Winter term 2017/2018
Mobile communications

Homework assignment 1: Decibels, antennas, Antennas

Due date: 2017-10-25

1. Expressing and working with ratios: decibels

We will often need to express large ratios. This is convenient to do with logarithmic expressions. The core concept here is to use so-called decibel units.
(a) Read up on decibels ($\mathrm{dB)}$ on the Web
(b) What is the role of a reference unit? For example, Milliwatt when taking about the ratio of power levels?
(c) Understand the difference between dB and dBm .
(d) Which other reference units for dB can you find?
(e) Compute the ratio $\frac{A}{B}=\frac{1000}{10}$ in dB.
(f) Compute the "natural" ratio that corresponds to $\frac{A}{B}{ }_{\mathrm{dB}}=-30 \mathrm{~dB}$.
(g) What does $A=-70 \mathrm{dBm}$ mean? And 0 dB ?
(h) Suppose you start with $A=10 \mathrm{~W}$. What is the resulting power in W and in dBm if you loose 99.99% of that power?
(i) Express power loss and amplification in dB .

2. Antennas and antenna gain

Regulating authorities (e.g. Bundesnetzagentur) require you to comply with the maximum EIRP! (EIRP!) of 1 W . We start by assuming antennas with no gain at both transmitter and receiver.
(a) Explain the concept of antenna gain.
(b) Interpret the following antenna gain diagram.

(c) Explain the concept of EIRP.
(d) What is the output power in dBm that must not be exceeded at the transmitter's radio front-end, assuming the transmit antenna has a gain of 20 dB ? Base station and mobile terminal are assumed to have an ideal Line-OfSight (LOS) connection.
(e) Which received power in dBm is to be expected at the mobile terminal's radio front-end if the terminal employs an antenna with 3 dB gain, assuming that we ignore signal attenuation?

3. Signal arriving over multiple paths: Multiple antennas and beamforming.

In Chapter 2, we looked at the interference of a signal with itself when it arrives over multiple paths. In this exercise, we look at a different source of multiple paths: Multiple antennas sending out the same signal. With cleverly chosen phase offsets when sending the signal, the interference of the multiple signals can be used to "steer" the transmitted power into various directions.
To this end, implement the following simulation:

- Place a rectangular grid of antennas in a plane. Experiment with different spacing. For example, a $18 x 1$ or $8 x 2$ array of antennas can provide good results.
- Each antenna sends out the same carrier signal, but with different phase offsets.
- Sample the points in the plane. Assume a line-of-sight connection to each antenna, calculate the resulting phase shift from each antenna and compute the resulting total signal and its strength.
- Plot a 2D plot of the signal strength received at all sampled points in the plane.

4. Attenuation for two-ray ground reflection model

Derive an approximation formula, similar to the Friis equation, for the two-ray ground reflection model. What can you say about the path-loss exponent in the limiting case when d becomes large?
More specifically, assume the following:

- Transmit antenna is at height h_{t}
- Receive antenna at height h_{r}
- Distance between sender and receiver is d
- Assume that d is much larger than the antenna heights
- We use wavelength λ

Hints:

- The Taylor expansion for $\sqrt{1+x}=1+\frac{x}{2}+\ldots$ and $\mathrm{e}^{x}=1+x+\ldots$ will be useful; abort the expansion after the second term.
- Make sure to account for the phase shift of π at the ground reflection
- Look for an expression for the difference of the two path lengths (the direct line-of-sight path and the reflected path). Apply the Taylor expansion for $\sqrt{1+x}$ here.
Hint: With a bit of clever drawing, you can do that by using Pythagoras twice.
- Then, look at the resulting signal. Understand that only the difference in the phases matters, not the absolute phases. Compute this phase difference from the difference in the path lengths and λ. Don't worry if this term turns a bit ugly.
- Now, look at the power of the received signal (it's square). You should find a term that (among others) depends on distance d in a way not foretold by Fries' equation!
- What does this result mean for large d ?

