What to read?
How to read?

Holger Karl
Goals

• Maximize benefits obtained from reading a scientific paper (or similar document)
 • Organize reading process
 • Set clear goals

• Presentation (partially) follows:
 M. J. Hanson, D. J. McNamee, “Efficient Reading of Papers in Science and Technology”,
 http://www.cse.ogi.edu/~dylan/efficientReading.html
Why read?

• What is the reason causing you to read a specific document?
 • Need an overview?
 • Need to present it to others?
 • ... don’t know?

• Why read a specific paper?
 • What did the authors do? Look at title, abstract
 • Read, file for later, drop it
How to find papers to read?

• So you are given a topic, a first paper to start with

• How to find additional material?
 • Other papers
 • Your assigned paper cited other sources, which cited other sources, ...
 • Your assigned paper might have been cited by others
 • Explore the “Citation graph”
 • Textbooks
 • No shame in reading a good book!

• Beware of the honeypot!
 • Wikipedia is not the only, final source of all wisdom
 • Go back to the ORIGINAL sources, not the rehashing of somebody else
Citation graph – Tools

- Many tools available to explore

- Search engines in general
 - Feed google, … with the right buzzwords – extracted from your paper

- Specialized search engines
 - Google scholar: http://scholar.google.de/
 - DBLP: http://www.informatik.uni-trier.de/~ley/db/

- Publishers
 - Springer: http://www.springerlink.com/?MUD=MP
 - Elsevier

- Social networks for researchers
Citation graph – Usual suspects

- Topics typically appear in related set of venues
 - Typical set of conferences & journals
 - Side remark: Understand the way how science operates in its conferences and journals (with surprising variations among disciplines)

- How to find? Look at the references in your papers!
 - Also, talk to your advisors – especially for “up and coming” topics

- Check “famous workgroups” on certain topics
 - The scientific world is surprisingly small
 - … and the winner certainly takes it all: only relatively few publications make it into the level of frequently cited papers
 - Sometimes, tech reports can be up-to-date
 - Talk to your advisors!
Organize your literature search

- Don’t do random walk through all literature databases

- Stay close to your topic at hand
- Understand the claims, problems, ideas you want to get more information about

- Use tools!
 - Keep track of your papers/PDFs and their bibliographic information
 - Tools abound: jabref, endnote, reference manager, Mendeley, …
 - Use a tool that fits with your word processing setup
 - In our case: LaTeX; hence you need a tool that supports BiBTeX
Embarrassment of riches

- Using those tools, you’ll easily find dozens, hundreds of apparently relevant papers

- How to weed out the irrelevant ones quickly?

- How to extract most useful information from the relevant ones?
Reading for breadth

• Read the introduction
• Read the section headings
• Look at the tables and graphs to see what they say and read the captions
• Read the definitions and theorems
• Read the conclusions
• Consider the credibility of the article
 • Who wrote it? Are they well-known?
 • Where do they work? What biases might they have as a result of their employer?
 • Where was the article published? What is the reputation of the journal? Was the journal refereed?
 • When was it written? Might it be outdated or superseded?
• Skim the bibliography
 • How extensive is it?
 • Are the authors aware of current work?
 • Does it reference classic papers in this field?
 • Have you read any of the papers that are referred to?
 • Do you know relevant research that isn't cited?
Reading for depth: **Challenge** what you read!

- There’s a lot of junk published! → Try to tear paper apart!
- **Examine the assumptions**
 - Do their results rely on any assumptions about trends or environments?
 - Are these assumptions reasonable?
- **Examine the methods**
 - Did they measure what they claim?
 - Can they explain what they observed?
 - Did they have adequate controls?
 - Were tests carried out in a standard way?
- **Examine the statistics**
 - Were appropriate statistical tests applied properly?
 - Did they do proper error analysis?
 - Are the results statistically significant?
- **Examine the conclusions**
 - Do the conclusions follow logically from the observations?
 - What other explanations are there for the observed effects?
 - What other conclusions or correlations are there in the data that they did not point out?
Taking Notes – React to what you read

- Make notes as you read
- Highlight major points
- Note new terms and definitions
- Summarize tables
- Construct your own examples
- Write a summary – relate it to what you already know

- Organize your note taking
 - Put all notes in a consistent place
 - Link your notes with bibliographic information about a paper
 - E.g., put notes into a BibTeX entry for each paper
Finding out what to read

- Main sources of information: Referred conferences/journals
- Secondary: textbooks
- Secondary: Search engines specialized to academic topics

- Useless or severely limited sources: Web, wikipedia, …
 - Quality is sometimes decent, often appalling

- Which conferences/journals?
 - Depends on the branch of knowledge you are interested in
 - For networking, see: http://typo3.cs.uni-paderborn.de/fachgebiete/fachgebiet-rechnernetze/lehre/seminartips.html