute_bursty_per (bchlist, ge)

pp (per2)

In []: # to plot, let's first get a good horizonatel axis:
t = [bch[2] for bch in bchlist]
plt.figure ()

plt.semilogy(t, per2[1l], label="AWGN")
plt.semilogy(t, per2[0], label="bursty")

plt.ylabel ("PER after FEC")
plt.title("PER for BCH AWGN and bursty channel")
plt.xlabel ("Number of correctable bits")

plt.legend()
plt.show ()
In []: # plot throughput
throughput_awgn = [(l-per) = (bch[1]/bch[0])
for bch, per in zip(bchlist, per2[11]1)]
throughput_bursty = [(l-per)*(bch[1]/bch[0])
for bch, per in zip(bchlist, per2[0])]
plt.figure ()

plt.plot (t, throughput_awgn, label="AWGN")

plt.plot (t, throughput_bursty, label="bursty")
plt.title ("Throughput for BCH AWGN and bursty channel")
plt.ylabel ("Throughput after FEC")

plt.xlabel ("Number of correctable bits")

plt.legend()

plt.show ()

2 Delay

And what about delay characteristics? We save this for another time

	Simulation von FEC über unterschiedliche Kanäle
	Basic setup
	AWGN channel
	Paket error rate over AWGN
	Throughput over AWGN

	FEC over a bursty channel
	A histogram for a GE channel
	BEGIN SOLUTION
	Use bursty channel with FEC codes

	Delay

